THE SYMMETRIC INVARIANTS OF THE CENTRALIZERS AND FINITE W-ALGEBRAS

JEAN-YVES CHARBONNEL AND ANNE MOREAU

Abstract. Let \(g \) be a finite-dimensional simple Lie algebra of rank \(\ell \) over an algebraically closed field \(k \) of characteristic zero, and let \(e \) be a nilpotent element of \(g \). Denote by \(g' \) the centralizer of \(e \) in \(g \) and by \(S(g')^{\ell} \) the algebra of symmetric invariants of \(g' \). We say that \(e \) is good if the nullvariety of some \(\ell \) homogeneous elements of \(S(g')^{\ell} \) in \((g')^* \) has codimension \(\ell \). If \(e \) is good then \(S(g')^{\ell} \) is polynomial. The main result of this paper stipulates that if for some homogeneous generators of \(S(g')^{\ell} \) and \(e' + g' \) are algebraically independent, with \((e, h, f) \) an \(\mathfrak{sl}_2 \)-triple of \(g \), then \(e \) is good. The proof is strongly based on the theory of finite \(W \)-algebras. As applications, we pursue the investigations of [PPY07] and we produce (new) examples of nilpotent elements that verify the above polynomiality condition in simple Lie algebras of both classical and exceptional types. We also give a counter-example in type \(D_7 \).

Contents

1. Introduction 1
2. General facts on commutative algebra 5
3. Good elements and good orbits 9
4. Proof of Theorem 2 and finite \(W \)-algebras 11
5. Consequences of Theorem 2 for the simple classical Lie algebras 22
6. Examples in simple exceptional Lie algebras 33
7. Other examples, remarks and a conjecture 37
References 44

1. Introduction

1.1. Let \(g \) be a finite-dimensional simple Lie algebra of rank \(\ell \) over an algebraically closed field \(k \) of characteristic zero, let \(\langle ., . \rangle \) be the Killing form of \(g \) and let \(G \) be the adjoint group of \(g \). If \(a \) is a subalgebra of \(g \), we denote by \(S(a) \) the symmetric algebra of \(a \). Let \(x \in g \) and denote by \(g^x \) and \(G^x \) the centralizer of \(x \) in \(g \) and \(G \) respectively. Then \(\text{Lie}(G^x) = \text{Lie}(G^x_0) = g^x \) where \(G^x_0 \) denotes the identity component of \(G^x \). Moreover, \(S(g^x) \) is a \(g^x \)-module and \(S(g^x)^{a^x} = S(g^x)^{G_0^x} \). An interesting question, first raised by A. Premet, is the following:

Question 1. \textit{Is the algebra} \(S(g^x)^{a^x} \) \textit{polynomial algebra in} \(\ell \) \textit{variables?}

In order to answer this question, thanks to the Jordan decomposition, one can assume that \(x \) is nilpotent. Besides, if \(S(g^x)^{a^x} \) is polynomial for some \(x \in g \), then it is so for any element in the adjoint orbit \(G(x) \) of \(x \). If \(x = 0 \), it is well-known since Chevalley that \(S(g^x)^{a^x} = S(g^0)^{a^x} \) is polynomial in \(\ell \) variables. At the
opposite extreme, if \(x \) is a regular nilpotent element of \(\mathfrak{g} \), then \(\mathfrak{g}^x \) is abelian of dimension \(\ell \), [DV69], and \(S(\mathfrak{g}^x)^* = S(\mathfrak{g}^x) \) is polynomial in \(\ell \) variables too.

For the introduction, let us say most simply that \(x \in \mathfrak{g} \) verifies the polynomiality condition if \(S(\mathfrak{g}^x)^\ell = S(\mathfrak{g}^x) \) is a polynomial algebra in \(\ell \) variables.

A positive answer to Question 1 was suggested in [PPY07, Conjecture 0.1] for any simple \(\mathfrak{g} \) and any \(x \in \mathfrak{g} \). O. Yakimova has since discovered a counter-example in type \(\mathfrak{E}_8 \), [Y07], disconfirming the conjecture. More precisely, the elements of the minimal nilpotent orbit in \(\mathfrak{E}_8 \) do not verify the polynomiality condition. The present paper contains another counter-example in type \(\mathfrak{D}_4 \) (cf. Example 7.8). In particular, one cannot expect a positive answer to [PPY07, Conjecture 0.1] for the simple Lie algebras of classical type. Question 1 still remains interesting and is positive for a large number of nilpotent elements \(e \in \mathfrak{g} \) as it is explained below.

1.2. We briefly review in this paragraph what has been achieved so far about Question 1. Recall that the index of a finite-dimensional Lie algebra \(\mathfrak{g} \), denoted by \(\text{ind} \ \mathfrak{g} \), is the minimal dimension of the stabilizers of linear forms on \(\mathfrak{g} \) for the coadjoint representation, (cf. [Di74]):

\[
\text{ind} \ \mathfrak{g} := \min \{ \dim \mathfrak{g}^\xi ; \xi \in \mathfrak{g}^* \} \quad \text{where} \quad \mathfrak{g}^\xi := \{ x \in \mathfrak{g} ; \xi([x, q]) = 0 \}.
\]

By [R63], if \(\mathfrak{g} \) is algebraic, i.e., \(\mathfrak{g} \) is the Lie algebra of some algebraic linear group \(Q \), then the index of \(\mathfrak{g} \) is the transcendental degree of the fraction field of \(Q \)-invariant rational functions on \(\mathfrak{g}^* \). The following result will be important for our purpose.

Theorem 1 ([CM10, Theorem 1.2]). The index of \(\mathfrak{g}^x \) equals \(\ell \) for any \(x \in \mathfrak{g} \).

Theorem 1 was first conjectured by Elashvili in the 90′ motivated by a result of Bolsinov, [B91, Theorem 2.1]. It was proven by O. Yakimova when \(\mathfrak{g} \) is a simple Lie algebra of classical type, [Y06], and checked by a computer programme by W. de Graaf when \(\mathfrak{g} \) is a simple Lie algebra of exceptional type, [DeG08]. Before that, the result was established for some particular classes of nilpotent elements by D. Panyushev, [Pa03].

Theorem 1 is deeply related to Question 1. Indeed, thanks to Theorem 1, [PPY07, Theorem 0.3] applies and by [PPY07, Theorems 4.2 and 4.4], if \(\mathfrak{g} \) is simple of type \(\mathfrak{A} \) or \(\mathfrak{C} \), then all nilpotent elements of \(\mathfrak{g} \) verify the polynomiality condition. The result for the type \(\mathfrak{A} \) was independently obtained by Brundan and Kleshchev, [BK06]. In [PPY07], the authors also provide some examples of nilpotent elements satisfying the polynomiality condition in the simple Lie algebras of types \(\mathfrak{B} \) and \(\mathfrak{D} \), and a few ones in the simple exceptional Lie algebras.

More recently, the analogue question to Question 1 for the positive characteristic was dealt with by L. Topley for the simple Lie algebras of types \(\mathfrak{A} \) and \(\mathfrak{C} \), [T12].

1.3. The main goal of this paper is to continue the investigations of [PPY07]. Let us describe the main results. The following definition is central in our work (cf. Definition 3.1):

Definition 1. An element \(x \in \mathfrak{g} \) is called a good element of \(\mathfrak{g} \) if for some homogeneous elements \(p_1, \ldots, p_\ell \) of \(S(\mathfrak{g}^x)^\ell \), the nullvariety of \(p_1, \ldots, p_\ell \) in \((\mathfrak{g}^x)^\ell \) has codimension \(\ell \) in \((\mathfrak{g}^x)^* \).

For example, by [PPY07, Theorem 5.4], all nilpotent elements of a simple Lie algebra of type \(\mathfrak{A} \) are good, and by [Y09, Corollary 8.2], the even nilpotent elements of \(\mathfrak{g} \) are good if \(\mathfrak{g} \) is of type \(\mathfrak{B} \) or \(\mathfrak{C} \) or if \(\mathfrak{g} \) is of type \(\mathfrak{D} \) with odd rank. We rediscover these results in a more general setting (cf. Theorem 5.1 and Corollary 5.8). The good elements verify the polynomiality condition (cf. Proposition 3.2). Moreover, \(x \) is good if and only if its nilpotent component in the Jordan decomposition is so (cf. Proposition 3.4).

Let \(e \) be a nilpotent element of \(\mathfrak{g} \). By the Jacobson-Morosov Theorem, \(e \) is embedded into a \(sl_2 \)-triple \((e, h, f)\) of \(\mathfrak{g} \). Denote by \(S_e := e + \mathfrak{g}' \) the Slodowy slice associated with \(e \). Identify the dual of \(\mathfrak{g} \) with \(\mathfrak{g} \), and
the dual of \mathfrak{g}^ℓ with \mathfrak{g}^ℓ through the Killing form $\langle ., . \rangle$. For p in $S(\mathfrak{g}) \cong k[\mathfrak{g}^\ast] \cong k[\mathfrak{g}]$, denote by e_p the initial homogeneous component of its restriction to S_e. According to [PPY07, Proposition 0.1], if p is in $S(\mathfrak{g})^\ell$, then e_p is in $S(\mathfrak{g}^\ell)^\ell$. The main result of the paper is the following (cf. Theorem 4.1):

Theorem 2. Suppose that for some homogeneous generators q_1, \ldots, q_ℓ of $S(\mathfrak{g})^\ell$, the polynomial functions e_q, q_1, \ldots, q_ℓ are algebraically independent. Then e is a good element of \mathfrak{g}. In particular, $S(\mathfrak{g}^\ell)^\ell$ is a polynomial algebra and $S(\mathfrak{g}^\ell)$ is a free extension of $S(\mathfrak{g}^\ell)^\ell$. Moreover, e_q, q_1, \ldots, q_ℓ is a regular sequence in $S(\mathfrak{g}^\ell)$.

Theorem 2 applies to a great number of nilpotent orbits in the simple classical Lie algebras (cf. Section 5), and for some nilpotent orbits in the exceptional Lie algebras (cf. Section 6).

To state our results for the simple Lie algebras of types \mathbf{B} and \mathbf{D}, let us introduce some more notations. Assume that $\mathfrak{g} = \mathfrak{so}(\mathcal{V}) \subset \mathfrak{gl}(\mathcal{V})$ for some vector space \mathcal{V} of dimension $2\ell + 1$ or 2ℓ. For x an endomorphism of \mathcal{V} and for $i \in \{1, \ldots, \dim \mathcal{V}\}$, denote by $Q_i(x)$ the coefficient of degree $\dim \mathcal{V} - i$ of the characteristic polynomial of x. Then for any x in \mathfrak{g}, $Q_i(x) = 0$ whenever i is odd. Define a generating family q_1, \ldots, q_ℓ of the algebra $S(\mathfrak{g})^\ell$ as follows. For $i = 1, \ldots, \ell - 1$, set $q_i := Q_{2i}$. If $\dim \mathcal{V} = 2\ell + 1$, set $q_\ell = Q_{2\ell}$ and if $\dim \mathcal{V} = 2\ell$, let q_ℓ be a homogeneous element of degree ℓ of $S(\mathfrak{g})^\ell$ such that $Q_{2\ell} = q_\ell^2$. Denote by $\delta_1, \ldots, \delta_\ell$ the degrees of q_1, \ldots, q_ℓ respectively. By [PPY07, Theorem 2.1], if

$$\dim \mathfrak{g}^\ell + \ell - 2(\delta_1 + \cdots + \delta_\ell) = 0,$$

then the polynomials e_q, q_1, \ldots, q_ℓ are algebraically independent. In that event, by Theorem 2, e is good and we will say that e is very good (cf. Corollary 5.8 and Definition 5.10). The very good nilpotent elements of \mathfrak{g} can be characterized in term of their associated partitions of $\dim \mathcal{V}$ (cf. Lemma 5.11). Theorem 2 also enables to obtain examples of good, but not very good, nilpotent elements of \mathfrak{g}; for them, there are a few more work to do (cf. Subsection 5.3).

Thus, we obtain a large number of good nilpotent elements, including all even nilpotent elements in type \mathbf{B}, or in type \mathbf{D} with odd rank (cf. Corollary 5.8). For the type \mathbf{D} with even rank, we obtain the statement for some particular cases (cf. Theorem 5.23).

On the other hand, there are examples of elements that verify the polynomiality condition but that are not good; see Examples 7.5 and 7.6. To deal with them, we use different techniques, more similar to those used in [PPY07]; see Section 7.

As a result of all this, we observe for example that all nilpotent elements of $\mathfrak{so}(\mathbb{K}^7)$ are good and that all nilpotent elements of $\mathfrak{so}(\mathbb{K}^8)$, with $n \leq 13$, verify the polynomiality condition (cf. Table 5). In particular, by [PPY07, §3.9], this provides examples of good nilpotent elements for which the codimension of $(\mathfrak{g}^\ell)^{\text{sing}}$ in $(\mathfrak{g}^\ell)^\ast$ is 1 (cf. Remark 7.7). Here, $(\mathfrak{g}^\ell)^{\text{sing}}$ stands for the set of nonregular linear forms $x \in (\mathfrak{g}^\ell)^\ast$, i.e.,

$$(\mathfrak{g}^\ell)^{\text{sing}} := \{ x \in (\mathfrak{g}^\ell)^\ast \ ; \ \dim (\mathfrak{g}^\ell)^x > \text{ind } \mathfrak{g}^\ell = \ell \}.$$

For such nilpotent elements, note that [PPY07, Theorem 0.3] does not apply.

Our results do not cover all nilpotent orbits in type \mathbf{B} and \mathbf{D}. As a matter of fact, we obtain a counterexample in type \mathbf{D} to Premet’s conjecture (cf. Example 7.8):

Proposition 1. The nilpotent elements of $\mathfrak{so}(\mathbb{K}^{14})$ associated with the partition $(3, 3, 2, 2, 2)$ of 14 do not satisfy the polynomiality condition.

14. The main ingredient to prove Theorem 4.1 is the finite W-algebra associated with the nilpotent orbit $G(e)$ which we emphasize the construction below. Our basic reference for the theory of finite W-algebras
is [Pr02]. In the present paper, we refer the reader to Section 4. For i in \mathbb{Z}, let $g(i)$ be the i-eigenspace of $\text{ad} \, h$ and set:

$$p_+ := \bigoplus_{i \geq 0} g(i).$$

Then p_+ is a parabolic subalgebra of g containing g^e. Let $g(-1)^0$ be a totally isotropic subspace of $g(-1)$ of maximal dimension with respect to the nondegenerate bilinear form

$$g(-1) \times g(-1) \rightarrow \mathbb{k}, \quad (x, y) \mapsto \langle e, [x, y] \rangle$$

and set:

$$m := g(-1)^0 \oplus \bigoplus_{i \in \mathbb{Z}} g(i).$$

Then m is a nilpotent subalgebra of g with a derived subalgebra orthogonal to e. Denote by \mathbb{k}_e the one dimensional $U(m)$-module defined by the character $x \mapsto \langle e, x \rangle$ of m, denote by \bar{Q}_e the induced module

$$\bar{Q}_e := U(g) \otimes_{U(m)} \mathbb{k}_e$$

and denote by \hat{H}_e the associative algebra

$$\hat{H}_e := \text{End}_g(\bar{Q}_e)^{op},$$

known as the finite W-algebra associated with e. If $e = 0$, then \hat{H}_e is isomorphic to the enveloping algebra $U(g)$ of g. If e is a regular nilpotent element, then \hat{H}_e identifies with the center of $U(g)$. More generally, by [Pr02, §6.1], the representation $U(g) \rightarrow \text{End}(\bar{Q}_e)$ is injective on the center $Z(g)$ of $U(g)$. The algebra \hat{H}_e is endowed with an increasing filtration, sometimes referred as the Kazhdan filtration, and one of the main theorems of [Pr02] states that the corresponding graded algebra is isomorphic to the graded algebra $S(g^e)$. Here, $S(g^e)$ is graded by the Slodowy grading (see Subsection 4.1 for more details).

Our idea is to reduce the problem modulo p for a sufficiently big prime integer p, and prove the analogue statement to Theorem 2 in characteristic p. More precisely, we construct in Subsection 4.2 a Lie algebra g_K from g over an algebraically closed field K of characteristic $p > 0$. The key advantage is essentially that the analogue H_e of the finite W-algebra \hat{H}_e in this setting is of finite dimension.

1.5. The idea of appealing to the theory of finite W-algebras in this context was initiated in [PPY07, §2]. What is new is to come down to the positive characteristic. More recently, T. Arakawa and A. Premet used affine W-algebras to study an analogue question to Question 1 in the context of jet scheme (private communication). In more detail, assume that g is simple of type A and let e be a nilpotent element of g. If g_∞ denotes the arc space of g, then Arakawa and Premet show that $\mathbb{k}[((g^e)_\infty)^{\text{sing}}]$ is a polynomial algebra with infinitely many variables. The case where $e = 0$ was already known by Beilinson-Drinfeld, [BD]. Since g is of type A, all nilpotent elements of g verify the polynomiality condition. Moreover, for any nilpotent element $e \in g$, $(g^e)^{\text{sing}}$ has codimension ≥ 3 in $(g^e)^*$ (cf. [Y09, Theorem 5.4]). These two properties are crucial in the proof of Arakawa and Premet.

1.6. The remainder of the paper will be organized as follows.

Section 2 is about general facts on commutative algebra, useful for the Section 3. In Section 3, the notions of good elements and good orbits are introduced, and some properties of good elements are described. Proposition 3.2 asserts that the good elements verify the polynomiality condition. Moreover, Proposition 3.7 gives a sufficient condition for guaranteeing that a given nilpotent element is good. It will be important in Section 4. The main theorem (Theorem 4.1) is stated and proven in Section 4. The proof is based on the theory of finite W-algebras over \mathbb{k} and over fields of positive characteristic. The section starts with some reminders about this theory following [Pr02]. In Section 5, we give applications of Theorem 4.1 to the
simple classical Lie algebras. In Section 6, we give applications to the exceptional Lie algebras of types \(E_6, F_4 \) and \(G_2 \). This enables us to exhibit a great number of good nilpotent orbits. Other examples, counter-examples, remarks and a conjecture are discussed in Section 7. In this latter section, different techniques are used.

Acknowledgments. We thank Lewis Topley for stimulating discussions, Tomoyuki Arakawa and Alexander Premet for their interest in this work. This work was partially supported by the ANR-project 10-BLAN-0110.

2. **General facts on commutative algebra**

We state in this section preliminary results on commutative algebra. Theorem 2.7 will be particularly important in Section 3.

As a rule, for \(A \) a homogeneous algebra, \(A_+ \) denotes the ideal of \(A \) generated by its homogeneous elements of positive degree. Let \(E \) be a finite dimensional vector space and let \(A \) be a finitely generated homogeneous subalgebra of \(S(E) \). Denote by \(N_0 \) the nullvariety of \(A_+ \) in \(E^* \) and set \(N := \dim E - \dim A \).

2.1. Let \(X \) be the affine variety \(\text{Specm}(A) \) and let \(\pi \) be the morphism from \(E^* \) to \(X \) whose comorphism is the canonical injection from \(A \) into \(S(E) \).

Lemma 2.1. (i) The irreducible components of the fibers of \(\pi \) have dimension at least \(N \).

(ii) If \(N_0 \) has dimension \(N \), the fibers of \(\pi \) are equidimensional of dimension \(N \).

(iii) If \(N_0 \) has dimension \(N \), for some \(x_1, \ldots, x_N \) in \(E \), the nullvariety of \(x_1, \ldots, x_N \) in \(N_0 \) equals \(\{0\} \).

Proof. (i) Let \(F \) be a fiber of \(\pi \) and let \(U \) be an open subset of \(E^* \) whose intersection with \(F \) is not empty and irreducible. The restriction of \(\pi \) to \(U \) is a dominant morphism from \(U \) to \(X \). So, \(N \) is the minimal dimension of the fibers of the restriction of \(\pi \) to \(U \), whence the assertion.

(ii) Denote by \(x_0 \) the element \(A_+ \) of \(X \). Since \(A \) is a homogeneous algebra, there exists a regular action of the one dimensional multiplicative group \(G_m \) on \(X \). Furthermore, for all \(x \) in \(X \), \(x_0 \) is in the closure of \(G_m.x \). Hence the dimension of the fiber of \(\pi \) at \(x \) is at most \(\dim N_0 \). As a result, when \(\dim N_0 \) is the minimal dimension of the fibers of \(\pi \), all fiber of \(\pi \) is equidimensional of dimension \(N \) by (i).

(iii) For \(x = (x_i, i \in I) \) a family of elements of \(E \), denote by \(A[x] \) the subalgebra of \(S(E) \) generated by \(A \) and \(x \), and denote by \(N_0(x) \) its nullvariety in \(N_0 \). Since \(N_0 \) is a cone, \(N_0(x) \) equals \(\{0\} \) if it has dimension 0. So it suffices to find \(N \) elements \(x_1, \ldots, x_N \) of \(E \) such that \(N_0(x_1, \ldots, x_N) \) has dimension 0. Let us prove by induction on \(i \) that for \(i = 1, \ldots, N \), there exist \(i \) elements \(x_1, \ldots, x_i \) of \(E \) such that \(N_0(x_1, \ldots, x_i) \) has dimension \(N - i \). By induction on \(i \), with \(A[x_1, \ldots, x_i] \) instead of \(A \), it suffices to find \(x \) in \(E \) such that \(N_0(x) \) has dimension \(N - 1 \).

Let \(Z_1, \ldots, Z_m \) be the irreducible components of \(N_0 \) and let \(I_i \) be the ideal of definition of \(Z_i \) in \(S(E) \). By (i), for \(i = 1, \ldots, m \), \(Z_i \) has dimension \(N \). In particular, \(I_i \) does not contain \(E \). So, there exists \(x \) in \(E \) not in the union of \(I_1, \ldots, I_m \). Then, for \(i = 1, \ldots, m \), the nullvariety of \(x \) in \(Z_i \) is equidimensional of dimension \(N - 1 \). As a result, the nullvariety of the ideal of \(S(E) \) generated by \(A_+ \) and \(x \) is equidimensional of dimension \(N - 1 \), whence the assertion. \(\square \)

For \(M \) a graded \(A \)-module, set \(M_+ := A_+ M \).

Lemma 2.2. Let \(M \) be a graded \(A \)-module and let \(V \) be a homogeneous subspace of \(M \) such that \(M = V \oplus M_+ \). Denote by \(\tau \) the canonical map \(A \otimes_k V \to M \). Then \(\tau \) is surjective. Moreover, \(\tau \) is bijective if and only if \(M \) is a flat \(A \)-module.
Proof. Let M' be the image of τ. Then by induction on k,

$$M \subset M' + A^k \cdot 1.$$

Since V is homogeneous, M' is homogeneous. So M is contained in M'.

If τ is bijective, then all basis of V is a basis of the A-module M. In particular, it is a flat A-module. Conversely, let us suppose that M is a flat A-module. So, from the exact sequence

$$0 \rightarrow A_+ \rightarrow A \rightarrow \mathbb{k} \rightarrow 0$$

one deduces the exact sequence

$$0 \rightarrow M \otimes A_+ \rightarrow M \rightarrow M \otimes \mathbb{k} \rightarrow 0.$$

In particular, the canonical map

$$M \otimes A_+ \rightarrow M$$

is injective. Hence all basis of V is free over A, whence the lemma. \hfill \Box

Proposition 2.3. Let us consider the following conditions on A:

1) A is a polynomial algebra,
2) A is a regular algebra,
3) A is a polynomial algebra generated by $\dim A$ homogeneous elements,
4) the A-module $S(E)$ is faithfully flat,
5) the A-module $S(E)$ is flat,
6) the A-module $S(E)$ is free.

(i) The conditions (1), (2), (3) are equivalent.

(ii) The conditions (4), (5), (6) are equivalent. Moreover, Condition (4) implies Condition (2) and, in that event, N_0 is equidimensional of dimension N.

(iii) If N_0 is equidimensional of dimension N, then the conditions (1), (2), (3), (4), (5), (6) are all equivalent.

Proof. Let d be the dimension of A.

(i) The implications $(1) \Rightarrow (2)$, $(3) \Rightarrow (1)$ are straigthforward. Let us suppose that A is a regular algebra. Since A is homogeneous and finitely generated, there exists a homogeneous sequence x_1, \ldots, x_d in A_+ representing a basis of A_+/A_+^2. Let A' be the subalgebra of A generated by x_1, \ldots, x_d. Then

$$A_+ \subset A' + A_+^2.$$

So by induction on m,

$$A_+ \subset A' + A_+^m$$

for all positive integer m. Since A is homogeneous, $A = A'$ and A is a polynomial algebra generated by d homogeneous elements.

(ii) The implications $(4) \Rightarrow (5)$, $(6) \Rightarrow (5)$ are straightforward and $(5) \Rightarrow (6)$ is a consequence of Lemma 2.2.

$(5) \Rightarrow (4)$: Recall that $x_0 = A_+$. Let us suppose that $S(E)$ is a flat A-module. Then π is an open morphism whose image contains x_0. Moreover, $\pi(E^+)$ is stable under the action of G_m. So π is surjective. Hence by [Ma86, Ch. 3, Thm. 7.2], $S(E)$ is a faithfully flat extension of A.

$(4) \Rightarrow (2)$: Since $S(E)$ is regular and since $S(E)$ is a faithfully flat extension of A, all finitely generated A-module has finite projective dimension. So by [Ma86, Ch. 7, §19, Lemma 2], the global dimension of A is finite. Hence by [Ma86, Ch. 7, Thm. 19.2], A is regular.
If Condition (4) holds, by [Ma86, Ch. 5, Thm. 15.1], the fibers of \(\pi \) are equidimensional of dimension \(N \). So \(N_0 \) is equidimensional of dimension \(N \).

(iii) Let us suppose that \(N_0 \) is equidimensional of dimension \(N \). By (i) and (ii), it suffices to prove \((2) \Rightarrow (5) \). By Lemma 2.1, (ii) the fibers of \(\pi \) are equidimensional of dimension \(N \). Hence by [Ma86, Ch. 8, Thm. 23.1], \(S(E) \) is a flat extension of \(A \) since \(S(E) \) and \(A \) are regular. \(\Box \)

2.2. Let \(\overline{A} \) be the algebraic closure of \(A \) in \(S(E) \).

Lemma 2.4. Suppose that \(\dim N_0 = N \). Then \(N_0 \) is the nullvariety of \(\overline{A} \) in \(E^* \).

Proof. Let \(p \) be a homogeneous element of \(\overline{A} \) of positive degree and set \(B := A[p] \). Then \(B \) is a homogeneous algebra having the dimension of \(A \). Denoting by \(\pi_B \) the morphism \(E^* \to \text{Specm}(B) \) whose comorphism is the canonical injection from \(B \) into \(S(E) \), the irreducible components of the fibers of \(\pi_B \) have dimension at least \(N \) by Lemma 2.1, (i). Since the fiber of \(\pi_B \) at the ideal of augmentation of \(B \) is the nullvariety of \(p \) in \(N_0 \) and since \(N_0 \) has dimension \(N \), \(N_0 \) is contained in the nullvariety of \(p \) in \(E^* \), whence the lemma. \(\Box \)

Corollary 2.5. Suppose that \(\dim N_0 = N \). Then \(\overline{A} \) is the integral closure of \(A \) in \(S(E) \). In particular, \(\overline{A} \) is finitely generated.

Proof. Since \(A \) is a finitely generated homogeneous subalgebra of \(S(E) \), the integral closure of \(A \) in \(S(E) \) is so by [Ma86, §33, Lem. 1]. So, one can suppose that \(A \) is integrally closed in \(S(E) \). Let \(p \) be a homogeneous element of positive degree of \(\overline{A} \) and set \(B := A[p] \). Denote by \(\pi_B \) and \(\nu \) the morphisms whose comorphisms are the canonical injections

\[
B \to S(E) \text{ and } A \to B
\]

respectively, whence a commutative diagram

\[
\begin{array}{ccc}
E^* & \xrightarrow{\pi_B} & \text{Specm}(B) \\
\downarrow{\pi} & & \downarrow{\nu} \\
X & \xleftarrow{\nu} & \\
\end{array}
\]

Since \(B \) is a homogeneous subalgebra of \(S(E) \), there exists an action of \(G_m \) on \(\text{Specm}(B) \) such that \(\nu \) is \(G_m \)-equivariant. According to Lemma 2.4, the fiber of \(\nu \) at \(x_0 = A_+ \) equals \(B_+ \). As a result, the fibers of \(\nu \) are finite. Since \(B \) and \(A \) have the same fraction field, \(\nu \) is birational. Hence by Zariski’s main theorem [Mu88], \(\nu \) is an open immersion from \(\text{Specm}(B) \) into \(X \). So, \(\nu \) is surjective since \(x_0 \) is in the image of \(\nu \) and since it is in the closure of all \(G_m \)-orbit in \(X \). As a result, \(\nu \) is an isomorphism and \(p \) is in \(A \), whence the corollary since \(A \) is homogeneous. \(\Box \)

2.3. Denote by \(K \) and \(K(E) \) the fraction fields of \(A \) and \(S(E) \) respectively.

Lemma 2.6. Suppose that \(\dim N_0 = N \) and suppose that \(A \) is a polynomial algebra. Let \(v_1, \ldots, v_N \) be a sequence of elements of \(E \) such that its nullvariety in \(N_0 \) equals \(\{0\} \). Set \(C := \overline{A}[v_1, \ldots, v_N] \).

(i) The algebra \(C \) is integrally closed and \(S(E) \) is the integral closure of \(C \) in \(K(E) \).

(ii) The algebra \(\overline{A} \) is Cohen-Macaulay.

(iii) The \(A \)-module \(\overline{A} \) is free and finitely generated.

Proof. The sequence \(v_1, \ldots, v_N \) does exist by Lemma 2.1, (iii).

(i) Since \(\overline{A} \) has dimension \(E - N \) and since the nullvariety of \(v_1, \ldots, v_N \) in \(N_0 \) is \(\{0\} \), \(v_1, \ldots, v_N \) are algebraically independent over \(A \) and \(\overline{A} \). By Serre’s normality criterion [Ma86, Ch. 7, Thm. 19.2], any polynomial algebra over a normal ring is normal. So \(C \) is integrally closed since \(\overline{A} \) is so by definition.
Moreover, \(C \) is a finitely generated homogeneous subalgebra of \(S(E) \) since \(\overline{A} \) is too by Corollary 2.5. Since \(C \) has dimension \(\dim E \), \(S(E) \) is algebraic over \(C \). Then, by Corollary 2.5, \(S(E) \) is the integral closure of \(C \) in \(K(E) \) since \(S(E) \) is integrally closed as a polynomial algebra and since \([0]\) is the nullvariety of \(C_+ \) in \(E^* \).

(ii) According to Proposition 2.3, \(A \) is generated by homogeneous polynomials \(p_1, \ldots, p_d \) with \(d := \dim A \). Then \(N_0 \) is the nullvariety of \(p_1, \ldots, p_d \) in \(E^* \) so that \(p_1, \ldots, p_d \) is a regular sequence in \(S(E) \) by [Ma86, Ch. 6, Thm. 17.4]. Denoting by \(K_1 \) the fraction field of \(C \), the trace map of \(K \) over \(K_1 \) induces a projection of the \(C \)-module \(S(E) \) onto \(C \) since \(S(E) \) is the integral closure of \(C \) in \(K(E) \) by (i). Denote by \(a \mapsto a^\# \) this projection. For \(i = 1, \ldots, d-1 \) and for \(a \) in \(\overline{A} \) such that \(ap_{i+1} \) is in the ideal of \(\overline{A} \) generated by \(p_1, \ldots, p_i \), there exist \(b_1, \ldots, b_i \) in \(S(E) \) such that

\[
a = b_1 p_1 + \cdots + b_i p_i
\]

whence

\[
a = b_1^\# p_1 + \cdots + b_i^\# p_i.
\]

Since the nullvariety of \(v_1, \ldots, v_N \) in \(N_0 \) equals \([0]\), \(v_1, \ldots, v_N \) are algebraically independent over \(\overline{A} \) and \(b_1^\#, \ldots, b_i^\# \) are polynomials in \(v_1, \ldots, v_N \) with coefficients in \(\overline{A} \). Hence,

\[
a = b_1^\#(0)p_1 + \cdots + b_i^\#(0)p_i
\]

since \(a, p_1, \ldots, p_i \) are in \(\overline{A} \). As a result, \(p_1, \ldots, p_d \) is a regular sequence in \(\overline{A} \) and \(\overline{A} \) is Cohen-Macaulay.

(iii) The algebras \(A \) and \(\overline{A} \) are graded and \(\overline{A}/A_+\overline{A} \) has dimension 0. Moreover, \(A \) is regular since it is polynomial. Hence by (ii) and by [Ma86, Ch. 8, Thm. 23.1], \(\overline{A} \) is a flat extension of \(A \). So, by Lemma 2.2, \(\overline{A} \) is a free extension of \(A \).

Theorem 2.7. Suppose that \(\dim N_0 = N \) and that \(A \) is a polynomial algebra. Then \(\overline{A} \) is a polynomial algebra. Moreover, \(S(E) \) is a free extension of \(\overline{A} \).

Proof. By Corollary 2.5, \(\overline{A} \) is the integral closure of \(A \) in \(S(E) \). Let \(v_1, \ldots, v_N, C \) be as in Lemma 2.6. Let \(V \) be a homogeneous complement of \(S(E)C_+ \) in \(S(E) \) and let \(W \) be a homogeneous complement of \(\overline{A}A_+ \) in \(\overline{A} \). Denote by \(\{x_i, i \in I\} \) and \(\{y_j, j \in J\} \) some homogeneous basis of \(V \) and \(W \) respectively. By Lemma 2.2, \(V \) generates the \(C \)-module \(S(E) \). Hence there exists a subset \(L \) of \(I \) such that \(\{x_i, i \in L\} \) is a basis of the \(K_1 \)-space \(K(E) \) with \(K_1 \) the fraction field of \(C \). By Lemma 2.2 and Lemma 2.6,(iii), \(\{y_j, j \in J\} \) is a basis of the free \(A \)-module \(\overline{A} \). Hence \(\{y_j, j \in J\} \) is a basis of the free \(A[v_1, \ldots, v_N] \)-module \(C \). So \(\{x_iy_j, (i, j) \in L \times J\} \) is linearly free over \(A[v_1, \ldots, v_N] \) since the elements \(x_i, i \in L \) are linearly free over \(C \). By Proposition 2.3,(iii), \(S(E) \) is a free extension of \(A[v_1, \ldots, v_N] \). So by Lemma 2.2, there exists a homogeneous subspace \(V' \) of \(S(E) \) containing \(x_iy_j \) for all \((i, j) \) in \(L \times J \) such that the canonical map

\[
V' \otimes_k A[v_1, \ldots, v_N] \longrightarrow S(E)
\]

is an isomorphism. Moreover, \(\dim V' \) is the degree of the algebraic extension \(K(E) \) of \(K(v_1, \ldots, v_N) \). The degree of the algebraic extension \(K(E) \) of \(K_1 \) equals \(|L| \) and \(K_1 \) is an algebraic extension of \(K(v_1, \ldots, v_N) \) whose degree is the degree of the algebraic extension \(K' \) of \(K \) with \(K' \) the fraction field of \(\overline{A} \). This degree equals \(|J| \) since \(\{y_j, j \in J\} \) is a basis of the \(A \)-module \(\overline{A} \). Hence \(\dim V' = |L||J| \). So \(\{x_iy_j, (i, j) \in L \times J\} \) is a basis of \(V' \). Hence \(S(E) \) is a free \(C \)-module and \(\{x_i, i \in L\} \) is a basis. As a result, \(C \) is a polynomial algebra by Proposition 2.3 since it is homogeneous. Since \(C \) is a faithfully flat extension of \(A \), \(\overline{A} \) is a polynomial algebra by Proposition 2.3 since it is homogeneous. According to Lemma 2.6, \(N_0 \) is the nullvariety of \(\overline{A}_+ \) in \(E^* \). So, by Proposition 2.3,(iii), \(S(E) \) is a free \(\overline{A} \)-module. \(\square \)
3. Good elements and good orbits

Recall that k is an algebraically closed field of characteristic zero. As in the introduction, \mathfrak{g} is a simple Lie algebra over k of rank ℓ, $\langle \ldots \rangle$ denotes the Killing form of \mathfrak{g}, and G its adjoint group.

3.1. The notions of good element and good orbit in \mathfrak{g} are introduced in this paragraph.

Definition 3.1. An element $x \in \mathfrak{g}$ is called a **good element of \mathfrak{g}** if for some homogeneous elements p_1, \ldots, p_ℓ of $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$, the nullvariety of p_1, \ldots, p_ℓ in $(\mathfrak{g}^x)^*$ has codimension ℓ in $(\mathfrak{g}^x)^*$. A G-orbit in \mathfrak{g} is called **good** if it is the orbit of a good element.

Since the nullvariety of $S(\mathfrak{g})^0$ in \mathfrak{g} is the nilpotent cone of \mathfrak{g}, 0 is a good element of \mathfrak{g}. For (g, x) in $G \times \mathfrak{g}$ and for a in $S(\mathfrak{g}^x)^{g^x}$, $g(a)$ is in $S(g(\mathfrak{g}^x))(g^x)$. So, an orbit is good if and only if all its elements are good.

Denote by K_1 the fraction field of $S(\mathfrak{g}^x)$.

Proposition 3.2. Let x be a good element of \mathfrak{g}. Then $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ is a polynomial algebra and $S(\mathfrak{g}^x)$ is a free $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$-module. Moreover, $K_1^{\mathfrak{g}^x}$ is the fraction field of $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$.

Proof. Let p_1, \ldots, p_ℓ be homogeneous elements of $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ such that the nullvariety of p_1, \ldots, p_ℓ in $(\mathfrak{g}^x)^*$ has codimension ℓ. Denote by A the subalgebra of $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ generated by p_1, \ldots, p_ℓ. Then A is a graded subalgebra of $S(\mathfrak{g})$ and the nullvariety of A_+ in $(\mathfrak{g}^x)^*$ has codimension ℓ. So, by Lemma 2.1,(ii), A has dimension ℓ. Hence p_1, \ldots, p_ℓ are algebraically independent and A is a polynomial algebra. According to [CM10, Thm. 1.2], the index of \mathfrak{g}^x equals ℓ. So, by [R63], the transcendence degree of $K_1^{\mathfrak{g}^x}$ over k equals ℓ. Then, since A has dimension ℓ, $K_1^{\mathfrak{g}^x}$ is a graded subalgebra of $S(\mathfrak{g}^x)$ and the nullvariety of A_+ in $(\mathfrak{g}^x)^*$ has codimension ℓ. So, by Theorem 2.7, $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ is a polynomial algebra and $S(\mathfrak{g}^x)$ is a free $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$-module. Since $K_1^{\mathfrak{g}^x}$ is an algebraic extension of the fraction field of A, for p in $K_1^{\mathfrak{g}^x}$, ap verifies an integral dependence equation over $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ for some a in $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$. Then, since $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ is integral closed in K_1, $K_1^{\mathfrak{g}^x}$ is the fraction field of $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$. □

Remark 3.3. The algebra $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ may be polynomial with x not good. Indeed, let us consider a nilpotent element e of $\mathfrak{g} = so(\mathbb{R}^{10})$ associated with the partition $(3, 3, 2, 2)$. The algebra $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ is polynomial, generated by elements of degrees 1, 1, 2, 2, 5. But the nullcone has an irreducible component of codimension at most 4. So, e is not good; see Example 7.5 in Section 7 for more details.

For $x \in \mathfrak{g}$, denote by $x_\mathfrak{s}$ and $x_\mathfrak{n}$ the semisimple and the nilpotent components of x respectively.

Proposition 3.4. Let x be in \mathfrak{g}. Then x is good if and only if $x_\mathfrak{n}$ is a good element of the derived algebra of $\mathfrak{g}^{x_\mathfrak{s}}$.

Proof. Let \mathfrak{z} be the center of $\mathfrak{g}^{x_\mathfrak{s}}$ and let a be the derived algebra of $\mathfrak{g}^{x_\mathfrak{s}}$. Then

$$\mathfrak{g}^x = \mathfrak{z} \oplus a^{x_\mathfrak{s}}, \quad S(\mathfrak{g}^x)^{\mathfrak{g}^x} = S(\mathfrak{z}) \otimes_k S(a^{x_\mathfrak{s}})^{x_\mathfrak{s}}.$$

By the first equality, $(a^{x_\mathfrak{s}})^*$ identifies with the orthogonal complement of \mathfrak{z} in $(\mathfrak{g}^x)^*$. Set $d := \dim \mathfrak{z}$. Suppose that $x_\mathfrak{n}$ is a good element of a. Let $p_1, \ldots, p_{\ell-d}$ be homogeneous elements of $S(a^{x_\mathfrak{s}})^{x_\mathfrak{s}}$ whose nullvariety in $(a^{x_\mathfrak{s}})^*$ has codimension $\ell - d$. Denoting by v_1, \ldots, v_d a basis of \mathfrak{z}, the nullvariety of $v_1, \ldots, v_d, p_1, \ldots, p_{\ell-d}$ in $(\mathfrak{g}^x)^*$ is the nullvariety of $v_1, \ldots, v_d, p_1, \ldots, p_{\ell-d}$ in $(a^{x_\mathfrak{s}})^*$. Hence, x is a good element of \mathfrak{g}.

Conversely, let us suppose that x is a good element of \mathfrak{g}. By Proposition 3.2, $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$ is a polynomial algebra generated by homogeneous polynomials p_1, \ldots, p_ℓ. Since \mathfrak{z} is contained in $S(\mathfrak{g}^x)^{\mathfrak{g}^x}$, p_1, \ldots, p_ℓ can be chosen so that p_1, \ldots, p_d are in \mathfrak{z} and p_{d+1}, \ldots, p_ℓ are in $S(a^{x_\mathfrak{s}})^{x_\mathfrak{s}}$. Then the nullvariety of p_{d+1}, \ldots, p_ℓ in $(a^{x_\mathfrak{s}})^*$ has codimension $\ell - d$. Hence, $x_\mathfrak{n}$ is a good element of a. □
3.2. Let e be a nilpotent element of \mathfrak{g}, embedded into an \mathfrak{sl}_2-triple (e, h, f) of \mathfrak{g}. Identify the dual of \mathfrak{g} with \mathfrak{g}^*, and the dual of \mathfrak{g}^* with \mathfrak{g}^f through the Killing form (\cdot, \cdot). For p in $S(\mathfrak{g}) \cong \mathbb{C}[\mathfrak{g}]$, denote by $\kappa(p)$ the restriction to \mathfrak{g}^f of the polynomial function $x \mapsto p(e + x)$ and denote by $^\epsilon p$ its initial homogeneous component. According to [PPY07, Prop. 0.1], for p in $S(\mathfrak{g}^\theta)$, $^\epsilon p$ is in $S(\mathfrak{g}^f)^\theta$.

Let I be the ideal of $S(\mathfrak{g}^\nu)$ generated by the elements $\kappa(p)$, for p running through $S_+ (\mathfrak{g})^\theta$, and set $N := \dim \mathfrak{g}^f - \ell$.

Lemma 3.5. The nullvariety of I in \mathfrak{g}^f is equidimensional of dimension N.

Proof. Let S_e be the Slodowy slice $e + \mathfrak{g}^f$ associated with e, and let θ_e be the map

$$G \times S_e \longrightarrow \mathfrak{g}, \quad (g, x) \mapsto g(x).$$

Then θ_e is a smooth G-equivariant morphism onto a G-invariant open subset containing $G(e)$. In particular, it is equidimensional of dimension $\dim S_e$. Denoting by X the nullvariety of I in \mathfrak{g}^f, $G \times (e + X)$ is the inverse image by θ_e of the nipotent cone of \mathfrak{g}. Hence, $G \times (e + X)$ is equidimensional of dimension

$$\dim \mathfrak{g} - \ell + \dim S_e = N + \dim \mathfrak{g}$$

since the nipotent cone is irreducible of codimension ℓ and contains $G(e)$. The lemma follows. \hfill \Box

The symmetric algebra $S(\mathfrak{g}^\nu)$ is naturally graded by the degree of elements. For m a nonnegative integer, denote by $S_m(\mathfrak{g}^\nu)$ the homogeneous component of degree m and set:

$$S_m(\mathfrak{g}^\nu) := \bigoplus_{i \geq m} S^m(\mathfrak{g}^\nu).$$

Then $S_m(\mathfrak{g}^\nu), m = 0, 1, \ldots$ is a decreasing filtration of $S(\mathfrak{g}^\nu)$ and its associated graded algebra is the usual graded algebra $S(\mathfrak{g}^\nu)$. For J a subquotient of $S(\mathfrak{g}^\nu)$, the filtration of $S(\mathfrak{g}^\nu)$ induces a filtration of J and its associated graded space is denoted by $\text{gr}(J)$.

Lemma 3.6. The nullvariety of $\text{gr}(I)$ in \mathfrak{g}^f has dimension N.

Proof. By definition,

$$\text{gr}(S(\mathfrak{g}^\nu))/I = \bigoplus_{k \geq 1} S_k(\mathfrak{g}^\nu)/(S_{k+1}(\mathfrak{g}^\nu) + I \cap S_1(\mathfrak{g}^\nu))$$

so that $\text{gr}(S(\mathfrak{g}^\nu))/I$ is the quotient of $S(\mathfrak{g}^\nu)$ by $\text{gr}(I)$. According to [Ma86, Thm. 13.4], $\text{gr}(S(\mathfrak{g}^\nu))/I$ and $S(\mathfrak{g}^\nu)/I$ have the same dimension, whence the corollary by Lemma 3.5. \hfill \Box

The following proposition will be useful to prove Theorem 4.1 in the next Section. It gives a sufficient condition for guaranteeing that a given nilpotent element is good.

Proposition 3.7. Let q_1, \ldots, q_ℓ be homogeneous generators of $S(\mathfrak{g})^\theta$ and let J be the ideal of $S(\mathfrak{g}^\nu)$ generated by $^\epsilon q_1, \ldots, ^\epsilon q_\ell$. Suppose that for a_1, \ldots, a_ℓ in $S(\mathfrak{g}^\nu)$, the following implication holds:

$$(a_1(^\epsilon q_1) + \cdots + a_\ell(^\epsilon q_\ell) = 0 \quad \Rightarrow \quad \forall i \in \{1, \ldots, \ell\}, \; a_i \in J).$$

Then $\text{gr}(I) = J$. In particular, e is a good element of \mathfrak{g}.

Proof. By definition, J is contained in $\text{gr}(I)$. Let us suppose that J is strictly contained in $\text{gr}(I)$. A contradiction is expected. For a in $S(\mathfrak{g}^\nu)$, let $\nu(a)$ be the biggest integer such that a is in $S_\nu(a)(\mathfrak{g}^\nu)$ and let \overline{a} be the image of a in $\text{gr}(S(\mathfrak{g}^\nu))$. For $i = 1, \ldots, \ell$, let d_i be the degree of $^\epsilon q_i$. For $\mathbf{a} := (a_1, \ldots, a_\ell)$ in $S(\mathfrak{g}^\nu)^\ell$, set:

$$\nu(\mathbf{a}) := \inf\{\nu(a_1) + d_1, \ldots, \nu(a_\ell) + d_\ell\}, \quad \sigma(\mathbf{a}) := a_1 \kappa(q_1) + \cdots + a_\ell \kappa(q_\ell).$$
Since J is strictly contained in $\text{gr}(I)$, there is $a = (a_1, \ldots, a_\ell)$ in $S(g^*)^\ell$ such that $\sigma(a)$ is not in J. Let d be the degree of $\sigma(a)$. Choose such a in $S(g^*)^\ell$ such that $\nu(a)$ is maximal.

For $i = 1, \ldots, \ell$, write

$$a_i = a_{i,0} + a_{i,+}$$

with $a_{i,0}$ homogeneous of degree $\nu(a_i)$ and $\nu(a_{i,+}) > \nu(a_i)$. Let L be the set of indices i such that $\nu(a) = \nu(a_i) + d_i$. Since $\sigma(a)$ is not in J,

$$\sum_{i \in L} a_{i,0} \sigma(q_i) = 0.$$

So, by hypothesis, $a_{1,0}, \ldots, a_{\ell,0}$ are in J so that

$$\sum_{i \in L} a_{i,0} \kappa(q_i) \in J.$$

Moreover,

$$\sigma(a) = \sum_{i \in L} a_{i,0} \kappa(q_i) + \sigma(b) \quad \text{with} \quad b_i := \begin{cases} a_{i,+} & \text{if} \; i \in L \\ a_i & \text{if} \; i \notin L \end{cases} \quad \text{and} \quad b = (b_1, \ldots, b_\ell).$$

Since $\sigma(a)$ has degree d and is not in J, $\sigma(b)$ is an element of degree d which is not in J. We have obtained the expected contradiction since $\nu(b) > \nu(a)$.

As a consequence, $\text{gr}(I) = J$ and the last assertion of the proposition is a straightforward consequence of Lemma 3.6. \(\square\)

4. Proof of Theorem 2 and finite W-algebras

As in the previous section, g is a simple Lie algebra over \mathbb{k} and (e, h, f) is an \mathfrak{sl}_2-triple of g. The goal of this section is to prove the following theorem (see also Theorem 2).

Theorem 4.1. Suppose that for some homogeneous generators q_1, \ldots, q_ℓ of $S(g)^\ell$, the polynomial functions $\sigma(q_1), \ldots, \sigma(q_\ell)$ are algebraically independent. Then e is a good element of g. In particular, $S(g^*)^\ell$ is a polynomial algebra and $S(g^*)$ is a free extension of $S(g^*)^\ell$. Moreover, $\sigma(q_1), \ldots, \sigma(q_\ell)$ is a regular sequence in $S(g^*)$.

To that end, the theory of finite W-algebras will be strongly used. Our main reference for this topic is [Pr02] and the section starts with some notations and results of [Pr02]. The heart of the proof of Theorem 4.1 is presented in Subsection 4.6.

4.1. For i in \mathbb{Z}, let $g(i)$ be the eigenspace of eigenvalue i of $ad\, h$ and set:

$$p_+ := \bigoplus_{i \geq 0} g(i).$$

Then p_+ is a parabolic subalgebra of g containing g^ℓ. So, the bilinear form

$$g(-1) \times g(-1) \rightarrow \mathbb{k}, \quad (x, y) \mapsto \langle e, [x, y] \rangle$$

is nondegenerate. Let $g(-1)^0$ be a totally isotropic subspace of $g(-1)$ of maximal dimension and set:

$$m := g(-1)^0 \oplus \bigoplus_{i \geq 2} g(i)$$

so that m is an ad-nilpotent subalgebra of g with the derived subalgebra orthogonal to e. Denote by \mathbb{k}_e the one dimensional $U(m)$-module defined by the character $x \mapsto \langle e, x \rangle$ of m, denote by \tilde{Q}_e the induced module

$$\tilde{Q}_e := U(g) \otimes_{U(m)} \mathbb{k}_e$$
and denote by \tilde{H}_ϵ the associative algebra

$$\tilde{H}_\epsilon := \text{End}_d(\tilde{Q}_\epsilon)^{op}.$$

By [Pr02, §6.1], the representation $\tilde{\rho}_\epsilon : U(\hat{g}) \to \text{End}(\tilde{Q}_\epsilon)$ is injective on the center $Z(\hat{g})$ of $U(\hat{g})$.

Let $\{x_1, \ldots, x_m\}$ be a basis of p_+ such that x_i is an eigenvector of eigenvalue n_i of $ad h$, and let z_1, \ldots, z_s be a basis of a totally isotropic complement to $g(-1)^0$ in $g(-1)$. For $(i, j) = (i_1, \ldots, i_m, j_1, \ldots, j_s)$ in $\mathbb{N}^m \times \mathbb{N}^s$, set:

$$x^{i_1}_1 \cdots x^{i_m}_{m+1} \cdots x^{i_m}_m \cdots x^{i_s}_{s+1} \cdots z^{j_1}_1 \cdots z^{j_s}_s \quad |(i, j)|_e := \sum_{k=1}^m i_k(n_k + 2) + \sum_{k=1}^s j_k.$$

By the PBW theorem, $\{x^{i_1}_1 \cdots x^{i_m}_{m+1} \cdots x^{i_m}_m \cdots x^{i_s}_{s+1} \cdots z^{j_1}_1 \cdots z^{j_s}_s, (i, j) \in \mathbb{N}^m \times \mathbb{N}^s\}$ is a basis of \tilde{Q}_ϵ. For k in \mathbb{N}, let \tilde{H}_ϵ^k be the subspace of elements h of \tilde{H}_ϵ such that $\tilde{\rho}_\epsilon(h)(1 \otimes 1)$ is a linear combination of the $x^{i_1}_1 \cdots x^{i_m}_{m+1} \cdots x^{i_m}_m \cdots x^{i_s}_{s+1} \cdots z^{j_1}_1 \cdots z^{j_s}_s, |(i, j)|_e < k$. Then the sequence $\tilde{H}_\epsilon^k, k = 0, 1, \ldots$ is an increasing filtration of the algebra \tilde{H}_ϵ.

Recall that \mathcal{S}_e is the Slodowy slice $e + g^f$ associated with e. Since g^f identifies with the dual of g^s, the algebra $\mathbb{k}[\mathcal{S}_e]$ identifies with $S(g^s)$. Denoting by $t \mapsto h(t)$ the one parameter subgroup of G generated by $ad h$, \mathcal{S}_e is invariant by the one parameter subgroup $t \mapsto t^{-2}h(t)$. Hence, this group induces a gradation on the algebra $S(g^s)$. One of the main theorems of [Pr02] says that the graded algebra associated with the filtration of \tilde{H}_ϵ is isomorphic to the so defined graded algebra $S(g^s)$ (see also [GG02] for the case where $\mathbb{k} = \mathbb{C}$).

4.2. Let h be the Coxeter number of the root system of g. According to the Bala-Carter theory [C85, Ch. 5], there exists a \mathbb{Z}-form $\mathfrak{g}_\mathbb{Z}$ of \mathfrak{g} such that (e, h, f) is an \mathfrak{s}_2-triple of the \mathbb{Q}-form $\mathfrak{g}_\mathbb{Q} := \mathbb{Q} \otimes_{\mathbb{Z}} \mathfrak{g}_\mathbb{Z}$ of \mathfrak{g}. Let $d_\mathbb{Z}$ be the determinant of the Killing form of $\mathfrak{g}_\mathbb{Z}$ in a basis of $\mathfrak{g}_\mathbb{Z}$ and let N be a sufficiently big integer such that e, h, f are in $\mathfrak{g}_N := \mathbb{Z}[1/N!] \otimes_{\mathbb{Z}} \mathfrak{g}_\mathbb{Z}$, and such that

$$g(i) = \mathbb{k} \otimes_{\mathbb{Z}[1/N!]} (\mathfrak{g}(i) \cap \mathfrak{g}_N), \quad g(-1)^0 = \mathbb{k} \otimes_{\mathbb{Z}[1/N!]} (g(-1)^0 \cap \mathfrak{g}_N), \quad N > d_\mathbb{Z} \quad N > h, \quad N > \langle e, f \rangle, \quad N > \max\{i + 2; \ g(i) \neq \{0\}\}.$$

Then, one can choose the elements $x_1, \ldots, x_m, z_1, \ldots, z_s$ of \mathfrak{g} in \mathfrak{g}_N. Let p be a prime number bigger than N. Since p is not invertible in $\mathbb{Z}[1/N!]$, p is contained in a maximal ideal \mathfrak{m}_p of $\mathbb{Z}[1/N!]$. Then $\mathbb{Z}[1/N!]/\mathfrak{m}_p$ is an algebraic extension of \mathbb{F}_p. Let K be an algebraic closure of $\mathbb{Z}[1/N!]/\mathfrak{m}_p$ and set:

$$\mathfrak{g}_K := K \otimes_{\mathbb{Z}[1/N!]} \mathfrak{g}_N.$$

Denote by G_K a simple, simply connected, algebraic K-group such that $\mathfrak{g}_K = \text{Lie}(G_K)$. Since $N > d_\mathbb{Z}$, the Killing form of \mathfrak{g}_N induces a nondegenerate bilinear form on \mathfrak{g}_K, that we will also denote by $\langle \cdot , \cdot \rangle$.

As a Lie algebra of an algebraic group over a field of positive characteristic, \mathfrak{g}_K is a restricted Lie algebra whose p-operation is denoted by $x \mapsto x^{[p]}$. For x semi-simple, $x^{[p]} = x$ and for x nilpotent, $x^{[p]} = 0$ since $p > h$; see for instance [V72, §1]. For x in \mathfrak{g}_K, denote by $U_x(\mathfrak{g}_K)$ the quotient of $U(\mathfrak{g}_K)$ by the ideal generated by the elements $x^p - x^{[p]} - \chi(x)^p$, with $x \in \mathfrak{g}_K$. More generally, if a is a restricted subalgebra of \mathfrak{g}_K, we denote by $U_a(\mathfrak{g}_K)$ the quotient of $U(\mathfrak{g}_K)$ by the ideal generated by the elements $x^p - x^{[p]} - \chi(x)^p$, with $x \in a$. Then set $U_a(\mathfrak{g}_K) := U_x(\mathfrak{g}_K)$ and $U_a := U_x(a)$, where χ_x is the linear form

$\chi_x : \mathfrak{g}_K \to K, \quad x \mapsto \langle x, e \rangle.$

For all $\chi \in \mathfrak{g}_K^*$, the restriction to \mathfrak{g}_K of the quotient map $U(\mathfrak{g}_K) \to U_x(\mathfrak{g}_K)$ is an embedding and $U_x(\mathfrak{g}_K)$ is a finite dimensional algebra of dimension p^{dim_0} by the PBW Theorem. Moreover, for any restricted subalgebra a of \mathfrak{g}_K, the canonical map $U(a) \to U_x(\mathfrak{g}_K)$ defines through the quotient map an embedding from $U_x(\mathfrak{g}_K)$ into $U_x(a)$.
Denote by $e, h, f, x_1, \ldots, x_m, z_1, \ldots, z_s$ the elements $1\otimes e$, $1\otimes h$, $1\otimes f$, $1\otimes x_1, \ldots, 1\otimes x_m$, $1\otimes z_1, \ldots, 1\otimes z_s$ of \mathfrak{g}_K respectively. Because of the choice of N, for i in \mathbb{Z}, the i-eigenspace $\mathfrak{g}_K(i)$ of ad h in \mathfrak{g}_K verifies

$$\mathfrak{g}_K(i) = K \otimes \mathbb{Z}[1/N] \ (g(i) \cap g_N)$$

Set:

$$\mathfrak{g}_K(-1)^0 := K \otimes \mathbb{Z}[1/N] \ (g(-1)^0 \cap g_N), \quad \mathfrak{m}_K := \mathfrak{g}_K(-1)^0 \oplus \bigoplus_{i \leq -2} \mathfrak{g}_K(i),$$

$$p_{+K} := \bigoplus_{i \geq 0} \mathfrak{g}_K(i), \quad \mathfrak{g}_K(-1)^1 := \text{span}(\{z_1, \ldots, z_s\}).$$

Then \mathfrak{m}_K is an ad-nilpotent Lie algebra with a derived algebra orthogonal to e. Moreover, it is a restricted subalgebra of \mathfrak{g}_K whose p-operation equals 0 since \mathfrak{m}_K is ad-nilpotent. Let K_e be the one dimensional \mathfrak{m}_K-module defined by the character χ_e of \mathfrak{m}_K. Then K_e is a $U_e(\mathfrak{m}_K)$-module. Denote by Q the induced module

$$Q := U_e(\mathfrak{g}_K) \otimes_{U_e(\mathfrak{m}_K)} K_e,$$

and set

$$H := \text{End}_{\mathfrak{g}_K}(Q)^{op}.$$

Then Q and H are finite dimensional. For k in \mathbb{N}, set

$$\Lambda_k := \{(l_1, \ldots, l_k), \ l_i \in \mathbb{N}, \ 0 < l_i < p - 1\}.$$

By the PBW Theorem, $[x^i, h] \otimes 1, \ (i, j) \in \Lambda_m \times \Lambda_s$ is a basis of Q. For h in H, h is determined by its value at $1 \otimes 1$,

$$h(1 \otimes 1) = \sum_{(i, j) \in \Lambda_m \times \Lambda_s} a_{ij}^k x^i \otimes h,$$

with the a_{ij}’s in K. Denote by $n(h)$ the biggest integers $(|i, j|)_e$ with $(i, j) \in \Lambda_m \times \Lambda_s$ such that $a_{ij} \neq 0$. For k in \mathbb{N}, denote by H^k the linear vector space spanned by the elements h of H such that $n(h) \leq k$. By [Pr02, 3.3], the sequence H^0, H^1, \ldots is an increasing filtration of the algebra H.

4.3. According to [V72, Prop. 2.1], the algebra $U(\mathfrak{g}_K)^{G_K}$ of the invariant elements of the adjoint action of G_K in $U(\mathfrak{g}_K)$ is a polynomial algebra generated by some elements T_1, \ldots, T_ℓ of the augmentation ideal of $U(\mathfrak{g}_K)$.

Let Z_K be the center of $U(\mathfrak{g}_K)$ and let Z_0 be the subalgebra of $U(\mathfrak{g}_K)$ generated by the elements $x^\rho - x^{[\rho]}$, with x in \mathfrak{g}_K. Then Z_0 is a polynomial algebra contained in Z_K and, by [V72, Thm. 3.1],

$$(1) \quad Z_K = Z_0[T_1, \ldots, T_\ell].$$

For $\mathbf{i} = (i_1, \ldots, i_\ell)$ in \mathbb{N}^ℓ, set

$$|\mathbf{i}| := i_1 + \cdots + i_\ell, \quad T^i := T_1^{i_1} \cdots T_\ell^{i_\ell}.$$

By [V72, Thm. 3.1], Z_K is a free Z_0-module with basis $\{T^i, \ i \in \Lambda_\ell\}$.

Let χ be in \mathfrak{g}_K^*. Denote by $Z_{K, \chi}$ the image of Z_K by the quotient morphism $U(\mathfrak{g}_K) \to U_{\chi}(\mathfrak{g}_K)$, and by I_{χ} the ideal of $Z_{K, \chi}$ generated by the images of T_1, \ldots, T_ℓ in $Z_{K, \chi}$.

Lemma 4.2. Let χ be in \mathfrak{g}_K^*.

(i) The ideal I_{χ} of $Z_{K, \chi}$ is strictly contained in $Z_{K, \chi}$. Moreover, $\{T^i; \ i \in \Lambda_\ell, |i| \geq m\}$ is a basis of I_{χ}^m.

(ii) For m nonnegative integer, the dimensions of the K-spaces I_{χ}^m and $U_{\chi}(\mathfrak{g}_K)I_{\chi}^m$ do not depend on χ.

13
Proof. (i) Let E be the K-subspace of Z_K generated by the elements T^i, $i \in \Lambda_\ell$. Since $p > h$, the restriction to E of the quotient map $U(g_K) \to U_\chi(g_K)$ is an embedding and its image is $Z_{K,\chi}$. Identifying E with $Z_{K,\chi}$, I_χ is the subspace of $Z_{K,\chi}$ generated by the elements T^i, $i \in \Lambda_\ell \setminus \{0\}$. So, it is strictly contained in $Z_{K,\chi}$. Moreover, $\{T^i; i \in \Lambda_\ell, |i| \geq m\}$ is a basis of I_χ^m.

(ii) Let $\{y_1, \ldots, y_n\}$ be a basis of g_K. For $i = (i_1, \ldots, i_n)$ in N^n, set:

$$y^i := y_1^{i_1} \cdots y_n^{i_n}.$$

The Z_0-module $U(g_K)$ is free with basis $\{y^i, i \in \Lambda_\ell\}$. Let F be the subspace of $U(g_K)$ generated by the elements y^iT^j with $(i, j) \in \Lambda_n \times \Lambda_\ell$ and $|j| \geq m$. Then the restriction to F of the quotient map $U(g_K) \to U_\chi(g_K)$ is a surjective morphism onto $U_\chi^m(g_K)$. Let d be the dimension of $U_0(g_K)I_\chi^m$. Choose $(i_1, j_1), \ldots, (i_d, j_d)$ such that the elements

$$y^{i_1}T^{j_1}, \ldots, y^{i_d}T^{j_d}$$

of F induce a basis of $U_0(g_K)I_\chi^m$. The usual filtration on $U(g_K)$ induces filtrations on $U_0(g_K)$ and $U_\chi(g_K)$ having the same associated graded spaces. Indeed, for $x \in g_K$, the images of the elements $x^p - x^{[p]}$ and $x^p - x^{[p]} - \chi(x)p^p$ are the same in the associated graded spaces $\text{gr}(U_0(g_K))$ and $\text{gr}(U_\chi(g_K))$. The images of $y^{i_1}T^{j_1}, \ldots, y^{i_d}T^{j_d}$ in the graded space $\text{gr}(U_0(g_K))$ are linearly free. Hence, the images of $y^{i_1}T^{j_1}, \ldots, y^{i_d}T^{j_d}$ in $\text{gr}(U_\chi(g_K))$ are linearly free too. As a result, $U_\chi(g_K)I_\chi^m$ has dimension at least d.

Exchanging the roles of $U_\chi(g_K)I_\chi^m$ and $U_0(g_K)I_0^m$ in the above lines of arguments, we obtain that $U_\chi(g_K)I_\chi^m$ has dimension at most d, whence the assertion. \hfill \Box \\

For z in g_K, let X_z be the linear form $x \mapsto \langle z, x \rangle$ and let \hat{I}_z be the ideal of Z_K generated by T_1, \ldots, T_ℓ and the elements $x^p - x^{[p]} - \chi(x)p^p$, for $x \in g_K$. Thus, I_χ is the image of \hat{I}_z in $U_{\chi_\ell}(g_K)$ by the quotient map $U(g_K) \to U_{\chi_\ell}(g_K)$. Consider on N^ℓ the lexicographic order induced by the usual order of N and denote it by \prec. For m a positive integer and for i in N^ℓ, denote by $\hat{I}_{\chi_{m, i}}$ the ideal of Z_K generated by \hat{I}_z^{m+1} and the elements T^j with j in $N^\ell \setminus \{i\}$ such that $|j| = m$ and $j \lessdot i, j \not \equiv i$.

Set:

$$\Lambda_{\ell, m} := \{i \in \Lambda_\ell; |i| = m\}.$$

In particular, $\Lambda_{\ell, m}$ is empty if $m > \ell(p - 1)$.

Our basic reference concerning Azumaya algebras is [McR01, Chap. 13, §7]. What will be important for us is the following result, [McR01, Prop. 13.7.9]: if A is an Azumaya algebra with center Z, then there is a one-to-one correspondence between the twisted ideals of A and the ideals of Z given by the maps $I \mapsto I \cap Z$, $J \mapsto JA$.

Lemma 4.3. Let z be a regular nilpotent element of g_K and let m be a positive integer smaller than $\ell(p - 1)$.

(i) The ideal \hat{I}_z of Z_K is maximal and the localization at \hat{I}_z of $U(g_K)$ is an Azumaya algebra with center the localization of Z_K at \hat{I}_z.

(ii) The ideal $U(g_K)\hat{I}_z$ of $U(g_K)$ is maximal.

(iii) Let $i \in \Lambda_{\ell, m}$. Then T^i is not in $U(g_K)\hat{I}_{\chi_{m, i}}$.

(iv) For $a_i, i \in \Lambda_{\ell, m},$ in $U(g_K)$, the following equivalence holds:

$$\sum_{i \in \Lambda_{\ell, m}} a_i T^i \in U(g_K)\hat{I}_z^{m+1} \iff \forall i \in \Lambda_{\ell, m}, a_i \in U(g_K)\hat{I}_z.$$

Proof. (i) To begin with, prove that \hat{I}_z is the annihilator of X_z in Z_K. Since z is nilpotent, X_z vanishes T_1, \ldots, T_ℓ. Let $\{h_i, x_\alpha, i = 1, \ldots, \ell, \alpha \in \mathcal{R}\}$ be a basis of g_K derived from a Chevalley basis of g, where \mathcal{R} is a root system of g. Since z is nilpotent, we can assume that z lies in the subalgebra generated by the
positive vectors x_α of the above Chevalley basis. Hence, $\langle z, h_i \rangle = 0$ for $i = 1, \ldots, \ell$. On the other hand, for $i \in \{1, \ldots, \ell\}$, $h_i^{[p]} = h_i$ and for any $\alpha \in R$, $x_\alpha^{[p]} = 0$ since $p > h$. Let $x \in g_K$ and write it as

$$x = \sum_{\alpha \in R} a_\alpha x_\alpha + \sum_{i = 1}^\ell a_i h_i, \quad a_\alpha, a_i \in K.$$

Then

$$x^{[p]} = \sum_{\alpha} a_\alpha x_\alpha^{[p]} + \sum_{i = 1}^\ell a_i h_i^{[p]} = \sum_{i = 1}^\ell a_i h_i.$$

As a consequence, $\langle z, x^p - x^{[p]} - \chi(x)p \rangle = 0$. This proves that \hat{I}_z is contained in the annihilator of χ_z in Z_K. The other inclusion is clear from the equality (1). Hence \hat{I}_z is a maximal ideal of Z_K. Since z is regular and since p is bigger than the Coxeter number of the root system of g, the localization of $U(g_K)$ at \hat{I}_z is an Azumaya algebra with center the localization of Z_K at \hat{I}_z; cf. [BG97, Thm. 4.10].

(ii) Denote by $U(g_K)_z$ and $(Z_K)_z$ the localizations of $U(g_K)$ and Z_K respectively at \hat{I}_z. By (i), $U(g_K)_z$ is an Azumaya algebra with center $(Z_K)_z$. So, by [McR01, Prop. 13.7.9], for any ideal P of $U(g_K)_z$, P is the ideal generated by $P \cap (Z_K)_z$. Then $U(g_K)\hat{I}_z$ is a maximal ideal of $U(g_K)_z$ since $K + \hat{I}_z = Z_K$.

(iii) Let i be in $\Lambda_{\ell,m}$ and suppose that T^4 is in $U(g_K)\hat{I}_{z,m1}$. A contradiction is expected. By (i) and [McR01, Prop. 13.7.9], $\hat{I}_{z,m1} = Z_K \cap (U(g_K)\hat{I}_{z,m1})$ since $K + \hat{I}_z = Z_K$. Hence T^4 is in $\hat{I}_{z,m1}$. Then the contradiction follows from [V72, Thm. 3.1].

(iv) The converse implication is clear. Let us prove the direct implication. Let $a_i, i \in \Lambda_{\ell,m}$, be in $U(g_K)$ such that

$$\sum_{i \in \Lambda_{\ell,m}} a_i T^4 \in U(g_K)\hat{I}_{z}^{m+1}.$$

Suppose that the a_i’s are not all in $U(g_K)\hat{I}_z$. A contradiction is expected. Let i be the biggest element of $\Lambda_{\ell,m}$ such that a_i is not in $U(g_K)\hat{I}_z$. Then $a_i T^4$ is in $U(g_K)\hat{I}_{z,m1}$. Since T^4 is in the center of $U(g_K)$, the subset of elements a of $U(g_K)$ such that aT^4 is in $U(g_K)\hat{I}_{z,m1}$ is an ideal containing $U(g_K)\hat{I}_z$. By (iii), this ideal is strictly contained in $U(g_K)$. So it equals $U(g_K)\hat{I}_z$ by (ii), whence the contradiction.

Proposition 4.4. Let χ be in g_K^* and let m be a positive integer. Then the canonical morphism

$$U_\chi(g_K) \otimes_K I^m_\chi \longrightarrow U_\chi(g_K)I^m_\chi$$

defines through the quotients an isomorphism

$$U_\chi(g_K)/U_\chi(g_K)I_\chi \otimes_K I^m_\chi/I^{m+1}_\chi \longrightarrow U_\chi(g_K)I^m_\chi/U_\chi(g_K)I^{m+1}_\chi.$$

Proof. Since $U_\chi(g_K)I^m_\chi/U_\chi(g_K)I^{m+1}_\chi$ is a quotient of $U_\chi(g_K)I^m_\chi$, there is a canonical morphism

$$U_\chi(g_K) \otimes_K I^m_\chi \longrightarrow U_\chi(g_K)I^m_\chi/U_\chi(g_K)I^{m+1}_\chi.$$

Moreover, this morphism is surjective. Then it defines through the quotient a surjective morphism

$$U_\chi(g_K) \otimes_K I^m_\chi/I^{m+1}_\chi \longrightarrow U_\chi(g_K)I^m_\chi/U_\chi(g_K)I^{m+1}_\chi$$

and this morphism defines through the quotient a surjective morphism

$$U_\chi(g_K)/U_\chi(g_K)I_\chi \otimes_K I^m_\chi/I^{m+1}_\chi \longrightarrow U_\chi(g_K)I^m_\chi/U_\chi(g_K)I^{m+1}_\chi.$$

Since it is a morphism of finite dimensional K-vector spaces, it suffices to prove that these two spaces have the same dimension. By Lemma 4.2, it suffices to find some χ such that this morphism is an isomorphism.

By Lemma 4.3,(iv), if z is a regular nilpotent element of g_K, then the kernel of the morphism

$$U_\chi(g_K) \otimes_K I^m_\chi \longrightarrow U_\chi(g_K)I^m_\chi/U_\chi(g_K)I^{m+1}_\chi$$
equals $U_{\chi_e}(g_K)I_e \otimes_K I_{e+m}^m$ so that the morphism

$$U_{\chi_e}(g_K)/U_{\chi_e}(g_K)I_e \otimes_K I_{e+m}/I_{e+m+1} \longrightarrow U_{\chi_e}(g_K)I_e^m/U_{\chi_e}(g_K)I_{e+m}^m$$

is an isomorphism, whence the proposition. \qed

Recall that χ_e is the linear form $x \mapsto \langle e, x \rangle$. Set

$$Z_{K,e} := Z_{K,\chi_e} \quad \text{and} \quad I_e := I_{\chi_e}.$$

By [V72, Theorem 3.1] and [Pr02, Theorem 2.3, (ii)], the restriction to $Z_{K,e}$ of the representation $U_e(g_K) \rightarrow H$ is an embedding. Identify $Z_{K,e}$ with a subalgebra of H through this representation.

Corollary 4.5. (i) For m positive integer, the canonical morphism

$$H \otimes_K I_e^m \longrightarrow HI_e^m$$

defines through the quotients an isomorphism

$$H/HI_e \otimes_K I_e^m/I_{e+m}^m \longrightarrow HI_e^m/HI_{e+m}^m.$$

(ii) For some K-subspace E of H, the linear map

$$E \otimes_K Z_{K,e} \longrightarrow H, \quad v \otimes a \longmapsto va$$

is an isomorphism of K-spaces.

Proof. (i) By [Pr02, Thm. 2.3, Thm. 2.4 and Prop. 2.6],

$$U_e(g_K) = \text{Mat}_d(H) \quad \text{with} \quad d = p^{\dim G_{K,e}}.$$

Moreover, since $p > h$, $Z_{K,e}$ is the center of $U_e(g_K)$ so that $Z_{K,e}$ is the center of H. Let $a_i, i \in \Lambda_{e,m}$, be in H such that

$$\sum_{i \in \Lambda_{e,m}} a_i T^i \in HI_e^{m+1}.$$

It results from Proposition 4.4 with $\chi = \chi_e$ that the a_i’s are all in $U_e(g_K)I_e$. Then, since

$$\text{Mat}_d(H)I_e \cap H = HI_e,$$

the a_i’s are all in HI_e. Therefore, the canonical morphism

$$H/HI_e \otimes_K I_e^m/I_{e+m}^m \longrightarrow HI_e^m/HI_{e+m}^m$$

is injective. But this morphism is surjective by definition. This concludes the proof.

(ii) Let E be a K-subspace of H such that the restriction to E of the quotient morphism $H \rightarrow H/HI_e$ is an isomorphism and denote by Θ the linear map

$$E \otimes_K Z_{K,e} \longrightarrow H, \quad v \otimes a \longmapsto va.$$

By (i) with $m = 0$, Θ is injective and, again by (i), for all m,

$$H \subset \Theta(E \otimes_K Z_{K,e}) + I_e^m.$$

The assertion follows since $I_e^m = \{0\}$ for $m > \ell(p - 1)$. \qed

16
4.4. Let $S_e(g_K^e)$ be the quotient of the symmetric algebra $S(g_K^e)$ by the ideal generated by the elements x^p, with $x \in g_K^e$, and let $U_e(g_K^e)$ be the quotient of the enveloping algebra $U(g_K^e)$ by the ideal generated by the elements $x^p - x^{[p]}$, with $x \in g_K^e$. Since e is orthogonal to g_K^e, the canonical injection from $U(g_K^e)$ into $U(g_K)$ induces an embedding of $U_e(g_K^e)$ into $U_e(g_K)$.

Let \mathfrak{b} be a Cartan subalgebra of g, let \mathcal{R} be the root system of (g, \mathfrak{b}) and let $W(\mathcal{R})$ be the corresponding Weyl group. Let $\mathfrak{b}_\mathbb{Z}$ be the sub-\mathbb{Z}-module of \mathfrak{b} generated by the coroots of \mathcal{R}, and set:

$$\mathfrak{b}_N := \mathbb{Z}[1/N] \otimes_{\mathbb{Z}} \mathfrak{b}_\mathbb{Z}, \quad \mathfrak{b}_K := K \otimes_{\mathbb{Z}[1/N]} \mathfrak{b}_N.$$

Since $(\langle \cdot, \cdot \rangle)$ is nondegenerate, the duals g_K^e and \mathfrak{b}_K^e of g_K and \mathfrak{b}_K respectively identify with g_K and \mathfrak{b}_K respectively so that $S(g_K)$ and $S(\mathfrak{b}_K)$ are the algebras of polynomial functions on g_K and \mathfrak{b}_K respectively. The Weyl group $W(\mathcal{R})$ defines through the quotient an action on \mathfrak{b}_K. Since $p > h$, $W(\mathcal{R})$ is embedded in $GL(\mathfrak{b}_K)$.

By [V72, Prop. 2.1], there exists an isomorphism δ from $U(g_K)^{G_K}$ onto $S(\mathfrak{b}_K)^{W(\mathcal{R})}$. Moreover, $U(g_K)^{G_K}$ is a polynomial algebra generated by T_1, \ldots, T_ℓ. By [SS70, §3.17], the restriction map from g_K to \mathfrak{b}_K induces an isomorphism from $S(g_K)^{G_K}$ onto $S(\mathfrak{b}_K)^{W(\mathcal{R})}$. For $i \in \{1, \ldots, \ell\}$, let S_i be the element of $S(g_K)^{G_K}$ such that $\delta(T_i)$ is the restriction of S_i to \mathfrak{b}_K.

Since the restriction of $(\langle \cdot, \cdot \rangle)$ to $g_K^e \times g_K^e$ is nondegenerate, g_K^e identifies with the dual of g_K^e and $K[e + g_K^e]$ identifies with $S(g_K^e)$. For $i = 1, \ldots, \ell$, let S_i' be the image in $S_e(g_K^e)$ of the restriction of S_i to $e + g_K^e$.

Proposition 4.6. There is an isomorphism

$$\tau : H \rightarrow S_e(g_K^e)$$

from the K-space H onto the K-space $S_e(g_K^e)$ such that $\tau(Z_{K,e})$ is the subalgebra of $S_e(g_K^e)$ generated by S_1', \ldots, S_ℓ' and such that $\tau(ab) = \tau(a)\tau(b)$ for all (a, b) in $H \times Z_{K,e}$.

Proof. Recall that x_1, \ldots, x_m is the basis of $V_{K,+}$ introduced in Subsection 4.1. Order it so that x_1, \ldots, x_r is a basis of g_K^e. For θ in H, denote by $\overline{\theta}$ its image in $\text{gr}(H)$ by the canonical map. By [Pr02, Thm. 3.4], there exist $\theta_1, \ldots, \theta_\ell$ in H such that the monomials $\overline{\theta}_1^{a_1} \cdots \overline{\theta}_\ell^{a_\ell}$ and $\theta_1^{a_1} \cdots \theta_\ell^{a_\ell}$, with $0 \leq a_j \leq p - 1$, form bases of $\text{gr}(H)$ and H respectively. Moreover, there exists an isomorphism from the K-algebra $\text{gr}(H)$ onto the K-algebra $S_e(g_K^e)$ such that x_1, \ldots, x_r is the image of $\theta_1, \ldots, \theta_\ell$ respectively. Let τ be the linear isomorphism from H onto $S_e(g_K^e)$ such that

$$\tau(\overline{\theta}_1^{a_1} \cdots \overline{\theta}_\ell^{a_\ell}) = x_1^{a_1} \cdots x_r^{a_\ell}$$

for all $(a_1, \ldots, a_r) \in \Lambda_r$. It remains to prove that for $i \in \{1, \ldots, \ell\}$ and for a in H, $\tau(aT_i) = \tau(a)S_i'$.

Let A be the subspace of $U(g_K)$ generated by the monomials $x_{\tau+1}^{a_{\tau+1}} \cdots x_m^{a_m}$, with $(a_{\tau+1}, \ldots, a_m) \in \mathbb{N}^{m-\tau} \setminus \{0\}$, and let m'_K be the orthogonal complement to e in \mathfrak{m}^e_K. By the PBW theorem,

$$T_i = \sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}^r} c_{i, j, k} x^{\mathbf{f}^k} \in A + U(g_K)m'_K$$

with the $c_{i, j, k}$’s in K. By [Pr02, Thm. 3.4], $\tau(T_i)$ is the polynomial function on g_K^e.

$$v \mapsto \sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}^r} c_{i, j, k} \langle v, x_1 \rangle^{j_1} \cdots \langle v, x_r \rangle^{j_r} \langle e, f \rangle^{\mathbf{f}^k}$$

By definition, S_i is the G_K-invariant polynomial function on g_K such that its restriction to \mathfrak{b}_K equals $\delta(T_i)$. Moreover, since $p > h$, S_i is the image of T_i in $S(g_K)$; to see that, we follow the proof of [Di74, Thm. 7.4.5]. Hence

$$S_i - \sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}^r} c_{i, j, k} x^{\mathbf{f}^k} \in \sum_{l=\tau+1}^m S(g_K)x_l + S(g_K)m'_K$$
As a result, for v in \mathfrak{g}_K^f,

$$S_i(e + v) = \sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}^r} c_{i,j,k}(v, x_1)^{j_1} \cdots (v, x_r)^{j_r} \langle e, f \rangle^k$$

so that $S'_i = \tau(T_i)$.

Let a be in H. By [Pr02, Thm. 3.4],

$$(3) \quad a - \sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}^r} \gamma_{a,j,k} x^j T_i f^k \in A + U(\mathfrak{g}_K) m'_K$$

with the $\gamma_{a,j,k}$'s in K, and $\alpha(a)$ is the polynomial function on \mathfrak{g}^f,

$$v \mapsto \sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}^r} \gamma_{a,j,k} (v, x_1)^{j_1} \cdots (v, x_r)^{j_r} \langle e, f \rangle^k.$$

From the equalities (2) and (3), it results that

$$aT_i - \sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}^r} \gamma_{a,j,k} x^j T_i f^k \in AT_i + U(\mathfrak{g}_K) m'_K$$

$$AT_i \subset \sum_{k \in \mathbb{N}} c_{i,j,k} A x^j T_i f^k + AA + U(\mathfrak{g}_K) m'_K$$

$$(x^j T_i f^k - \sum_{k' \in \mathbb{N}^f} \sum_{k \in \mathbb{N}^f} c_{i,j',k'} x^{j'} f^{k+k'} \in x^j A f^k + U(\mathfrak{g}_K) m'_K.$$

For a_1, a_2 in A of filtrations degree $|a_1|_e$ and $|a_2|_e$ respectively, $a_1 a_2 \otimes 1 = a_3 \otimes 1 + a_4 \otimes 1$ where a_3 is in A and a_4 is a linear combination of the $x^j z \otimes 1$'s, with $|(i,j)|_e$ smaller than $|a_1|_e + |a_2|_e$. Moreover, for j in \mathbb{N}^r, $a_1 x^j \otimes 1 = x^j a_1 \otimes 1 + a_5 \otimes 1$ where a_5 is a linear combination of the $x^j k \otimes 1$'s, with $|(i,k)|_e$ smaller than $|a_1|_e + |(j,0)|_e$. At last, $(x^j x^j' - x^j x^j' \otimes 1)$ is a linear combination of the $x^k \otimes 1$'s with $|(k,0)|_e$ smaller than $|(j,0)|_e + |(j',0)|_e$. All this shows that $\tau(aT_i)$ is the polynomial function on \mathfrak{g}^f

$$v \mapsto \sum_{(k, k') \in \mathbb{N}^r} \sum_{(i, j, j') \in \mathbb{N}^r} c_{i,j,k} \gamma_{a,j',k'} (v, x_1)^{j_1} \cdots (v, x_r)^{j_r} \langle e, f \rangle^{k+k'},$$

whence $\tau(aT_i) = \tau(a) \tau(T_i)$. \hfill \Box

Henceforth, E is a subspace of H such that the linear map $E \otimes_K Z_{K,e} \rightarrow H$, $v \otimes a \mapsto va$ is an isomorphism of K-spaces. The existence of such a subspace is provided by Corollary 4.5(ii).

Corollary 4.7. The morphism

$$\tau(E) \otimes_K \tau(Z_{K,e}) \rightarrow S_e(\mathfrak{g}_K^f), \quad v \otimes a \mapsto va$$

is an isomorphism of K-spaces.

Proof. By Proposition 4.6, $\tau(E) \otimes_K \tau(Z_{K,e}) = S_e(\mathfrak{g}_K^f)$. In particular, the K-linear map

$$\tau(E) \otimes_K \tau(Z_{K,e}) \rightarrow S_e(\mathfrak{g}_K^f), \quad v \otimes a \mapsto va$$

is surjective. Since the K-spaces $E \otimes_K Z_{K,e}$, H, $\tau(E) \otimes_K \tau(Z_{K,e})$ and $\tau(H)$ are finite dimensional of the same dimension, this map is an isomorphism. \hfill \Box
4.5. Let m be the image in $S_e(g^e_K)$ of the augmentation ideal of $S(g^e_K)$ by the quotient map. Then the sequence m, m^2, \ldots is a decreasing filtration of $S_e(g^e_K)$ such that the graded space associated with this filtration is $S_e(g^e_K)$. This filtration induces a filtration on $\tau(Z_{K,e})$ and the graded algebra associated with this filtration is a subalgebra of $S_e(g^e_K)$ denoted by $\text{gr}(\tau(Z_{K,e}))$.

Proposition 4.8. The linear map

$$\text{gr}(\tau(E)) \otimes_K \text{gr}(\tau(Z_{K,e})) \rightarrow S_e(g^e_K), \quad v \otimes a \mapsto va$$

is an isomorphism.

Proof. By Corollary 4.7, the linear map

$$\tau(E) \otimes_K \tau(Z_{K,e}) \rightarrow S_e(g^e_K), \quad v \otimes a \mapsto va$$

is an isomorphism. The filtration on $S_e(g^e_K)$ induces a filtration on $\tau(E)$ and the graded space $\text{gr}(\tau(E))$ associated with this filtration is a subspace of $S_e(g^e_K)$ of the same dimension. For d nonnegative integer, denote by $\text{gr}(\tau(E))_d$ the subspace of degree d of $\text{gr}(\tau(E))$ and set:

$$\text{gr}(\tau(E))(d) := \bigoplus_{i=d} \text{gr}(\tau(E))_i.$$

Let $\text{gr}(\tau(Z_{K,e}))_+$ be the augmentation ideal of $\text{gr}(\tau(Z_{K,e}))$ and prove by induction on d that

$$S_e(g^e_K) \subset \text{gr}(\tau(E)) + S_e(g^e_K)\text{gr}(\tau(Z_{K,e}))+ + m^{d+1}.$$

Since $\text{gr}(\tau(E))^{(0)} = K$, the inclusion is clear for $d = 0$. Suppose that it is true for any integer smaller than $d - 1$ and prove the inclusion for d. By induction hypothesis, it suffices to prove that for a homogeneous polynomial a of degree d in $S_e(g^e_K)$,

$$a \in \text{gr}(E) + S_e(g^e_K)\text{gr}(\tau(Z_{K,e}))+ + m^{d+1}.$$

Let a be a homogeneous polynomial of degree d in $S_e(g^e_K)$, and let $\{v_1, \ldots, v_m\}$ be a basis of E such that its image in $\text{gr}(E)$ is linearly free. Then

$$a = \sum_{i=1}^m v_ia_i$$

for some a_1, \ldots, a_m in $\tau(Z_{K,e})$ and,

$$a \in \sum_{i \in I_d} v_ia_i + m^{d+1}$$

where I_d is the subset of $i \in \{1, \ldots, m\}$ such that v_i is in $S_e(g^e_K) \setminus m^{d+1}$. For i in I_d such that v_i is not in m^d, a_i is in m so that its image in $\text{gr}(\tau(Z_{K,e}))$ is in $\text{gr}(\tau(Z_{K,e}))+$. As a result,

$$a \in \text{gr}(E) + S_e(g^e_K)\text{gr}(\tau(Z_{K,e}))+ + m^{d+1}.$$

Since $m^d = \{0\}$ for d sufficiently big, one deduces that

$$S_e(g^e_K) \subset \text{gr}(\tau(E)) + S_e(g^e_K)\text{gr}(\tau(Z_{K,e}))+.$$

Then, by induction on i, one gets

$$S_e(g^e_K) \subset \text{gr}(\tau(E))S_e(g^e_K) + S_e(g^e_K)\text{gr}(\tau(Z_{K,e}))^i.$$

For i sufficiently big, $\text{gr}(\tau(Z_{K,e}))^i = \{0\}$. Therefore, the linear map

$$\text{gr}(\tau(E)) \otimes_K \text{gr}(\tau(Z_{K,e})) \rightarrow S_e(g^e_K), \quad v \otimes a \mapsto va$$

is surjective. As the K-spaces $\tau(E) \otimes_K \text{gr}(\tau(Z_{K,e}))$, $\text{gr}(\tau(E)) \otimes_K \text{gr}(\tau(Z_{K,e}))$ and $S_e(g^e_K)$ are finite dimensional of the same dimension, this map is an isomorphism. \square
For q in $S(\mathfrak{g}_K)$, denote by εq the initial component of the restriction of q to $e + \mathfrak{g}_K^f$.

Corollary 4.9. Let q_1, \ldots, q_ℓ be homogeneous generators of $S(\mathfrak{g}_K)^{G_K}$ such that $^εq_1, \ldots, ^εq_\ell$ are algebraically independent over K.

(i) The set
\[
\{^εq_1^i \cdots ^εq_\ell^i, \; i = (i_1, \ldots, i_\ell) \in \Lambda_\ell\}
\]

is a basis of the K-space $\text{gr}(\tau(\mathcal{Z}_{K,e}))$.

(ii) For a_1, \ldots, a_ℓ in $S_e(\mathfrak{g}_K^e)$, if
\[
a_1(^εq_1) + \cdots + a_\ell(^εq_\ell) = 0
\]

then a_1, \ldots, a_ℓ are linear combinations with coefficients in $S_e(\mathfrak{g}_K^e)$ of $^εq_1, \ldots, ^εq_\ell$.

Proof. (i) Since $^εq_1, \ldots, ^εq_\ell$ are algebraically independent over K, the jacobian matrix
\[
\left(\frac{\partial(^εq_i)}{\partial x_j}, \; 1 \leq i \leq \ell, \; 1 \leq j \leq r\right)
\]

has rank ℓ. This means that in $K(x_1, \ldots, x_r)$, the quotient field of $S(\mathfrak{g}_K^e)$, the elements $^εq_1, \ldots, ^εq_\ell$ are p-independent. Hence the sequence
\[
^εq_1^i \cdots ^εq_\ell^i, \; i = (i_1, \ldots, i_\ell) \in \Lambda_\ell,
\]

of elements of $S_e(\mathfrak{g}_K^e)$ is linearly free over K. Since q_1, \ldots, q_ℓ are homogeneous generators of $S(\mathfrak{g}_K)^{G_K}$, the algebra $\tau(\mathcal{Z}_{K,e})$ is generated by the restrictions of q_1, \ldots, q_ℓ to $e + \mathfrak{g}_K^f$, [SS70, §3.17]. So, for a in $\tau(\mathcal{Z}_{K,e})$, a is the restriction to $e + \mathfrak{g}_K^f$ of
\[
\sum_{i = (i_1, \ldots, i_\ell) \in \Lambda_\ell} c_i q_1^{i_1} \cdots q_\ell^{i_\ell}
\]

for some $c_i, i \in \Lambda_\ell$ in K so that the image \overline{a} of a in $\text{gr}(\tau(\mathcal{Z}_{K,e}))$ equals
\[
\sum_{i = (i_1, \ldots, i_\ell) \in \Lambda_\ell} c'_i q_1^{i_1} \cdots q_\ell^{i_\ell}
\]

where $c'_i = c_i$ if \overline{a} and $^εq_1^{i_1} \cdots ^εq_\ell^{i_\ell}$ have the same degree, and $c'_i = 0$ otherwise.

(ii) Let a_1, \ldots, a_ℓ be in $S_e(\mathfrak{g}_K^e)$ such that
\[
a_1(^εq_1) + \cdots + a_\ell(^εq_\ell) = 0.
\]

Let v_1, \ldots, v_m be a basis of $\text{gr}(\tau(E))$. By (i) and Proposition 4.8, for $i = 1, \ldots, \ell$,
\[
a_i = \sum_{j=1}^m \sum_{k \in \Lambda_\ell} c_{i,j,k} v_j q_1^{k_1} \cdots q_\ell^{k_\ell}
\]

with the $c_{i,j,k}$'s in K. As a result,
\[
\sum_{j=1}^m v_j \otimes (\sum_{i=1}^\ell \sum_{k \in \Lambda_\ell} c_{i,j,k} (^εq_i q_1^{k_1} \cdots q_\ell^{k_\ell})) = 0
\]

so that
\[
\sum_{i=1}^\ell \sum_{k \in \Lambda_\ell} c_{i,j,k} (^εq_i q_1^{k_1} \cdots q_\ell^{k_\ell}) = 0
\]

for $j = 1, \ldots, m$. By (i), it follows that $c_{i,j,0} = 0$ for all (i, j), whence the statement. \hspace{1cm} \square
4.6. **Proof of Theorem 4.1.** Let g_Z be a \mathbb{Z}-form of g such that (ϵ, h, f) is an $s_{\mathfrak{l}_2}$-triple of the \mathbb{Q}-form of $g_Q := \mathbb{Q} \otimes_{\mathbb{Z}} g_Z$ of g. Let us suppose that for some generators q_1, \ldots, q_r of $S(g)^3$, $\epsilon q_1, \ldots, \epsilon q_r$ are algebraically independent over \mathbb{K}. We aim to prove that e is good. First of all, since g_Q is a \mathbb{Q}-form of g containing e, h, f, there exist homogeneous generators q'_1, \ldots, q'_r of $S(g_Q)^{32}$ such that $\epsilon q'_1, \ldots, \epsilon q'_r$ are algebraically independent over \mathbb{Q}. So, one can suppose that q_1, \ldots, q_r are in $S(g_Q)^{32}$.

Let $\{y_1, \ldots, y_r\}$ be a basis of g'_Q and let $\{x_1, \ldots, x_n\}$ be a basis of g_Z. By the hypothesis, for some (v_1, \ldots, v_r) in \mathbb{Z}^r and (u_1, \ldots, u_n) in \mathbb{Z}^n, the value at $v_1 y_1 + \cdots + v_r y_r$ of a ℓ-order minor of the jacobian matrix

$$
\left(\frac{\partial (\epsilon q_i)}{\partial y_j}, 1 \leq i \leq \ell, 1 \leq j \leq r \right)
$$

is a rational number c_0 different from 0, and the value at $u_1 x_1 + \cdots + u_n x_n$ of a ℓ-order minor of the jacobian matrix

$$
\left(\frac{\partial q_i}{\partial x_j}, 1 \leq i \leq \ell, 1 \leq j \leq n \right)
$$

is a rational number $c_{0,0}$ different from 0.

Let d_1, \ldots, d_r be the degrees of $\epsilon q_1, \ldots, \epsilon q_r$ respectively, and denote by J the ideal of $S(g'_Q)$ generated by q_1, \ldots, q_r. For d positive integer, denote by $S_d(g'_Q)$ and J_d the subspace of homogeneous elements of degree d of $S(g'_Q)$ and J respectively. Suppose that for some positive integer d there exist homogeneous elements a_1, \ldots, a_r of degrees $d - d_1, \ldots, d - d_r$ respectively, not all in J, such that

$$a_1 (\epsilon q_1) + \cdots + a_r (\epsilon q_r) = 0.$$

A contradiction is expected. Then for some μ in the orthogonal complement of $J_{d-d_1} \times \cdots \times J_{d-d_r}$ in the dual of $S_{d-d_1}(g'_Q) \times \cdots \times S_{d-d_r}(g'_Q)$, $c_1 := \mu(a_1, \ldots, a_r)$ is a rational number different from zero.

Let N be a sufficiently big positive integer verifying the conditions of Subsection 4.2 and the following conditions, where $g_N := \mathbb{Z} [1/N!] \otimes_{\mathbb{Z}} g_Z$:

1. $c_0, c_{0,0}, c_1$ are invertible elements of $\mathbb{Z} [1/N!]$,
2. q_1, \ldots, q_r are in $S(g_N)$,
3. y_1, \ldots, y_r are in g'_N,
4. a_1, \ldots, a_r are in $S(g'_N)$,
5. μ is the extension to $S_{d-d_1}(g'_N) \times \cdots \times S_{d-d_r}(g'_N)$ of a linear form μ_0 on the $\mathbb{Z} [1/N!]$-module $S_{d-d_1}(g'_N) \times \cdots \times S_{d-d_r}(g'_N)$.

Let p be a positive integer bigger than N and d. Let \mathfrak{m}_p be a maximal ideal of $\mathbb{Z} [1/N!]$ containing p, let K be an algebraic closure of $\mathbb{Z} [1/N!]/\mathfrak{m}_p$, and set:

$$g_K := K \otimes_{\mathbb{Z} [1/N!]} g_N.$$

Let G_K be a simple, simply connected algebraic K-group such that $g_K = \text{Lie}(G_K)$. Because of the above conditions, the above data reduce modulo \mathfrak{m}_p. For a in $S(g_N)$, denote again by a the element $1 \otimes a$ of $S(g_K)$. Since $c_0, 0$ is an invertible element of K, q_1, \ldots, q_r are algebraically independent elements of $S(g_K)^G_K$ so that q_1, \ldots, q_r are homogeneous generators of $S(g_K)^{G_K}$ because of their degrees. Since c_0 is an invertible element of K, $\epsilon q_1, \ldots, \epsilon q_r$ are algebraically independent over K. Moreover, (a_1, \ldots, a_r) is an element of $S_{d-d_1}(g_K') \times \cdots \times S_{d-d_r}(g_K')$ such that

$$a_1 (\epsilon q_1) + \cdots + a_r (\epsilon q_r) = 0.$$

Denote again by J the ideal of $S(g_K)$ generated by $\epsilon q_1, \ldots, \epsilon q_r$ and denote by J_i its intersection with $S_i(g_K)$ for all nonnegative integer i. Then (a_1, \ldots, a_r) is not in $J_{d-d_1} \times \cdots \times J_{d-d_r}$ since c_1 is invertible in K. As p
is bigger than \(d \) the restriction to \(S_{d-d_i}(g^e_K) \times \cdots \times S_{d-d_{i'}}(g^e_K) \) of the quotient map \((S(g_K^e))^f \to (S(e(g_K^e)))^f\) is injective, whence a contradiction by Corollary 4.9(ii). As a result, for \(a_1, \ldots, a_\ell \in S(g^e) \) such that
\[
a_1(eq_1) + \cdots + a_\ell(eq_\ell) = 0,
\]
a_1, \ldots, a_\ell are all in \(J \). So by Proposition 3.7, the nullvariety of \(eq_1, \ldots, eq_\ell \) in \(g^f \) has codimension \(\ell \). Then \(eq_1, \ldots, eq_\ell \) is a regular sequence in \(S(g^e) \), \(e \) is a good element of \(g \) and \(S(g^e) \) is a free extension of the polynomial algebra \(S(g^e)^g \) by Proposition 3.2.

5. Consequences of Theorem 2 for the simple classical Lie algebras

This section concerns applications of Theorem 2 (or Theorem 4.1) to the simple classical Lie algebras.

5.1. The first consequence of Theorem 4.1 is the following.

Theorem 5.1. Assume that \(g \) is simple of type \(A \) or \(C \). Then all the elements of \(g \) are good.

Proof. This follows from \([PPY07, Thm. 4.2 and 4.4]\), Theorem 4.1 and Proposition 3.4. \(\square \)

5.2. In this subsection and the next one, \(g \) is assumed to be simple of type \(B \) or \(D \). More precisely, we assume that \(g \) is the simple Lie algebra \(\text{so}(V) \) for some vector space \(V \) of dimension \(2\ell + 1 \) or \(2\ell \). Then \(g \) is embedded into \(\hat{g} : = \text{gl}(V) = \text{End}(V) \). For \(x \) an endomorphism of \(V \) and for \(i \in \{1, \ldots, \dim V\} \), denote by \(Q_i(x) \) the coefficient of degree \(\dim V - i \) of the characteristic polynomial of \(x \). Then, for any \(x \) in \(g \), \(Q_i(x) = 0 \) whenever \(i \) is odd. Define a generating family \((q_1, \ldots, q_\ell)\) of the algebra \(S(g)^g \) as follows. For \(i = 1, \ldots, \ell - 1 \), set \(q_i : = Q_{2i} \). If \(\dim V = 2\ell + 1 \), set \(q_\ell = Q_{2\ell} \) and if \(\dim V = 2\ell \), let \(q_\ell \) be a homogeneous element of degree \(\ell \) of \(S(g)^g \) such that \(Q_{2\ell} = q_\ell^2 \).

Let \((e, h, f)\) be an \(sl_2 \)-triple of \(g \). Following the notations of Subsection 3.2, for \(i \in \{1, \ldots, \ell\} \), denote by \(e_i \) the initial homogeneous component of the restriction to \(g^f \) of the polynomial function \(x \mapsto q_i(e + x) \), and by \(\delta_i \) the degree of \(e_i \). According to \([PPY07, Thm. 2.1]\), \(e_1, \ldots, e_\ell \) are algebraically independent if and only if
\[
\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_\ell) = 0.
\]
Our first aim in this subsection is to describe the sum \(\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_\ell) \) in term of the partition of \(\dim V \) associated with \(e \).

Remark 5.2. The sequence of the degrees \((\delta_1, \ldots, \delta_\ell)\) is described by \([PPY07, Rem. 4.2]\).

For \(\lambda = (\lambda_1, \ldots, \lambda_k) \) a sequence of positive integers, with \(\lambda_1 \geq \cdots \geq \lambda_k \), set:
\[
|\lambda| : = k, \quad r(\lambda) : = \lambda_1 + \cdots + \lambda_k.
\]
Assume that the partition \(\lambda \) of \(r(\lambda) \) is associated with a nilpotent orbit of \(\text{so}(g^{r(\lambda)}) \). Then the even integers of \(\lambda \) have an even multiplicity, \([CMc93, \S 5.1]\). Thus \(k \) and \(r(\lambda) \) have the same parity. Moreover, there is an involution \(i \mapsto i' \) of \(\{1, \ldots, k\} \) such that \(i = i' \) if \(\lambda_i \) is odd, and \(i' \in \{i - 1, i + 1\} \) if \(\lambda_i \) is even. Set:
\[
S(\lambda) : = \sum_{i = i', i \text{ odd}} i - \sum_{i = i', i \text{ even}} i
\]
and denote by \(n_i \) the number of even integers in the sequence \(\lambda \).

From now on, assume that \(\lambda \) is the partition of \(\dim V \) associated with the nilpotent orbit \(G(e) \).
Lemma 5.3. (i) If \(\dim \mathcal{V} \) is odd, i.e., \(k \) is odd, then
\[
\dim g^\ell + \ell - 2(\delta_1 + \cdots + \delta_\ell) = \frac{n_\lambda - k - 1}{2} + S(\lambda).
\]
(ii) If \(\dim \mathcal{V} \) is even, i.e., \(k \) is even, then
\[
\dim g^\ell + \ell - 2(\delta_1 + \cdots + \delta_\ell) = \frac{n_\lambda + k}{2} + S(\lambda).
\]
Proof. (i) If \(\dim \mathcal{V} \) is odd, then by \([PPY07, \S 4.4, (14)]\),
\[
2(\delta_1 + \cdots + \delta_\ell) = \dim g^\ell + \frac{\dim \mathcal{V}}{2} + \frac{k - n_\lambda}{2} - S(\lambda),
\]
whence
\[
\dim g^\ell + \ell - 2(\delta_1 + \cdots + \delta_\ell) = \frac{n_\lambda - k - 1}{2} + S(\lambda)
\]
since \(\dim \mathcal{V} = 2\ell + 1 \).
(ii) If \(\dim \mathcal{V} \) is even, then \(\delta_\ell = k/2 \) by \([PPY07, \text{Rem. 4.2}]\) and by \([PPY07, \S 4.4, (14)]\),
\[
2(\delta_1 + \cdots + \delta_\ell) = \dim g^\ell + \frac{\dim \mathcal{V}}{2} + \frac{k - n_\lambda}{2} - S(\lambda)
\]
whence
\[
\dim g^\ell + \ell - 2(\delta_1 + \cdots + \delta_\ell) = \frac{n_\lambda + k}{2} + S(\lambda)
\]
since \(\dim \mathcal{V} = 2\ell \).
\(\square\)

The sequence \(\lambda = (\lambda_1, \ldots, \lambda_k) \) verifies one of the following five conditions:
1) \(\lambda_k \) and \(\lambda_{k-1} \) are odd,
2) \(\lambda_k \) and \(\lambda_{k-1} \) are even,
3) \(k > 3 \), \(\lambda_k \) and \(\lambda_1 \) are odd and \(\lambda_i \) is even for any \(i \in \{2, \ldots, k-1\} \),
4) \(k > 4 \), \(\lambda_k \) is odd and there is \(k' \in \{2, \ldots, k-2\} \) such that \(\lambda_{k'} \) is odd and \(\lambda_i \) is even for any \(i \in \{k'+1, \ldots, k-1\} \),
5) \(k = 1 \) or \(\lambda_k \) is odd and \(\lambda_i \) is even for any \(i < k \).

For example, \((4, 4, 3, 1)\) verifies Condition (1); \((6, 6, 5, 4, 4)\) verifies Condition (2); \((7, 6, 6, 4, 4, 4, 4, 3)\) verifies Condition (3); \((8, 8, 7, 5, 4, 4, 2, 2, 3)\) verifies Condition (4) with \(k' = 4 \); \((9)\) and \((6, 6, 4, 4, 3)\) verify Condition (5). If \(k = 2 \), then one of the conditions (1) or (2) is satisfied.

Definition 5.4. Define a sequence \(\lambda^* \) of positive integers, with \(|\lambda^*| \leq |\lambda| \), as follows:
- if \(k = 2 \) or if Condition (3) or (5) is verified, then set \(\lambda^* = \lambda \),
- if Condition (1) or (2) is verified, then set:
\[
\lambda^* := (\lambda_1, \ldots, \lambda_{k-2}),
\]
- if \(k > 3 \) and if the Condition (4) is verified, then set
\[
\lambda^* := (\lambda_1, \ldots, \lambda_{k'-1}).
\]

In any case, the partition of \(r(\lambda^*) \) corresponding to \(\lambda^* \) is associated with a nilpotent orbit of \(\mathfrak{so}(\mathfrak{k}^r(\lambda^*)) \). Recall that \(n_\lambda \) is the number of even integers in the sequence \(\lambda \).

Definition 5.5. Denote by \(d_\lambda \) the integer defined by:
- if \(k = 2 \), then \(d_\lambda := n_\lambda \),
- if \(k > 2 \) and if Condition (1) or (4) is verified, then \(d_\lambda := d_{\lambda'} \),
- if \(k > 2 \) and if Condition (2) is verified, then \(d_\lambda := d_{\lambda'} + 2 \).
- if \(k > 2 \) and if Condition (3) is verified, then \(d_A := 0 \),
- if Condition (5) is verified, then \(d_A := 0 \).

Lemma 5.6. (i) Assume that \(k \) is odd. If Condition (1), (2) or (5) is verified, then
\[
\frac{n_A - k - 1}{2} + S(\lambda) = \frac{n_{\lambda'} - |\lambda'| - 1}{2} + S(\lambda') .
\]
Otherwise,
\[
\frac{n_A - k - 1}{2} + S(\lambda) = \frac{n_{\lambda'} - |\lambda'| - 1}{2} + S(\lambda') + k - |\lambda'| - 2 .
\]
(ii) If \(k \) is even, then
\[
\frac{n_A + k}{2} + S(\lambda) = \frac{n_{\lambda'} + |\lambda'|}{2} + S(\lambda') + d_A - d_{\lambda'} .
\]

Proof. (i) If Condition (3) or (5) is verified, there is nothing to prove. If Condition (1) is verified,
\[
n_A = n_{\lambda'}, \quad S(\lambda) = S(\lambda') + 1 .
\]
Then
\[
\frac{n_A - k - 1}{2} + S(\lambda) = \frac{n_{\lambda'} - |\lambda'| - 1}{2} - 1 + S(\lambda') + 1
\]
whence the assertion. If Condition (2) is verified,
\[
n_A = n_{\lambda'} + 2, \quad S(\lambda) = S(\lambda').
\]
Then,
\[
\frac{n_A - k - 1}{2} + S(\lambda) = \frac{n_{\lambda'} - |\lambda'| - 1}{2} + S(\lambda')
\]
whence the assertion. If Condition (4) is verified,
\[
n_A = n_{\lambda'} + k - |\lambda'| - 2, \quad S(\lambda) = S(\lambda') + k - |\lambda'| - 1 .
\]
Then,
\[
\frac{n_A - k - 1}{2} + S(\lambda) = \frac{n_{\lambda'} - |\lambda'| - 1}{2} - 1 + S(\lambda') + k - |\lambda'| - 1
\]
whence the assertion.
(ii) If \(k = 2 \) or if \(k > 2 \) and Condition (3) or (5) is verified, there is nothing to prove. Let us suppose that \(k > 3 \). If Condition (1) is verified,
\[
n_A = n_{\lambda'}, \quad S(\lambda) = S(\lambda') - 1 .
\]
Then
\[
\frac{n_A + k}{2} + S(\lambda) = \frac{n_{\lambda'} + |\lambda'|}{2} + 1 + S(\lambda') - 1
\]
whence the assertion since \(d_A = d_{\lambda'} \). If Condition (2) is verified,
\[
n_A = n_{\lambda'} + 2, \quad S(\lambda) = S(\lambda').
\]
Then,
\[
\frac{n_A + k}{2} + S(\lambda) = \frac{n_{\lambda'} + |\lambda'|}{2} + 2 + S(\lambda')
\]
whence the assertion since \(d_A - d_{\lambda'} = 2 \). If Condition (4) is verified,
\[
n_A = n_{\lambda'} + k - |\lambda'| - 2, \quad S(\lambda) = S(\lambda') + |\lambda'| + 1 - k .
\]
Then,
\[
\frac{n_A + k}{2} + S(\lambda) = \frac{n_{\lambda'} + |\lambda'|}{2} + k - |\lambda'| - 1 + S(\lambda') + |\lambda'| - k + 1
\]
whence the assertion since \(d_A = d_{\lambda'} \). □

24
Lemma 5.7. (i) If \(\lambda_i \) is odd and if \(\lambda_i \) is even for \(i \geq 2 \), then \(\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_\ell) = 0 \).

(ii) If \(k \) is odd, then \(\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_\ell) = n_\lambda - d_\lambda \).

(iii) If \(k \) is even, then \(\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_\ell) = d_\lambda \).

Proof. (i) By the hypothesis, \(n_\lambda = k - 1 \) and \(S(\lambda) = 1 \), whence the assertion by Lemma 5.3.(i).

(ii) Let us prove the assertion by induction on \(k \). For \(k = 3 \), if \(\lambda_1 \) and \(\lambda_2 \) are even, \(n_1 = 2, d_1 = 0 \) and \(S(\lambda) = 3 \), whence the equality by Lemma 5.3.(i). Assume that \(k > 3 \) and suppose that the equality holds for the integers smaller than \(k \). If Condition (1) or (2) is verified, then by Lemma 5.3,(i), Lemma 5.6,(i) and by induction hypothesis,

\[
\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_\ell) = n_{\lambda'} - d_{\lambda'}.
\]

But if Condition (1) or (2) is verified, then \(n_\lambda - d_\lambda = n_{\lambda'} - d_{\lambda'} \). If Condition (5) is verified, then

\[
n_\lambda = k - 1, \quad S(\lambda) = k, \quad d_\lambda = 0,
\]

whence the equality by Lemma 5.3.(i). Let us suppose that Condition (4) is verified. By Lemma 5.3,(i), Lemma 5.6,(i) and by induction hypothesis,

\[
\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_\ell) = n_{\lambda'} - d_{\lambda'} + k - |\lambda'| - 2 = n_\lambda - d_\lambda
\]

whence the assertion since Condition (3) is never verified when \(k \) is odd.

(iii) The statement is clear for \(k = 2 \) by Lemma 5.3.(ii). Indeed, if Condition (1) is verified, then \(d_1 = n_\lambda = 0 \) and \(S(\lambda) = -1 \) and if Condition (2) is verified, then \(d_1 = n_\lambda = 2 \) and \(S(\lambda) = 0 \). If Condition (3) is verified, \(n_\lambda = k - 2 \) and \(S(\lambda) = 1 - k \), whence the statement by Lemma 5.3.(ii). When Condition (4) is verified, by induction on \(|\lambda| \), the statement results from Lemma 5.3,(ii) and Lemma 5.6,(ii), whence the assertion since Condition (5) is never verified when \(k \) is even.

\(\square \)

Corollary 5.8. (i) If \(\lambda_1 \) is odd and if \(\lambda_i \) is even for all \(i \geq 2 \), then \(e \) is good.

(ii) If \(k \) odd and if \(n_\lambda = d_\lambda \), then \(e \) is good. In particular, if \(g \) is of type \(B \), then the even nilpotent elements of \(g \) are good.

(iii) If \(k \) even and if \(d_\lambda = 0 \), then \(e \) is good. In particular, if \(g \) is of type \(D \) and of odd rank, then the even nilpotent elements of \(g \) are good.

Proof. As it has been already noticed, by [PPY07, Thm. 2.1], the polynomials \(e_{q_1}, \ldots, e_{q_\ell} \) are algebraically independent if and only if

\[
\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_\ell) = 0.
\]

So, by Theorem 4.1 and Lemma 5.7, if either \(\lambda_1 \) is odd and \(\lambda_i \) is even for all \(i \geq 2 \), or if \(k \) is odd and \(n_\lambda = d_\lambda \), or if \(k \) is even and \(d_\lambda = 0 \), then \(e \) is good.

Suppose that \(e \) is even. Then the integers \(\lambda_1, \ldots, \lambda_\ell \) have the same parity, cf. e.g. [C85, §1.3.1]. Moreover, \(n_\lambda = d_\lambda = 0 \) whenever \(\lambda_1, \ldots, \lambda_k \) are all odd (cf. Definition 5.5). This in particular occurs if either \(g \) is of type \(B \), or if \(g \) is of type \(D \) with odd rank.

\(\square \)

Remark 5.9. The fact that even nilpotent elements of \(g \) are good if either \(g \) is of type \(B \), or is \(g \) is of type \(D \) with odd rank, was already observed by O. Yakimova in [Y09, Cor. 8.2] with a different formulation.

Definition 5.10. A sequence \(\lambda = (\lambda_1, \ldots, \lambda_k) \) is said to be very good if \(n_\lambda = d_\lambda \) whenever \(k \) is odd and if \(d_\lambda = 0 \) whenever \(k \) is even. A nilpotent element of \(g \) is said to be very good if it is associated with a very good partition of \(\dim V \).

According to Corollary 5.8, if \(e \) is very good then \(e \) is good. The following lemma characterizes the very good sequences.
5.11. (i) If \(k \) is odd then \(\lambda \) is very good if and only if \(\lambda_1 \) is odd and if \((\lambda_2, \ldots, \lambda_k)\) is a concatenation of sequences verifying Conditions (1) or (2) with \(k = 2 \).

(ii) If \(k \) is even then \(\lambda \) is very good if and only if \(\lambda \) is a concatenation of sequences verifying Condition (3) or Condition (1) with \(k = 2 \).

For example, the partitions \((5, 3, 3, 2, 2)\) and \((7, 5, 5, 4, 4, 3, 1, 1)\) of 15 and 30 respectively are very good.

Proof. (i) Assume that \(\lambda_1 \) is odd and that \((\lambda_2, \ldots, \lambda_k)\) is a concatenation of sequences verifying Conditions (1) or (2) with \(k = 2 \). So, if \(k > 1 \), then \(n_\lambda - d_\lambda = n_\lambda - d_\lambda' \). Then, a quick induction shows that \(n_\lambda - d_\lambda = n_{(\lambda_1)} - d_{(\lambda_1)} = 0 \) since \(\lambda_1 \) is odd. The statement is clear for \(k = 1 \).

Conversely, assume that \(n_\lambda - d_\lambda = 0 \). If \(\lambda \) verifies Conditions (1) or (2), then \(n_\lambda - d_\lambda = n_\lambda - d_\lambda' \) and \(|\lambda'| < |\lambda|\). So, one can assume that \(\lambda \) does not verify Conditions (1) or (2). Since \(k \) is odd, \(\lambda \) cannot verify Condition (3). If \(\lambda \) verifies Condition (4), then \(n_\lambda - d_\lambda = n_\lambda - d_\lambda' > n_\lambda - d_\lambda' \geq 0 \). This is impossible since \(n_\lambda - d_\lambda = 0 \). If \(\lambda \) verifies Condition (5), then \(n_\lambda - d_\lambda = n_\lambda. \) So, \(n_\lambda - d_\lambda = 0 \) if and only if \(k = 1 \). Thereby, the direct implication is proven.

(ii) Assume that \(\lambda \) is a concatenation of sequences verifying Condition (3) or Condition (1) with \(k = 2 \). In particular, \(\lambda \) does not verify Condition (2). Moreover, Condition (5) is not verified since \(k \) is even. Then \(d_\lambda = 0 \) by induction on \(|\lambda|\), whence \(e \) is very good.

Conversely, suppose that \(d_\lambda = 0 \). If \(k = 2 \), Condition (1) is verified and if \(k = 4 \), then either Condition (3) is verified, or \(\lambda_1, \ldots, \lambda_4 \) are all odd. Suppose \(k > 4 \). Condition (2) is not verified since \(d_\lambda = d_\lambda + 2 \) in this case. If Condition (1) is verified then \(d_\lambda = 0 \) and \(\lambda \) is a concatenation of \(\lambda^* \) and \((\lambda_1, \ldots, \lambda_k)\). If Condition (4) is verified, then \(d_\lambda = 0 \) and \(\lambda \) is a concatenation of \(\lambda_1 \) and a sequence verifying Condition (3), whence the assertion by induction on \(|\lambda|\) since Condition (5) is not verified when \(k \) is even. \(\Box\)

5.3. Assume in this subsection that \(\lambda = (\lambda_1, \ldots, \lambda_k) \) verifies the following condition:

\[(\ast) \quad \text{For some } k' \in [2, \ldots, k], \lambda_i \text{ is even for all } i \leq k', \text{ and } (\lambda_{k'+1}, \ldots, \lambda_k) \text{ is very good.}\]

In particular, \(k' \) is even and \(\lambda \) is not very good by Lemma 5.11. For example, the sequences \(\lambda = (6, 6, 4, 4, 3, 2, 2) \) and \((6, 6, 4, 4, 4, 3, 3, 2, 2, 1)\) satisfy the condition \((\ast)\) with \(k' = 4 \). Define a sequence \(\nu = (\nu_1, \ldots, \nu_k) \) of integers of \(\{1, \ldots, \ell\} \) by

\[\forall i \in \{1, \ldots, k',\}, \quad \nu_i := \frac{\lambda_1 + \cdots + \lambda_i}{2}.\]

If \(k' = k \), then \(\nu_k = (\lambda_1 + \cdots + \lambda_k)/2 = r(\lambda)/2 = \ell \). Define elements \(p_1, \ldots, p_k \) of \(S(g^\ell) \) as follows:

- if \(k' < k \), set for \(i \in \{1, \ldots, k'\}, p_i := e_{\nu_i} \).
- if \(k' = k \), set for \(i \in \{1, \ldots, k'-1\} \), \(p_i := e_{\nu_i} \) and set \(p_k := (e_{\nu_k})^2 \). In this case, set also \(\bar{p}_k := e_{\nu_k} \).

Remark that \(\delta_i \) is the degree of \(e_{\nu_i} \) for \(i = 1, \ldots, \ell \). The following lemma is a straightforward consequence of [PPY07, Rem. 4.2]:

5.12. (i) For all \(i \in \{1, \ldots, k'\} \), \(\deg p_i = i \).

(ii) Set \(v_0 := 0 \). Then for \(i \in \{1, \ldots, k'\} \) and \(r \in \{1, \ldots, \nu_{k'} - 1\} \),

\[\delta_r = i \iff v_{i-1} < r \leq v_i,\]

and \(\delta_\ell = k/2 \). In particular, for \(r \in \{1, \ldots, \nu_{k'} - 2\} \), \(\delta_r < \delta_{r+1} \) if and only if \(r \) is a value of the sequence \(\nu \).

Example 5.13. Consider the partition \(\lambda = (8,8,4,4,4,4,2,2,1,1) \) of 38. Then \(k = 10 \), \(k' = 8 \) and \(\nu = (4,8,10,12,14,16,17,18) \). We represent in Table 1 the degrees of the polynomials \(p_1, \ldots, p_8 \) and...
\[\begin{array}{cccccccc}
\ell q_1 = p_1 & \ell q_2 = p_2 & \ell q_3 & \ell q_4 & \ell q_5 & \ell q_6 & \ell q_7 & \ell q_8 \\
5 & 3 & 0 & 0 & 4 & 5 & 7 & 8 \\
\end{array} \]

Table 1.

\[\ell q_1, \ldots, \ell q_{18}. \text{ Note that } \deg \ell q_{19} = 5. \text{ In the table, the common degree of the polynomials appearing on the } \text{i}\text{th column is } i. \]

Let \(s \) be the subalgebra of \(\mathfrak{g} \) generated by \(e, h, f \) and decompose \(\mathbb{V} \) into simple \(s \)-modules \(\mathbb{V}_1, \ldots, \mathbb{V}_k \) of dimension \(\lambda_1, \ldots, \lambda_k \) respectively. One can order them so that for \(i \in \{1, \ldots, k'/2\} \), \(\mathbb{V}_{2(i-1)+1} = \mathbb{V}_{2i} \). For \(i \in \{1, \ldots, k\} \), denote by \(e_i \) the restriction to \(\mathbb{V}_i \) of \(e \) and set \(e_i := e_i^{2i-1} \). Then \(e_i \) is a regular nilpotent element of \(\mathfrak{gl}(\mathbb{V}_i) \) and \((ad h)e_i = 2(\lambda_i - 1)e_i \).

For \(i \in \{1, \ldots, k'/2\} \), set

\[\mathbb{V}[i] := \mathbb{V}_{2(i-1)+1} + \mathbb{V}_{2i} \]

and set

\[\mathbb{V}[0] := \mathbb{V}_{k'+1} \oplus \cdots \oplus \mathbb{V}_k. \]

Then for \(i \in \{0, 1, \ldots, k'/2\} \), denote by \(\mathfrak{g}_i \) the simple Lie algebra \(\mathfrak{so}(\mathbb{V}[i]) \). The elements of \(\mathfrak{g}_e \) and \(\mathfrak{g}_f \) stabilize \(\mathbb{V}[i] \). In particular, for \(i \in \{1, \ldots, k'/2\} \), \(e_{2(i-1)+1} + e_{2i} \) is an even nilpotent element of \(\mathfrak{g}_i \) with Jordan blocks of size \((\lambda_{2i-1}, \lambda_{2i}) \). Let \(i \in \{1, \ldots, k'/2\} \) and set,

\[z_i := e_{2(i-1)+1} + e_{2i}. \]

Then \(z_i \) lies in the center of \(\mathfrak{g}_e \) and

\[(ad h)z_i = 2(\lambda_{2i-1} + 1)z_i = 2(\lambda_{2i} - 1)z_i. \]

Moreover, \(2(\lambda_{2i} - 1) \) is the highest weight of \(ad h \) acting on \(\mathfrak{g}_e^{\ell} := \mathfrak{g}_i \cap \mathfrak{g}_e \), and the intersection of the \(2(\lambda_{2i} - 1) \)-eigenspace of \(ad h \) with \(\mathfrak{g}_e^{\ell} \) is spanned by \(z_i \), see for instance [Y09, §1]. Set

\[\overline{\mathfrak{g}} := \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_{k'/2} = \mathfrak{so}(\mathbb{V}[0]) \oplus \mathfrak{so}(\mathbb{V}[1]) \oplus \cdots \oplus \mathfrak{so}(\mathbb{V}[k'/2]) \]

and denote by \(\overline{\mathfrak{g}}^{\ell} \) (resp. \(\overline{\mathfrak{g}}^{f} \)) the centralizer of \(e \) (resp. \(f \)) in \(\overline{\mathfrak{g}} \). For \(p \in S(\mathfrak{g}_e) \), denote by \(\overline{p} \) its restriction to \(\overline{\mathfrak{g}}^{\ell} = (\overline{\mathfrak{g}})^* \); it is an element of \(S(\overline{\mathfrak{g}}) \). Our goal is to describe the elements \(\overline{\mathfrak{g}}_1, \ldots, \overline{\mathfrak{g}}_{k'} \) (see Proposition 5.18). The motivation comes from Lemma 5.14.

Let \(G^e \) be the centralizer of \(e \) in the adjoint group \(G \) of \(\mathfrak{g} \), and \(G^e_0 \) its identity component. Let \(\mathfrak{g}^{f}_{\text{reg}} \) (resp. \(\mathfrak{g}^{f}_{\text{reg}} \)) be the set of elements \(x \in \mathfrak{g}^{f} \) (resp. \(\overline{\mathfrak{g}}^{f} \)) such that \(x \) is a regular linear form on \(\mathfrak{g}^e \) (resp. \(\overline{\mathfrak{g}}^{f} \)).

Lemma 5.14. (i) The intersection \(\mathfrak{g}^{f}_{\text{reg}} \cap \overline{\mathfrak{g}}^{f} \) is a dense open subset of \(\mathfrak{g}^{f}_{\text{reg}} \).

(ii) The morphism

\[\theta : \ G^e_0 \times \overline{\mathfrak{g}}^{f} \longrightarrow \mathfrak{g}^{f}, \ (g, x) \longmapsto g.x \]

is a dominant morphism from \(G^e_0 \times \overline{\mathfrak{g}}^{f} \) to \(g^{f} \).
Proof. (i) Since λ verifies the condition (\ast), it verifies the condition (1) of the proof of [Y06, §4, Lem.3] and so, $\mathfrak{g}^{\text{reg}} \cap \mathfrak{g}^f$ is a dense open subset of \mathfrak{g}^f. Moreover, since \mathfrak{g}^e and \mathfrak{g}^o have the same index by [Y06, Thm.3], $\mathfrak{g}^{\text{reg}} \cap \mathfrak{g}^f$ is contained in $\mathfrak{g}^{\text{reg}}$.

(ii) Let \mathfrak{m} be the orthogonal complement to \mathfrak{g} in \mathfrak{g} with respect to the Killing form (\ldots). Since the restriction to $\mathfrak{g} \times \mathfrak{g}^f$ of (\ldots) is nondegenerate, $\mathfrak{g} = \mathfrak{g}^o \oplus \mathfrak{m}$ and $[\mathfrak{g}^o, \mathfrak{m}] \subset \mathfrak{m}$. Set $\mathfrak{m}^e := \mathfrak{m} \cap \mathfrak{g}^e$. Since the restriction to $\mathfrak{g}^e \times \mathfrak{g}^f$ of (\ldots) is nondegenerate, we get the decomposition

$$\mathfrak{g}^e = \mathfrak{g}^o \oplus \mathfrak{m}^e$$

and \mathfrak{m}^e is the orthogonal complement to \mathfrak{g}^f in \mathfrak{g}^e. Moreover, $[\mathfrak{g}^o, \mathfrak{m}^e] \subset \mathfrak{m}^e$.

By (i), $\mathfrak{g}^{\text{reg}} \cap \mathfrak{g}^f \neq \emptyset$. Let $x \in \mathfrak{g}^{\text{reg}} \cap \mathfrak{g}^f$. The tangent map at $(1,0,x)$ of θ is the linear map

$$\mathfrak{g}^e \times \mathfrak{g}^f \rightarrow \mathfrak{g}^f, \quad (u,y) \mapsto u \cdot x + y,$$

where u denotes the coadjoint action of u on $\mathfrak{g}^f \cong (\mathfrak{g}^o)^*$. The index of \mathfrak{g}^e is equal to the index of \mathfrak{g}^o and $[\mathfrak{g}^o, \mathfrak{m}^e] \subset \mathfrak{m}^e$. So, the stabilizer of x in \mathfrak{g} coincides with the stabilizer of x in \mathfrak{g}^e. In particular, $\dim \mathfrak{m}^e \cdot x = \dim \mathfrak{m}^e$. As a result, θ is a submersion at $(1,0,x)$ since $\dim \mathfrak{g}^f = \dim \mathfrak{m}^e + \dim \mathfrak{g}^f$. In conclusion, θ is a dominant morphism from $G^e_0 \times \mathfrak{g}^f$ to \mathfrak{g}^f. \hfill \square

Let μ_1, \ldots, μ_m be the strictly decreasing sequence of the values of the sequence $\lambda_1, \ldots, \lambda_{k'}$ and let k_1, \ldots, k_m be the multiplicity of μ_1, \ldots, μ_m respectively in this sequence. By our assumption, the integers $\mu_1, \ldots, \mu_m, k_1, \ldots, k_m$ are all even. Notice that $k_1 + \cdots + k_m = k'$. The set $\{1, \ldots, k'\}$ decomposes into parts K_1, \ldots, K_m of cardinality k_1, \ldots, k_m respectively given by:

$$\forall \ s \in \{1, \ldots, m\}, \quad K_s := \{k_0 + \cdots + k_{s-1} + 1, \ldots, k_0 + \cdots + k_s\}.$$

Here, the convention is that $k_0 := 0$.

Remark 5.15. For $s \in \{1, \ldots, m\}$ and $i \in K_s$,

$$v_i := k_0 \left(\frac{\mu_0}{2}\right) + \cdots + k_{s-1} \left(\frac{\mu_{i-1}}{2}\right) + j \left(\frac{\mu_i}{2}\right),$$

where $j = i - (k_0 + \cdots + k_{s-1})$ and $\mu_0 = 0$.

Decompose also the set $\{1, \ldots, k'/2\}$ into parts I_1, \ldots, I_m of cardinality $k_1/2, \ldots, k_m/2$ respectively, with

$$\forall \ s \in \{1, \ldots, m\}, \quad I_s := \left\{\frac{k_0 + \cdots + k_{s-1}}{2} + 1, \ldots, \frac{k_0 + \cdots + k_s}{2}\right\}.$$

For $p \in \mathfrak{S}(\mathfrak{g}^e)$ an eigenvector of $\text{ad} h$, denote by $\text{wt}(p)$ its $\text{ad} h$-weight.

Lemma 5.16. Let $s \in \{1, \ldots, m\}$ and $i \in K_s$.

(i) Set $j = i - (k_0 + \cdots + k_{s-1})$. Then,

$$\text{wt}(\mathfrak{p}^i) = 2(2v_i - i) = \sum_{l=1}^{i-1} 2k_l(\mu_l - 1) + 2j(\mu_s - 1).$$

Moreover, if $p \in \{v_1, \ldots, v_{k-1}, (v_k)^2\}$ is of degree i, then $\text{wt}(p) = \text{wt}(\mathfrak{p}^i) \leq 2(2v_i - i)$ and the equality holds if and only if $p = p_i$.

(ii) The polynomial \mathfrak{p}^i is in $\mathbb{C}[z_l]$, $l \in I_1 \cup \ldots \cup I_s$.

Proof. (i) This is a consequence of [PPY07, Lem. 4.3] (or [Y09, Thm. 6.1]), Lemma 5.12 and Remark 5.15.

(ii) Let \mathfrak{g}^f be the centralizer of f in $\mathfrak{g} = \mathfrak{gl}(\mathbb{V})$, and let $\mathfrak{g}^f_{2v_i}$ be the initial homogeneous component of the restriction to

$$(\mathfrak{gl}(\mathbb{V}[0]) + \mathfrak{gl}(\mathbb{V}[1]) + \cdots + \mathfrak{gl}(\mathbb{V}[k'/2])) \cap \mathfrak{g}^f$$
of the polynomial function $x \mapsto Q_{2
u_i}(e + x)$. Since $\overline{p}_i \neq 0$, \overline{p}_i is the restriction to \overline{g}^f of $\overline{Q}_{2\nu_i}$ and one has
\[
\text{wt}(\overline{Q}_{2\nu_i}) = \text{wt}(\overline{p}_i) = 2(2\nu_i - i), \quad \deg \overline{Q}_{2\nu_i} = \deg \overline{p}_i = i.
\]
Then, by (i) and [PPY07, Lem. 4.3], $\overline{Q}_{2\nu_i}$ is a sum of monomials whose restriction to \overline{g}^f is zero and of monomials of the form
\[
(e_{\zeta(1)} \ldots e_{\zeta(k_1)}) \cdots (e_{\zeta^{(s_i-1)} \ldots e_{\zeta^{(s_{i-1})k_{i-1}}}})(E_{\zeta(0)} j_1 \ldots E_{\zeta(0)} j_s)
\]
where $j_1 < \cdots < j_s$ are integers of K_s, and $\zeta^{(1)}, \ldots, \zeta^{(s_i-1)}$, $\zeta^{(s)}$ are permutations of $K_1, \ldots, K_{s-1}, \{j_1, \ldots, j_s\}$ respectively. Hence, \overline{p}_i is in $\mathbb{k}[z_i, \ i \in I_1 \cup \cdots \cup I_s]$. More precisely, for $l \in I_1 \cup \cdots \cup I_s$, the element z_l appears in \overline{p}_i with a multiplicity at most 2 since $z_l = e_{2(l-1)+1} + e_{2l}$. \hfill \Box

Let $s \in \{1, \ldots, m\}$ and $i \in K_s$. In view of Lemma 5.16,(ii), we aim to give an explicit formula for \overline{p}_i in term of the elements $z_1, \ldots, z_{k'/2}$. Besides, according to Lemma 5.16,(i), we can assume that $s = m$. As a first step, we state inductive formulæ. If $k' > 2$, set
\[
\overline{g}^f := \text{so}(\mathbb{V}[1]) \oplus \cdots \oplus \text{so}(\mathbb{V}[k'/2 - 1]),
\]
and let $\overline{p}_1, \ldots, \overline{p}_{k'}$ be the restrictions to $(\overline{g}^f)^f := \overline{g} \cap \overline{g}^f$ of $\overline{p}_1, \ldots, \overline{p}_{k'}$ respectively. Note that $\overline{p}_{k'-1} = \overline{p}_{k'} = 0$. Set by convention $k_0 := 0$, $p_0 := 1$, $p_0' := 1$ and $p_{-1} := 0$. It will be also convenient to set
\[
k^* := k_0 + \cdots + k_{m-1}.
\]

Lemma 5.17. (i) If $k_m = 2$, then
\[
\overline{p}_{k'+1} = -2 \overline{p}_{k'} z_{k'/2} \quad \text{and} \quad \overline{p}_{k'+2} = \overline{p}_{k'} (z_{k'/2})^2.
\]
(ii) If $k_m > 2$, then
\[
\overline{p}_{k'+1} = \overline{p}_{k'+1} - 2 \overline{p}_{k'} z_{k'/2}
\]
and for $j = 2, \ldots, k_m$,
\[
\overline{p}_{k'+j} = \overline{p}_{k'+j} - 2 \overline{p}_{k'+j-1} z_{k'/2} + \overline{p}_{k'+j-2} (z_{k'/2})^2.
\]

Proof. For $i = 1, \ldots, k'/2$, let w_i be the element of $g_i^f := g_i \cap g^f$ such that
\[
(ad h)w_i = -2(A_{2i} - 1)w_i \quad \text{and} \quad \det(e_i + w_i) = 1. \]
Remind that $p_i(y)$, for $y \in g_i^f$, is the initial homogeneous component of the coefficient of the term $T^{\dim \mathbb{V} - 2\nu_i}$ in the expression $\det(T - e - y)$. By Lemma 5.16,(ii), in order to describe \overline{p}_i, it suffices to compute $\det(T - e - s_1w_1 - \cdots - s_{k'/2}w_{k'/2})$, with $s_1, \ldots, s_{k'/2}$ in \mathbb{k}.

1) To start with, consider the case $k' = k_m = 2$. By Lemma 5.16, $p_1 = az_1$ and $p_2 = bz_1^2$ for some $a, b \in \mathbb{k}$. One has,
\[
\det(T - e - s_1w_1) = T^{2\mu_1} - 2s_1T^{\mu_1} + s_1^2.
\]
As a result, $a = -2$ and $b = 1$. This proves (i) in this case.

2) Assume from now that $k' > 2$. Setting $e' := e_1 + \cdots + e_{k'/2-1}$, observe that
\[
\det(T - e - s_1w_1 - \cdots - s_{k'/2}w_{k'/2}) = \det(T - e' - s_1w_1 - \cdots - s_{k'/2-1}w_{k'/2-1}) \det(T - e_{k'/2} - s_{k'/2}w_{k'/2})
\]
\[
= \det(T - e' - s_1w_1 - \cdots - s_{k'/2-1}w_{k'/2-1}) (T^{2\mu_m} - 2s_{k'/2}T^{\mu_m} + s_{k'/2}^2)
\]
where the latter equality results from Step (1).
(i) If $k_m = 2$, then $k'^r = k' - 2$ and the constant term in $\det(T - e' - s_1w_1 - \cdots - s_{k'}/2-1w_{k'}/2-1)$ is $\overline{P}_{k'}$. By Lemma 5.16,(i),

$$\text{wt}(\overline{P}_{k' + 1}) = \text{wt}(\overline{P}_{k'}) + \text{wt}(z_{k'}/2)$$

and $\overline{P}_{k'}$ is the only element appearing in the coefficients of $\det(T - e' - s_1w_1 - \cdots - s_{k'}/2-1w_{k'}/2-1)$ of this weight. Similarly,

$$\text{wt}(\overline{P}_{k' + 2}) = \text{wt}(\overline{P}_{k'}) + \text{wt}(\{z_{k'}/2\})^2$$

and $\overline{P}_{k'}$ is the only element appearing in the coefficients of $\det(T - e' - s_1w_1 - \cdots - s_{k'}/2-1w_{k'}/2-1)$ of this weight. As a consequence, the equalities follow.

(ii) Suppose $k_m > 2$. Then by Lemma 5.16,(i),

$$\text{wt}(\overline{P}_{k' + 1}) = \text{wt}(\overline{P}_{k' + 1}) = \text{wt}(\overline{P}_{k'}) + \text{wt}(z_{k'}/2).$$

Moreover, $\overline{P}_{k' + 1}$ and $\overline{P}_{k'}$ are the only elements appearing in the coefficients of $\det(T - e' - s_1w_1 - \cdots - s_{k'}/2-1w_{k'}/2-1)$ of this weight with degree $k' + 1$ and k' respectively. Similarly, by Lemma 5.16,(i), for $j \in \{2, \ldots, k_m\},$

$$\text{wt}(\overline{P}_{k' + j}) = \text{wt}(\overline{P}_{k' + j}) = \text{wt}(\overline{P}_{k'}) + \text{wt}(z_{k'}/2) + \text{wt}(z_{k'}/2)^2.$$

Moreover, $\overline{P}_{k' + j}$, $\overline{P}_{k' + j - 1}$ and $\overline{P}_{k' + j - 2}$ are the only elements appearing in the coefficients of $\det(T - e' - s_1w_1 - \cdots - s_{k'}/2-1w_{k'}/2-1)$ of this weight with degree $k' + j, k' + j - 1$ and $k' + j - 2$ respectively.

In both cases, this forces the inductive formula (ii) through the factorization (4). \hfill \Box

For a subset $I = \{i_1, \ldots, i_l\} \subseteq \{1, \ldots, k'/2\}$ of cardinality l, denote by $\sigma_{I,1}, \ldots, \sigma_{I,l}$ the elementary symmetric functions of z_{i_1}, \ldots, z_{i_l}:

$$\forall \; j \in \{1, \ldots, l\}, \quad \sigma_{I,j} = \sum_{1 \leq a_1 < a_2 < \cdots < a_j \leq l} z_{a_1}z_{a_2} \cdots z_{a_j}.$$

Set also $\sigma_{I,0} := 1$ and $\sigma_{I,j} := 0$ if $j > l$ so that $\sigma_{I,j}$ is well defined for any nonnegative integer j. Set at last $\sigma_{I,j} := 1$ for any j if $I = \emptyset$. If $I = I_s$, with $s \in \{1, \ldots, m\}$, denote by $\sigma^{(s)}_{I,j}$, for $j \geq 0$, the elementary symmetric function $\sigma_{I,s}.$

Proposition 5.18. Let $s \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, k_s\}$. Then

$$\overline{P}_{k_s-\cdots-k_s+1} = (-1)^j\overline{P}_{k_s-\cdots-k_s+1} \sum_{r=0}^j \sigma^{(s)}_{j-r} \sigma^{(s)}_r = (-1)^j (\sigma^{(s)}_{k_s/2} \cdots \sigma^{(s)}_{k_s/2})^2 \sum_{r=0}^j \sigma^{(s)}_{j-r} \sigma^{(s)}_r.$$

Example 5.19. If $m = 1$, then $k' = k_1$ and

$$p_1 = -\sigma^{(1)}_0 \sigma^{(1)}_0 - \sigma^{(1)}_0 \sigma^{(1)} = -2\sigma^{(1)}_0 = -2(z_1 + \cdots + z_{k'/2}),$$

$$p_2 = \sigma^{(1)}_2 \sigma^{(1)}_0 + (\sigma^{(1)}_1)^2 + \sigma^{(1)}_0 \sigma^{(1)}_2 = 2\sigma^{(1)}_2 + (\sigma^{(1)}_1)^2,$$

$$\cdots,$$

$$p_{k'} = (\sigma^{(1)}_{k'/2})^2 = (z_1z_2 \cdots z_{k'/2})^2.$$

Proof. By Lemma 5.16(ii), one can assume that $s = m$. Assume $m > 1$ and prove the statement by induction on $j \in \{1, \ldots, k_m\}$.

- If $k_m = 2$, the statement follows from Lemma 5.17,(i).

- Assume $k_m > 2$ and retain the notations of Lemma 5.17. In particular, set again

$$k^r := k_0 + \cdots + k_{m-1}.$$
For any $r \geq 0$, we set $\sigma'^{r'} := \sigma'^r_{r'}$ where $I' = \{\frac{k'}{2} + 1, \ldots, \frac{k'}{2} - 1\} \subset I_m$. In particular, $\sigma'^r_0 = 1$ by convention. Observe that for any $r \geq 1$,

$$\sigma'^r_m = \sigma'^r_r + \sigma'^r_{r-1} \frac{k'}{2}.$$

Setting $\sigma'^{-1} := 0$, the above equality remains true for $r = 0$.

Our induction hypothesis says that the formula holds for the polynomials $\overline{p}_1, \ldots, \overline{p}_{k'-1}$. So, by Lemma 5.17.(ii), for $j \in \{2, \ldots, k_m\}$,

$$\overline{p}_{k' + j} = \overline{p}_{k' + j} - 2 \overline{p}_{k' + j-1} \frac{k'}{2} + (z_{k'/2})^2$$

$$= \overline{p}_k((-1)^j \sum_{r=0}^{j} \sigma'^r_{j-r} - 2(-1)^{j-1} \sum_{r=0}^{j-1} \sigma'^{r-1}_{j-r-1} - 2 \sigma'^r_{k'/2})$$

$$= (-1)^j \overline{p}_k(\sum_{r=0}^{j} \sigma'^r_{j-r} + 2 \sum_{r=0}^{j-1} \sigma'^{r-1}_{j-r-1} z_{k'/2} + \left(\sum_{r=0}^{j-2} \sigma'^{r-2}_{j-r-2} z_{k'/2}\right)^2)$$

since $\overline{p}_{k'} = \overline{p}_k$. On the other hand, one has

$$\sum_{r=0}^{j} \sigma'^r_{j-r} \sigma'^{r'}_{r'} = \sum_{r=0}^{j} (\sigma'^r_{j-r} + \sigma'^{r-1}_{j-r-1} \frac{k'}{2})(\sigma'^{r'}_{r'} + \sigma'^{r-1}_{j-r-1} \frac{k'}{2})$$

$$= \sum_{r=0}^{j} \sigma'^r_{j-r} \sigma'^{r'}_{r'} + \sum_{r=0}^{j} \sigma'^r_{j-r} \sigma'^{r-1}_{r-1} \frac{k'}{2} + \left(\sum_{r=0}^{j-2} \sigma'^r_{j-r} \sigma'^{r-1}_{r-1} \frac{k'}{2}\right)^2$$

$$= \sum_{r=0}^{j} \sigma'^r_{j-r} \sigma'^{r'}_{r'} + 2 \sum_{r=0}^{j-1} \sigma'^r_{j-r} \sigma'^{r-1}_{j-r-1} \frac{k'}{2} + \left(\sum_{r=0}^{j-2} \sigma'^r_{j-r} \sigma'^{r-1}_{r-1} \frac{k'}{2}\right)^2.$$

Thereby, for any $j \in \{2, \ldots, k_m\}$, we get

$$\overline{p}_{k' + j} = (-1)^j \overline{p}_k \sum_{r=0}^{j} \sigma'^r_{j-r} \sigma'^{r'}_{r'}.$$

For $j = 1$, since $\overline{p}_{k'} = \overline{p}_k$, by Lemma 5.17.(ii), and our induction hypothesis,

$$\overline{p}_{k' + 1} = \overline{p}_{k' + 1} - 2 \overline{p}_{k'} \frac{k'}{2} = \overline{p}_k(-2 \sigma'_1) - 2 \overline{p}_k \frac{k'}{2} = \overline{p}_k(-2 \sigma'^{1}_{0}).$$

This proves the first equality of the proposition.

For the second one, it suffices to prove by induction on $s \in \{1, \ldots, m\}$ that

$$\overline{p}_{k_0 + \ldots + k_{s-1}} = (\sigma'^{1}_{k_0}/2 \ldots \sigma'^{s-1}_{k_{s-1}})^2.$$

For $s = 1$, then $\overline{p}_{k_0 + \ldots + k_{s-1}} = \overline{p}_{k_0} = 1$ and $\sigma'^0_{0} = 1$ by convention. Assume $s > 2$ and the statement true for $1, \ldots, s-1$. By the first equality with $j = k_s$, $\overline{p}_{k_0 + \ldots + k_{s-1}} = (-1)^{k_s} \overline{p}_{k_0 + \ldots + k_{s-1}} (\sigma'^{s}_{k_s})^2$, whence the statement by induction hypothesis since k_s is even. □

Remark 5.20. As a by product of the previous formula, whenever $k' = k$, one obtains

$$\overline{p}_k = \sigma'^{1}_{k_0/2} \ldots \sigma'^{m}_{k_m/2}.$$

For $s \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, k_s\}$, set

$$\rho_{k_0 + \ldots + k_{s-1} + j} := \frac{\overline{p}_{k_0 + \ldots + k_{s-1} + j}}{\overline{p}_{k_0 + \ldots + k_{s-1}}}.$$

Proposition 5.18 says that $\rho_{k_0 + \ldots + k_{s-1} + j}$ is an element of $\text{Frac}(S(\mathcal{g}'^r) \cap S(\mathcal{g}'^s)) = S(\mathcal{g}'^s)\mathcal{g}'^r$.

31
Lemma 5.21. Let $s \in \{1, \ldots, m\}$ and $j \in \{k_s/2 + 1, \ldots, k_s\}$. There is a polynomial $R_j^{(s)}$ of degree j such that

$$
\rho_{k_0 + \cdots + k_{s-1} + j} = R_j^{(s)}(\rho_{k_0 + \cdots + k_{s-1} + 1}, \ldots, \rho_{k_0 + \cdots + k_{s-1} + k_s/2}).
$$

In particular, for any $j \in \{k_1/2 + 1, \ldots, k_1\}$, one has

$$
\overline{p}_j = R_j^{(1)}(\overline{p}_1, \ldots, \overline{p}_{k_1/2}).
$$

Proof. 1) Prove by induction on $j \in \{1, \ldots, k_s/2\}$ for some polynomial $T_j^{(s)}$ of degree j,

$$
\sigma_j^{(s)} = T_j^{(s)}(\rho_{k_0 + \cdots + k_{s-1}+1}, \ldots, \rho_{k_0 + \cdots + k_{s-1} + j}).
$$

By Proposition 5.18, $\rho_{k_0 + \cdots + k_{s-1} + 1} = -(\sigma_0^{(s)} + \sigma_1^{(s)}) = -2\sigma_1^{(s)}$. Hence, the statement is true for $j = 1$. Suppose $j \in \{2, \ldots, k_s/2\}$ and the statement true for $\sigma_1^{(s)}, \ldots, \sigma_{j-1}^{(s)}$. Since $j \leq k_s/2$, $\sigma_j^{(s)} \neq 0$, and by Proposition 5.18,

$$
\rho_{k_0 + \cdots + k_{s-1} + j} = (-1)^j(\sigma_j^{(s)}\sigma_0^{(s)} + \sigma_0\sigma_j^{(s)}) + (-1)^j \sum_{r=1}^{j-1} \sigma_{j-r}^{(s)}\sigma_r^{(s)} = 2(-1)^j\sigma_j^{(s)} + (-1)^j \sum_{r=1}^{j-1} \sigma_j^{(s-r)}\sigma_r^{(s)}.
$$

So, the statement for j follows from our induction hypothesis.

2) Let $j \in \{k_s/2 + 1, \ldots, k_s\}$. Proposition 5.18 shows that $\rho_{k_0 + \cdots + k_{s-1} + j}$ is a polynomial in $\sigma_1^{(s)}, \ldots, \sigma_{k_s/2}^{(s)}$. Hence, by Step 1), $\rho_{k_0 + \cdots + k_{s-1} + j}$ is a polynomial in

$$
\rho_{k_0 + \cdots + k_{s-1}+1}, \ldots, \rho_{k_0 + \cdots + k_{s-1} + k_s/2}.
$$

Furthermore, by Proposition 5.18 and Step (1), this polynomial has degree j. \hfill \square

Remark 5.22. By Remark 5.20 and the above proof, if $k' = k$ then for some polynomial \hat{R} of degree $k_m/2$,

$$
\frac{\overline{p}_k}{\sigma_{k_0/2}^{(1)} \cdots \sigma_{k_{m-1}/2}^{(m-1)}} = \sigma_{k_m/2}^{(m)} = \hat{R}(\rho_{k_0 + \cdots + k_{m-1} + 1}, \ldots, \rho_{k_0 + \cdots + k_{m-1} + k_m/2}).
$$

Let g^f_{sing} be the set of nonregular elements of the dual g^f of g^e.

Theorem 5.23. (i) Assume that λ verifies the condition (*) and that $\lambda_1 = \cdots = \lambda_{k'}$. Then e is good.

(ii) Assume that $k = 4$ and that $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are even. Then e is good.

For example, $(6, 6, 6, 6, 3)$ satisfies the hypothesis of (i) and $(6, 6, 4, 4)$ satisfies the hypothesis of (ii).

Remark 5.24. If λ verifies the condition (*) then by Lemma 5.7,

$$
\dim g^e + \ell - 2(\delta_1 + \cdots + \delta_s) = k'.
$$

Indeed, if k is odd, then $n_1 - d_1 = n_{k'} - d_{k'}$ where $\lambda' = (\lambda_1, \ldots, \lambda_{k'}, \lambda_{k'+1})$ so that $n_1 - d_1 = n_{k'} - d_{k'} = n_{k'} = k'$ since $\lambda_{k'+1}$ is odd. If k is even, then $d_1 = n_{k'} = k'$ where $\lambda' = (\lambda_1, \ldots, \lambda_{k'})$.

Proof. (i) In the previous notations, the hypothesis means that $m = 1$ and $k' = k_m$. According to Lemma 5.21 and Lemma 5.14, for $j \in \{k'/2 + 1, \ldots, k' - 1\}$,

$$
p_j = R_j^{(1)}(p_1, \ldots, p_{k'/2}),
$$

where $R_j^{(1)}$ is a polynomial of degree j. Moreover, if $k' = k$, then by Remark 5.22 and Lemma 5.14,

$$
\overline{p}_k = \hat{R}(p_1, \ldots, p_{k/2}),
$$

where \hat{R} is a polynomial of degree $k/2$.\hfill 32
- If \(k' < k \), set for any \(j \in \{ k'/2 + 1, \ldots, k' \} \),

\[
 r_j := q_{v_j} - R_j^{(1)}(q_{v_1}, \ldots, q_{v_{k'/2}}).
\]

Then by Lemma 5.12,

\[
 \forall \ j \in \{ k'/2 + 1, \ldots, k' \}, \quad \deg \ r_j \geq j + 1.
\]

- If \(k' = k \), set for \(j \in \{ k/2 + 1, \ldots, k' - 1 \} \),

\[
 r_j := q_{v_j} - R_j^{(1)}(q_{v_1}, \ldots, q_{v_{k'/2}}) \quad \text{and} \quad r_k := q_{v_k} - \tilde{R}(q_{v_1}, \ldots, q_{v_{k/2}}).
\]

Then by Lemma 5.12,

\[
 \forall \ j \in \{ k/2 + 1, \ldots, k - 1 \}, \quad \deg \ r_j \geq j + 1 \quad \text{and} \quad \deg \ r_k \geq k/2 + 1.
\]

In both cases,

\[
 \{ q_j : j \in \{ 1, \ldots, \ell \} \setminus \{ v_{k'/2+1}, \ldots, v_k \} \} \cup \{ r_{k'/2+1}, \ldots, r_{k'} \}
\]

is a homogeneous generating system of \(S(\mathfrak{g})^g \). Denote by \(\delta \) the sum of the degrees of the polynomials

\[
 \epsilon q_j, \quad j \in \{ 1, \ldots, \ell \} \setminus \{ v_{k'/2+1}, \ldots, v_k \}, \quad \epsilon r_{k'/2+1}, \ldots, \epsilon r_{k'}.
\]

The above discussion shows that \(\delta \geq \delta_1 + \cdots + \delta_{\ell} + k'/2 \). By Remarks 5.24, one obtains

\[
 \dim \mathfrak{g}^e + \ell - 2\delta \leq 0.
\]

In conclusion, by [PPY07, Thm. 2.1] and Theorem 4.1, \(e \) is good.

(ii) In the previous notations, the hypothesis means that \(k' = k = 4 \). If \(m = 1 \) the statement is a consequence of (i). Assume that \(m = 2 \). Then by Proposition 5.18, \(\overline{p}_1 = -2z_1, \overline{p}_2 = z_1^2, \overline{p}_3 = -2z_1^2z_2 \) and \(\overline{p}_4 = (z_1z_2)^2 \). Moreover, \(\overline{p}_4 = z_1z_2 \). Hence, by Lemma 5.14, \(p_2 = \frac{1}{4}p_1^2 \) and \(p_3 = p_1p_4 \). Set \(r_2 := q_{v_2} - \frac{1}{4}q_{v_1}^2 \) and \(r_3 := q_{v_3} - q_{v_1}q_{v_4} \). Then \(\deg r_2 \geq 3 \) and \(\deg r_3 \geq 4 \). Moreover,

\[
 \{ q_1, \ldots, q_{\ell} \} \setminus \{ q_{v_2}, q_{v_3} \} \cup \{ r_2, r_3 \}
\]

is a homogeneous generating system of \(S(\mathfrak{g})^g \). Denoting by \(\delta \) the sum of the degrees of the polynomials

\[
 \{ \epsilon q_1, \ldots, \epsilon q_{\ell} \} \setminus \{ \epsilon q_{v_2}, \epsilon q_{v_3} \} \cup \{ r_2, r_3 \},
\]

one obtains that \(\delta \geq \delta_1 + \cdots + \delta_{\ell} + 2 \). But \(\dim \mathfrak{g}^e + \ell - 2(\delta_1 + \cdots + \delta_{\ell}) = k' = 4 \) by Remark 5.24. So, \(\dim \mathfrak{g}^e + \ell - 2\delta \leq 0 \). In conclusion, by [PPY07, Thm. 2.1] and Theorem 4.1, \(e \) is good.

6. Examples in simple exceptional Lie algebras

We give in this section examples of good nilpotent elements in simple exceptional Lie algebras (of type \(\mathfrak{E}_6, \mathfrak{F}_4 \) or \(\mathfrak{G}_2 \)) which are not covered by [PPY07]. These examples are all obtained through Theorem 4.1.

Example 6.1. Suppose that \(\mathfrak{g} \) has type \(\mathfrak{E}_6 \). Let \(\mathcal{V} \) be the module of highest weight the fundamental weight \(\sigma_1 \) with the notation of Bourbaki. Then \(\mathcal{V} \) has dimension 27 and \(\mathfrak{g} \) identifies with a subalgebra of \(\mathfrak{sl}_{27}(\mathbb{K}) \). For \(x \) in \(\mathfrak{sl}_{27}(\mathbb{K}) \) and for \(i = 2, \ldots, 27 \), let \(p_i(x) \) be the coefficient of \(T^{27-i} \) in \(\det(T-x) \) and denote by \(q_i \) the restriction of \(p_i \) to \(\mathfrak{g} \). Then \((q_2, q_5, q_6, q_9, q_{12}) \) is a generating family of \(S(\mathfrak{g})^g \) since these polynomials are algebraically independent, [Me88]. Let \((e, h, f) \) be an \(\mathfrak{sl}_2 \)-triple of \(\mathfrak{g} \). Then \((e, h, f) \) is an \(\mathfrak{sl}_2 \)-triple of \(\mathfrak{sl}_{27}(\mathbb{K}) \). We denote by \(\epsilon p_i \) the initial homogeneous component of the restriction to \(e + \tilde{g}^f \) of \(p_i \) where \(\tilde{g}^f \) is the centralizer of \(f \) in \(\mathfrak{sl}_{27}(\mathbb{K}) \). As usual, \(\epsilon q_i \) denotes the initial homogeneous component of the restriction to \(e + g^f \) of \(q_i \). For \(i = 2, 5, 6, 8, 9, 12 \),

\[
 \deg \epsilon p_i \leq \deg \epsilon q_i.
\]
In some cases, from the knowledge of the maximal eigenvalue of the restriction of $\text{ad} h$ to \mathfrak{g} and the $\text{ad} h$-weight of ϵp_i, it is possible to deduce that $\deg \epsilon p_i < \deg \epsilon q_i$. On the other hand,

$$\deg \epsilon q_2 + \deg \epsilon q_5 + \deg \epsilon q_6 + \deg \epsilon q_8 + \deg \epsilon q_9 + \deg \epsilon q_{12} \leq \frac{1}{2} (\dim \mathfrak{g}^e + 6),$$

with equality if and only if $\epsilon q_2, \epsilon q_5, \epsilon q_6, \epsilon q_8, \epsilon q_9, \epsilon q_{12}$ are algebraically independent. From this, it is possible to deduce in some cases that e is good. These cases are listed in Table 2 where the nine columns are indexed in the following way:

1: the label of the orbit $G(e)$ in the Bala-Carter classification,
2: the weighted Dynkin diagram of $G(e)$,
3: the dimension of \mathfrak{g}^e,
4: the partition of 27 corresponding to the nilpotent element e of $\mathfrak{sl}_{27}(\mathbb{C})$,
5: the degrees of $\epsilon p_2, \epsilon p_5, \epsilon p_6, \epsilon p_8, \epsilon p_9, \epsilon p_{12}$,
6: their adh-weights,
7: the maximal eigenvalue ν of the restriction of adh to \mathfrak{g},
8: the sum Σ of the degrees of $\epsilon p_2, \epsilon p_5, \epsilon p_6, \epsilon p_8, \epsilon p_9, \epsilon p_{12}$,
9: the sum $\Sigma' = \frac{1}{2} (\dim \mathfrak{g}^e + \ell)$.

<table>
<thead>
<tr>
<th>Label</th>
<th>\mathfrak{g}^e</th>
<th>$\dim \mathfrak{g}^e$</th>
<th>partition</th>
<th>$\deg \epsilon p_i$</th>
<th>weights</th>
<th>ν</th>
<th>Σ</th>
<th>Σ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. E_6</td>
<td>2 2 2 2 2 2 2</td>
<td>6</td>
<td>(17,9,1)</td>
<td>1,1,1,1,1,1</td>
<td>2,8,10,14,16,22</td>
<td>16</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2. $E_6(a_1)$</td>
<td>2 2 0 2 2 2</td>
<td>8</td>
<td>(13,9,5)</td>
<td>1,1,1,1,1,1</td>
<td>2,8,10,14,16,22</td>
<td>16</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3. D_5</td>
<td>2 0 2 2 0 2</td>
<td>10</td>
<td>(11,9,5,1,1)</td>
<td>1,1,1,1,1,1</td>
<td>2,8,10,14,16,22</td>
<td>14</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4. $A_5 + A_1$</td>
<td>2 0 2 0 2 0</td>
<td>12</td>
<td>(9,7,5,1)</td>
<td>1,1,1,1,1,2</td>
<td>2,8,10,14,16,20</td>
<td>10</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>5. $D_5(a_1)$</td>
<td>1 1 1 1 1 0</td>
<td>14</td>
<td>(8,7,6,3,2,1)</td>
<td>1,1,1,1,2,2</td>
<td>2,8,10,14,14,20</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>6. A_5</td>
<td>2 1 0 2 1 1</td>
<td>14</td>
<td>(9,6,5,1)</td>
<td>1,1,1,1,1,2</td>
<td>2,8,10,14,16,20</td>
<td>10</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>7. $A_4 + A_1$</td>
<td>1 1 0 1 1 1</td>
<td>16</td>
<td>(7,6,5,4,3,2)</td>
<td>1,1,1,2,2,2</td>
<td>2,8,10,12,14,20</td>
<td>8</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>8. D_4</td>
<td>0 0 2 2 0 0</td>
<td>18</td>
<td>(7,1,1)</td>
<td>1,1,1,2,2,2</td>
<td>2,8,10,12,14,20</td>
<td>10</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>9. $A_5 + 2A_1$</td>
<td>0 0 2 2 0 0</td>
<td>20</td>
<td>(5,3,1)</td>
<td>1,1,2,2,2,3</td>
<td>2,8,8,12,14,18</td>
<td>6</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>10. $A_1 + 2A_2$</td>
<td>1 0 1 0 1 0</td>
<td>24</td>
<td>(5,4,2,3,2,1)</td>
<td>1,1,2,2,2,3</td>
<td>2,8,8,12,14,18</td>
<td>5</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 2. Data for E_6
For the orbit $1, \Sigma = \Sigma'$. Hence, $e_2, e_5, e_6, e_8, e_9, e_{12}$ are algebraically independent and by Theorem 4.1, e is good. For the orbits $2, 3, \ldots, 10$, we observe that $\Sigma < \Sigma'$, i.e.,

$$\deg e_{p_2} + \deg e_{p_5} + \deg e_{p_6} + \deg e_{p_8} + \deg e_{p_9} + \deg e_{p_{12}} < \frac{1}{2}(\dim g^e + 6).$$

So, we need some more arguments that we give below.

2. Since $16 < 22$, $\deg e_{p_{12}} < \deg e_{q_{12}}$.
3. Since $14 < 16$, $\deg e_{p_i} < \deg e_{q_i}$ for $i = 9, 12$.
4. Since $10 < 14$, $\deg e_{p_i} < \deg e_{q_i}$ for $i = 8, 9$.
5. Since $10 < 14$, $\deg e_{p_8} < \deg e_{q_8}$. Moreover, the multiplicity of the weight 10 equals 1. So, either $\deg e_{q_6} > 1$, or $\deg e_{q_{12}} > 2$, or $\deg e_{q_6} \in k e_{q_6}^2$.
6. Since $10 < 14$, $\deg e_{p_i} < \deg e_{q_i}$ for $i = 8, 9$. Moreover, the multiplicity of the weight 10 equals 1. So, either $\deg e_{q_6} > 1$, or $\deg e_{q_{12}} > 2$, or $\deg e_{q_6} \in k e_{q_6}^2$.
7. Since $8 < 10$ and $2 \times 8 < 20$, $\deg e_{p_i} < \deg e_{q_i}$ for $i = 6, 12$.
8. Since the center of g^e has dimension 2 and the weights of h in the center are 2 and 10, $\deg e_{p_5} <
\deg e_{q_5}$. Moreover, since the weights of h in g^e are 0, 2, 6, 10, $\deg e_{p_9} < \deg e_{q_9}$ and since the multiplicity of the weight 10 equals 1, either $\deg e_{q_6} > 1$, or $\deg e_{q_{12}} > 2$, or $\deg e_{q_6} \in k e_{q_6}^2$.
9. Since $6 < 8$ and $2 \times 6 < 14$, $\deg e_{p_i} < \deg e_{q_i}$ for $i = 5, 9$.
10. Since $5 < 8, 2 \times 5 < 12$ and $3 \times 5 < 18$, $\deg e_{p_i} < \deg e_{q_i}$ for $i = 5, 8, 9, 12$.

In cases $2, 3, 4, 7, 9, 10$, the discussion shows that

$$\deg e_{q_2} + \deg e_{q_5} + \deg e_{q_6} + \deg e_{q_8} + \deg e_{q_9} + \deg e_{q_{12}} = \frac{1}{2}(\dim g^e + 6).$$

Hence, $e_2, e_5, e_6, e_8, e_9, e_{12}$ are algebraically independent and by Theorem 4.1, e is good. In cases $5, 6, 8$, if the above equality does not hold, then for some a in k^*,

$$\deg e_{q_2} + \deg e_{q_5} + \deg e_{q_6} + \deg e_{q_8} + \deg e_{q_9} + \deg e_{q_{12} - a q_6^2} = \frac{1}{2}(\dim g^e + 6).$$

Hence $e_2, e_5, e_6, e_8, e_9, e_{12} = a q_6^2$ are algebraically independent and by Theorem 4.1, e is good.

In addition, according to [PPY07, Thm.0.4] and Theorem 4.1, the elements of the minimal orbit of E_6, labelled A_1, are good. In conclusion, it remains nine unsolved nilpotent orbits in type E_6.

Example 6.2. Suppose that g is simple of type F_4. Let \mathcal{V} be the module of highest weight the fundamental weight ε_4 with the notation of Bourbaki. Then \mathcal{V} has dimension 26 and g identifies with a subalgebra of $sl_{26}(\mathbb{k})$. For x in $sl_{26}(\mathbb{k})$ and for $i = 2, \ldots, 26$, let $p_i(x)$ be the coefficient of T^{26-i} in det$(T - x)$ and denote by q_i the restriction of p_i to g. Then (q_2, q_6, q_8, q_{12}) is a generating family of $S(g)^h$ since these polynomials are algebraically independent, [Me88]. Let (e, h, f) be an sl_2-triple of g. Then (e, h, f) is an sl_2-triple of $sl_{26}(\mathbb{k})$. As in Example 6.1, in some cases, it is possible to deduce that e is good. These cases are listed in Table 3, indexed as in Example 6.1.
For the orbits 2, 3, 4, 5, 7, 8, we observe that $\Sigma < \Sigma'$. So, we need some more arguments to conclude as in Example 6.1.

2. Since $14 < 22$, $\deg \, \nu_{12} < \deg \, q_{12}$.
3. Since $10 < 14$, $\deg \, \nu_{8} < \deg \, q_{8}$.
4. Since $10 < 14$, $\deg \, \nu_{8} < \deg \, q_{8}$. Moreover, the multiplicity of the weight 10 equals 1 so that $\deg \, q_{6} > 1$ or $\deg \, q_{12} > 2$ or $\nu_{12} \in \mathbb{L}^{\nu_{6}}$.
5. The multiplicity of the weight 10 equals 1. So, either $\deg \, q_{6} > 1$, or $\deg \, q_{12} > 2$, or $\nu_{12} \in \mathbb{L}^{\nu_{6}}$.
7. Suppose that ν_{12}, ν_{8} have degree 1, 2, 3. We expect a contradiction. Since the center has dimension 2 and since the multiplicity of the weight 6 equals 1, for z of weight 6 in the center, $\nu_{6} \in \mathbb{L}^{\nu_{6}}$, $\nu_{8} \in \mathbb{L}^{\nu_{8}}$, $\nu_{12} \in \mathbb{L}^{\nu_{12}}$. So, for some a and b in \mathbb{L},

$$\nu_{6}^2 \nu_{8} - a \nu_{6}^2 = 0, \quad \nu_{12}^2 - b \nu_{8}^3 = 0$$

Hence, $q_{2}, q_{6}, q_{8}^2 - a q_{6}^2, q_{12}^2 - b q_{8}^3$ are algebraically independent element of $S(\mathfrak{g})^3$ such that

$$\deg \, \nu_{2} + \deg \, \nu_{6} + \deg \, (q_{6}^2 q_{8} - a q_{6}^2) + \deg \, (q_{12}^2 - b q_{8}^3) \geq 1 + 2 + 5 + 7 > 2 + 3 + 9$$

whence a contradiction by [PPY07, Thm. 2.1].

8. Since $2 \times 5 < 12$ and $3 \times 5 < 18$, $\deg \, \nu_{8} > \deg \, \nu_{8}$ and $\deg \, q_{12} > \deg \, \nu_{12}$.

In addition, according to [PPY07, Thm. 0.4] and Theorem 4.1, the elements of the minimal orbit of F_4, labelled A_1, are good. In conclusion, it remains six unsolved nilpotent orbits in type F_4.

Example 6.3. Suppose that \mathfrak{g} is simple of type G_2. Let V be the module of highest weight the fundamental weight ϖ_1 with the notation of Bourbaki. Then V has dimension 7 and \mathfrak{g} identifies with a subalgebra of $sl_7(\mathbb{C})$. For x in $sl_7(\mathbb{C})$ and for $i = 2, \ldots, 7$, let $p_i(x)$ be the coefficient of T^{7-i} in det $(T - x)$ and denote by q_i the restriction of p_i to \mathfrak{g}. Then q_2, q_6 is a generating family of $S(\mathfrak{g})^3$ since these polynomials are algebraically independent.

<table>
<thead>
<tr>
<th>Label</th>
<th>ν</th>
<th>dim ν</th>
<th>partition</th>
<th>\deg , ν</th>
<th>weights</th>
<th>$\nu \Sigma \Sigma'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>F_4</td>
<td>2 2 2 2</td>
<td>4</td>
<td>(17,9)</td>
<td>1,1,1,1</td>
<td>2,10,14,22</td>
</tr>
<tr>
<td>B2</td>
<td>B_4</td>
<td>2 2 0 2</td>
<td>6</td>
<td>(11,9,5,1)</td>
<td>1,1,1,1</td>
<td>2,10,14,22</td>
</tr>
<tr>
<td>C3</td>
<td>C_3</td>
<td>0 2 0 2</td>
<td>8</td>
<td>(9,7,5)</td>
<td>1,1,1,2</td>
<td>2,10,14,20</td>
</tr>
<tr>
<td>C3</td>
<td>C_3</td>
<td>1 0 1 2</td>
<td>10</td>
<td>(9,6,5,5)</td>
<td>1,1,1,2</td>
<td>2,10,14,20</td>
</tr>
<tr>
<td>B2</td>
<td>B_2</td>
<td>2 2 0 0</td>
<td>10</td>
<td>(7,1,5)</td>
<td>1,1,2,2</td>
<td>2,10,12,20</td>
</tr>
<tr>
<td>A1</td>
<td>$\tilde{A}_1 + A_2$</td>
<td>0 2 0 0</td>
<td>12</td>
<td>$(5,5,5,5)$</td>
<td>1,2,2,3</td>
<td>2,8,12,18</td>
</tr>
<tr>
<td>B2</td>
<td>$B_2 + A_1$</td>
<td>1 0 1 0</td>
<td>14</td>
<td>$(5,3,1,1)$</td>
<td>1,2,2,3</td>
<td>2,8,12,18</td>
</tr>
</tbody>
</table>

Table 3. Data for F_4
independent, [Me88]. Let \((e, h, f)\) be an \(sl_2\)-triple of \(g\). Then \((e, h, f)\) is an \(sl_2\)-triple of \(sl_7(\mathbb{k})\). In all cases, we deduce that \(e\) is good from Table 4, indexed as in Example 6.1.

<table>
<thead>
<tr>
<th>Label</th>
<th>(G_2)</th>
<th>(\dim g^e)</th>
<th>partition</th>
<th>(\deg^p)</th>
<th>weights</th>
<th>(\nu)</th>
<th>(\Sigma)</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(G_2)</td>
<td>2</td>
<td>2</td>
<td>(7)</td>
<td>1,1</td>
<td>2,10</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>(A_1 + \tilde{A}_1)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>(3, 1)</td>
<td>1,2</td>
<td>2,8</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>(\tilde{A}_1)</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>(3, 2)</td>
<td>1,3</td>
<td>2,6</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>(A_1)</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>(2, 1)</td>
<td>1,4</td>
<td>2,4</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4. Data for \(G_2\)

7. OTHER EXAMPLES, REMARKS AND A CONJECTURE

This section provides examples of nilpotent elements which verify the polynomiality condition but that are not good. We also obtain an example of nilpotent element in type \(D_7\) which does not verify the polynomiality condition (cf. Example 7.8). Then we conclude with some remarks and a conjecture.

7.1. SOME GENERAL RESULTS. In this subsection, \(g\) is a simple Lie algebra over \(\mathbb{k}\) and \((e, h, f)\) is an \(sl_2\)-triple of \(g\). For \(p\) in \(S(g)\), \(p\) is the initial homogeneous component of the restriction of \(p\) to the Slodowy slice \(e + g^f\). Recall that \(\mathbb{k}[e + g^f]\) identifies with \(S(g^e)\) by the Killing form \(\langle ., . \rangle\) of \(g\).

Let \(\eta_0\) be in \(g^e \otimes \mathbb{k} \wedge^2 g^f\) the bivector defining the Poisson bracket on \(S(g^e)\). According to the main theorem of [Pr02], \(S(g^e)\) is the graded algebra associated to the Kazhdan filtration of the \(W\)-algebra \(\tilde{H}_e\) so that \(S(g^e)\) inherits a Poisson structure. Let \(\eta\) be in \(S(g^e) \otimes \mathbb{k} \wedge^2 g^f\) the bivector defining this other Poisson structure. According to [Pr02, Prop. 6.3], \(\eta_0\) is the initial homogeneous component of \(\eta\). Denote by \(r\) the dimension of \(g^e\) and set:

\[
\omega := \eta^{(r-\ell)/2} \in S(g^e) \otimes \mathbb{k} \wedge^{r-\ell} g^f, \quad \omega_0 := \eta_0^{(r-\ell)/2} \in S(g^e) \otimes \mathbb{k} \wedge^{r-\ell} g^f.
\]

Then \(\omega_0\) is the initial homogeneous component of \(\omega\).

Let \(v_1, \ldots, v_r\) be a basis of \(g^f\). For \(\mu\) in \(S(g^e) \otimes \mathbb{k} \wedge^i g^e\), denote by \(j(\mu)\) the image of \(v_1 \wedge \cdots \wedge v_r\) by the right interior product of \(\mu\) so that

\[
j(\mu) \in S(g^e) \otimes \mathbb{k} \wedge^{r-i} g^f.
\]

Lemma 7.1. Let \(q_1, \ldots, q_\ell\) be some homogeneous generators of \(S(\mathfrak{g})^\mathfrak{g}\) and let \(r_1, \ldots, r_\ell\) be algebraically independent homogeneous elements of \(S(\mathfrak{g})^\mathfrak{g}\).

(i) For some homogeneous element \(p\) of \(S(\mathfrak{g})^\mathfrak{g}\),

\[
d\!r_1 \wedge \cdots \wedge d\!r_\ell = p \, d\!q_1 \wedge \cdots \wedge d\!q_\ell.
\]

(ii) The following inequality holds:

\[
\sum_{i=1}^\ell \deg r_i \leq \deg p + \frac{1}{2}(\dim g^e + \ell).
\]
(iii) The polynomials e^r_1, \ldots, e^r_ℓ are algebraically independent if and only if
\[\sum_{i=1}^\ell \deg e^r_i = \deg e^p + \frac{1}{2} (\dim g^\varepsilon + \ell). \]

Proof. (i) Since q_1, \ldots, q_ℓ are generators of $S(\mathfrak{g})^\varepsilon$, for $i \in \{1, \ldots, \ell\}$, $r_i = R_i(q_1, \ldots, q_\ell)$ where R_i is a polynomial in ℓ indeterminates, whence the assertion with
\[p = \det \left(\frac{\partial R_i}{\partial q_j}, \ 1 \leq i, j \leq \ell \right). \]

(ii) Remind that for p in $S(\mathfrak{g})$, $\kappa(p)$ denotes the restriction to \mathfrak{g}^f of the polynomial function $x \mapsto p(e + x)$. According to [PPY07, Thm. 1.2],
\[j(d\kappa(q_1) \wedge \cdots \wedge d\kappa(q_\ell)) = a \omega \]
for some a in k^\ast. Hence by (i),
\[j(d\kappa(r_1) \wedge \cdots \wedge d\kappa(r_\ell)) = a \kappa(p) \omega. \]
The initial homogeneous component of the right-hand side is $a e^p \omega_0$ and the degree of the initial homogeneous component of the left-hand side is at least
\[\deg e^r_1 + \cdots + \deg e^r_\ell - \ell. \]
The assertion follows since ω_0 has degree
\[\frac{1}{2} (\dim g^\varepsilon - \ell). \]

(iii) If e^r_1, \ldots, e^r_ℓ are algebraically independent, then the degree of the initial homogeneous component of $j(dr_1 \wedge \cdots \wedge dr_\ell)$ equals
\[\deg e^r_1 + \cdots + \deg e^r_\ell - \ell \]
whence
\[\deg e^r_1 + \cdots + \deg e^r_\ell = \deg e^p + \frac{1}{2} (\dim g^\varepsilon + \ell) \]
by the proof of (ii). Conversely, if the equality holds, then
\[j(d^e r_1 \wedge \cdots \wedge d^e r_\ell) = a^e p \omega_0 \]
by the proof of (ii). In particular, e^r_1, \ldots, e^r_ℓ are algebraically independent. \hfill \Box

Corollary 7.2. For $i = 1, \ldots, \ell$, let $r_i := R_i(q_1, \ldots, q_\ell)$ be a homogeneous element of $S(\mathfrak{g})^\varepsilon$ such that $\frac{\partial R_i}{\partial q_i} \neq 0$. Then e^r_1, \ldots, e^r_ℓ are algebraically independent if and only if
\[\deg e^r_1 + \cdots + \deg e^r_\ell = \sum_{i=1}^\ell \deg e^p_i + \frac{1}{2} (\dim g^\varepsilon + \ell) \]
with $p_i = \frac{\partial R_i}{\partial q_i}$ for $i = 1, \ldots, \ell$.

Proof. Since $\frac{\partial R_i}{\partial q_i} \neq 0$ for all i, r_1, \ldots, r_ℓ are algebraically independent and
\[dr_1 \wedge \cdots \wedge dr_\ell = \prod_{i=1}^\ell \frac{\partial R_i}{\partial q_i} dq_1 \wedge \cdots \wedge dq_\ell \]
whence the corollary by Lemma 7.1,(iii). \hfill \Box

38
Remind that $\mathfrak{g}^f_{\text{sing}}$ is the set of nonregular elements of the dual \mathfrak{g}^f of \mathfrak{g}^e. If $\mathfrak{g}^f_{\text{sing}}$ has codimension at least 2 in \mathfrak{g}^f, we will say that \mathfrak{g}^e is nonsingular.

Corollary 7.3. Let $q_1, \ldots, q_\ell, r_1, \ldots, r_\ell, p$ be as in Lemma 7.1 and such that $^e r_1, \ldots, ^e r_\ell$ are algebraically independent.

(i) If $^e p$ is a greatest common divisor of $d^e r_1 \wedge \cdots \wedge d^e r_\ell$ in $S(\mathfrak{g}^e) \otimes_k \Lambda^\ell \mathfrak{g}^e$, then \mathfrak{g}^e is nonsingular.

(ii) Assume that there are homogeneous polynomials p_1, \ldots, p_ℓ in $S(\mathfrak{g}^e)^{\mathfrak{g}^f}$ verifying the following conditions:

1) $^e r_1, \ldots, ^e r_\ell$ are in $k[p_1, \ldots, p_\ell]$.
2) if d is the degree of a greatest common divisor of $d p_1 \wedge \cdots \wedge d p_\ell$ in $S(\mathfrak{g}^e)$, then

$$\deg p_1 + \cdots + \deg p_\ell = d + \frac{1}{2}(\dim \mathfrak{g}^e + \ell).$$

Then \mathfrak{g}^e is nonsingular.

Proof. (i) Suppose that $^e p$ is a greatest common divisor of $d^e r_1 \wedge \cdots \wedge d^e r_\ell$ in $S(\mathfrak{g}^e) \otimes_k \Lambda^\ell \mathfrak{g}^e$. Then for some ω_1 in $S(\mathfrak{g}^e) \otimes_k \Lambda^\ell \mathfrak{g}^e$ whose nullvariety in \mathfrak{g}^f has codimension at least 2,

$$d^e r_1 \wedge \cdots \wedge d^e r_\ell = ^e p \omega_1.$$

Therefore $j(\omega_1) = a^e \omega_0$ by the equality (5). Since x is in $\mathfrak{g}^e_{\text{sing}}$ if and only if $\omega_0(x) = 0$, we get (i).

(ii) By Condition (1),

$$d^e r_1 \wedge \cdots \wedge d^e r_\ell = q d p_1 \wedge \cdots \wedge d p_\ell$$

for some q in $S(\mathfrak{g})^{\mathfrak{g}^e}$, and for some greatest common divisor q' of $d p_1 \wedge \cdots \wedge d p_\ell$ in $S(\mathfrak{g}^e) \otimes_k \Lambda^\ell \mathfrak{g}^e$,

$$d p_1 \wedge \cdots \wedge d p_\ell = q' \omega_1.$$

So, by the equality (5),

$$qq' j(\omega_1) = a'^e p \omega_0,$$

so that $^e p$ divides qq' in $S(\mathfrak{g}^e)$. By Condition (2) and the equality (6), ω_0 and ω_1 have the same degree. Then qq' is in $k^{e'} p$, and for some a' in $k^{e'}$,

$$j(\omega_1) = a' \omega_0,$$

whence (ii), again since x is in $\mathfrak{g}^e_{\text{sing}}$ if and only if $\omega_0(x) = 0$. \hfill \Box

The following proposition is a particular case of [JS10, 5.7].

Proposition 7.4. Suppose that \mathfrak{g}^e is nonsingular.

(i) If there exist algebraically independent homogeneous polynomials p_1, \ldots, p_ℓ in $S(\mathfrak{g}^e)^{\mathfrak{g}^f}$ such that

$$\deg p_1 + \cdots + \deg p_\ell = \frac{1}{2}(\dim \mathfrak{g}^e + \ell)$$

then $S(\mathfrak{g}^e)^{\mathfrak{g}^f}$ is a polynomial algebra generated by p_1, \ldots, p_ℓ.

(ii) Suppose that the semiinvariant elements of $S(\mathfrak{g}^e)$ are invariant. If $S(\mathfrak{g}^e)^{\mathfrak{g}^f}$ is a polynomial algebra then it is generated by homogeneous polynomials p_1, \ldots, p_ℓ such that

$$\deg p_1 + \cdots + \deg p_\ell = \frac{1}{2}(\dim \mathfrak{g}^e + \ell).$$
7.2. **New examples.** To produce new examples, our general strategy is to apply Proposition 7.4, (i). To that end, we first apply Corollary 7.3 in order to show that g^e is nonsingular. Then, we search for independent homogeneous polynomials p_1, \ldots, p_ℓ in $S(g^e)^{\mathfrak{p}}$ satisfying the condition (ii) of Corollary 7.3 with $d = 0$.

Example 7.5. Let e be a nilpotent element of $so(k^{10})$ associated with the partition $(3, 3, 2, 2)$. Then $S(g^e)^{\mathfrak{p}}$ is a polynomial algebra but e is not good.

In this case, $\ell = 5$ and let q_1, \ldots, q_5 be as in Subsection 5.2. The degrees of $\epsilon q_1, \ldots, \epsilon q_5$ are 1, 2, 2, 3, 2 respectively. By a computation performed by Maple, $\epsilon q_1, \ldots, \epsilon q_5$ verify the algebraic relation:

$$e q_4^2 - 4 e q_3 q_5^2.$$

Set:

$$r_i := \begin{cases} q_i & \text{if } i = 1, 2, 3, 5 \\ q_3^2 - 4 q_3 q_5^2 & \text{if } i = 4 \end{cases}$$

The polynomials r_1, \ldots, r_5 are algebraically independent over k and

$$d r_1 \wedge \cdots \wedge d r_5 = 2 q_4 d q_1 \wedge \cdots \wedge d q_5$$

Moreover, r_4 has degree at least 7. Then, by Corollary 7.2, r_1, \ldots, r_5 are algebraically independent since

$$\frac{1}{2} (\dim g^e + 5) + 3 = 14 = 1 + 2 + 2 + 2 + 7,$$

and by Lemma 7.1, (ii) and (iii), r_4 has degree 7.

A precise computation performed by Maple shows that $\epsilon r_3 = p_3^2$ for some p_3 in the center of g^e, and that $\epsilon r_4 = p_4 r_5$ for some polynomial p_4 of degree 5 in $S(g^e)^{\mathfrak{p}}$. Setting $p_i := \epsilon r_i$ for $i = 1, 2, 5$, the polynomials p_1, \ldots, p_5 are algebraically independent homogeneous polynomials of degree 1, 2, 1, 5, 2 respectively. Furthermore, a computation performed by Maple proves that the greatest common divisors of $d p_1 \wedge \cdots \wedge d p_5$ in $S(g^e)$ have degree 0, and that p_4 is in the ideal of $S(g^e)$ generated by p_3 and p_5. So, by Corollary 7.3, (ii), g^e is nonsingular, and by Proposition 7.4, (i), $S(g^e)^{\mathfrak{p}}$ is a polynomial algebra generated by p_1, \ldots, p_5. Moreover, e is not good since the nullvariety of p_1, \ldots, p_5 in $(g^e)^* \mathfrak{p}$ has codimension at most 4.

Example 7.6. In the same way, for the nilpotent element e of $so(k^{11})$ associated with the partition $(3, 3, 2, 2, 1)$, one can show that $S(g^e)^{\mathfrak{p}}$ is a polynomial algebra generated by polynomials of degree 1, 1, 2, 2, 7, g^e is nonsingular but e is not good.

We also obtain that for the nilpotent element e of $so(k^{12})$ (resp. $so(k^{13})$) associated with the partition $(5, 3, 2, 2)$ or $(3, 3, 2, 2, 1, 1)$ (resp. $(5, 3, 2, 2, 1)$, $(4, 4, 2, 2, 1)$, or $(3, 3, 2, 2, 1, 1, 1)$), $S(g^e)^{\mathfrak{p}}$ is a polynomial algebra, g^e is nonsingular but e is not good.

We can summarize our conclusions for the small ranks. Assume that $\mathfrak{g} = so(\mathbb{V})$ for some vector space \mathbb{V} of dimension $2\ell + 1$ or 2ℓ and let $e \in \mathfrak{g}$ be a nilpotent element of \mathfrak{g} associated with the partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ of $\dim \mathbb{V}$. If $\ell \leq 6$, our previous results (Corollary 5.8, Lemma 5.11, Theorem 5.23, Examples 7.5 and 7.6) show that either e is good, or e is not good but $S(g^e)^{\mathfrak{p}}$ is nevertheless a polynomial algebra and g^e is nonsingular. We describe in Table 5 the partitions λ corresponding to good e, and those corresponding to the case where e is not good. The third column of the table gives the degrees of the generators in the latter case.

Remark 7.7. The above discussion shows that there are good nilpotent elements for which the codimension of $(g^e)^{\text{sing}}$ in $(g^e)^*$ is 1. Indeed, by [PPY07, §3.9], for some nilpotent element e' in B_3, the codimension of $(g^{e'})_{\text{sing}}^*$ in $(g^{e'})^*$ is 1 but, in B_3, all nilpotent elements are good (cf. Table 5).
7.3. A counter-example. From the rank 7, there are elements that do not satisfy the polynomial condition. The following example disconfirms a conjecture of Premet that any nilpotent element of a simple Lie algebra of classical type satisfies the polynomiality condition.

Example 7.8. Let e be a nilpotent element of $\mathfrak{so}(k^{14})$ associated with the partition $(3, 3, 2, 2, 2, 2)$. Then e does not satisfy the polynomiality condition.

In this case, $\ell = 7$ and let q_1, \ldots, q_7 be as in Subsection 5.2. The degrees of q_1, \ldots, q_7 are 1, 2, 2, 3, 4, 5, 3 respectively. By a computation performed by Maple, one can show that q_1, \ldots, q_7 verify the two following algebraic relations:

$$16q_3^2q_5^2 + 8q_3q_5q_4^2 - 64q_3^3q_7^2 = 0, \quad q_5q_6^2 - q_7^2q_4^2 = 0$$

Set:

$$r_i := \begin{cases}
q_i & \text{if } i = 1, 2, 3, 4, 7 \\
16q_3^2q_5^2 + q_4^4 - 8q_3q_5q_4^2 - 64q_3^3q_7^2 & \text{if } i = 5 \\
q_5q_6^2 - q_7^2q_4^2 & \text{if } i = 6
\end{cases}$$

The polynomials r_1, \ldots, r_7 are algebraically independent over k and

$$dr_1 \wedge \cdots \wedge dr_7 = 2q_3q_6(32q_3^2q_5 - 8q_3q_4^2)dq_1 \wedge \cdots \wedge dq_7$$

Moreover, r_5 and r_6 have degree at least 13 and $(2q_3q_6(32q_3^2q_5 - 8q_3q_4^2))$ has degree 15. Then, by Corollary 7.2, q_1, \ldots, q_7 are algebraically independent since

$$\frac{1}{2}(\dim \mathfrak{g'} + 7) + 15 = 37 = 1 + 2 + 2 + 3 + 3 + 26$$

and by Lemma 7.1,(ii) and (iii), r_5 and r_6 have degree 13.

A precise computation performed by Maple shows that $r_3 = p_3^2$ for some p_3 in the center of $\mathfrak{g'}$, $r_4 = p_3p_4$ for some polynomial p_4 of degree 2 in $S(\mathfrak{g'})^\mathfrak{g'}$, $r_5 = p_3^3q_7p_5$ for some polynomial p_5 of degree 7 in $S(\mathfrak{g'})^\mathfrak{g'}$, and $r_6 = p_4r_7p_6$ for some polynomial p_6 of degree 8 in $S(\mathfrak{g'})^\mathfrak{g'}$. Setting $p_i := r_i$ for $i = 1, 2, 7$, the polynomials p_1, \ldots, p_7 are algebraically independent homogeneous polynomials of degree 1, 2, 1, 2, 7, 8, 3 respectively. Let l be a reductive factor of $\mathfrak{g'}$. According to [C85, Ch.13],

$$l \simeq \mathfrak{so}(k) \times \mathfrak{sp}(k) \simeq k \times \mathfrak{sp}(k).$$

In particular, the center of l has dimension 1. Let $\{x_1, \ldots, x_{37}\}$ be a basis of $\mathfrak{g'}$ such that x_{37} lies in the center of l and such that x_1, \ldots, x_{36} are in $[l, l] + g_6'$ with g_6' the nilpotent radical of $\mathfrak{g'}$. Then p_2 is a polynomial in $k[x_1, \ldots, x_{37}]$ depending on x_{37}. As a result, by [DDV74, Thm. 3.3 and 4.5], the semiinvariant polynomials of $S(\mathfrak{g'})$ are invariant.

Claim 7.9. The algebra $\mathfrak{g'}$ is nonsingular.
Proof. The space \(k^{14} \) is the orthogonal direct sum of two subspaces \(\mathbb{V}_1 \) and \(\mathbb{V}_2 \) of dimension 6 and 8 respectively and such that \(e, h, f \) are in \(\mathbb{V}_1 := \text{so}(\mathbb{V}_1) \oplus \text{so}(\mathbb{V}_2) \). Then \(\mathbb{g}^e = \mathbb{g} \cap \mathbb{g}^e \) is a subalgebra of dimension 21 containing the center of \(\mathbb{g}^e \). For \(p \) in \(S(\mathbb{g}^e) \), denote by \(\mathbb{g}^{p} \) its restriction to \(\mathbb{g}^f \). The partition \((3, 3, 2, 2, 2, 2)\) verifies the condition (1) of the proof of [Y06, §4, Lem.3]. So, the proof of Lemma 5.14 remains valid, and the morphism

\[G_0^e \times \mathbb{g}^f \rightarrow \mathbb{g}^f, \quad (g, x) \mapsto g(x) \]

is dominant. As a result, for \(p \) in \(S(\mathbb{g}^e)^{\mathbb{g}^f} \), the differential of \(\mathbb{g}^{p} \) is the restriction to \(\mathbb{g}^f \) of the differential of \(p \). A computation performed by Maple proves that \(\mathbb{g}^{p_1} \mathbb{g}^{p_2} \) is a greatest common divisor of \(dp_1 \mathbb{g}^{p_2} \mathbb{g}^{p_7} \) in \(S(\mathbb{g}^e) \). If \(q \) is a greatest common divisor of \(d_p \mathbb{g}^{p_7} \mathbb{g}^{p_7} \mathbb{g}^{p_7} \) in \(S(\mathbb{g}^e) \), then \(q \) is in \(S(\mathbb{g}^e)^{\mathbb{g}^f} \) since the semiinvariant polynomials are invariant. So \(q = \mathbb{g}^{p_d} \) for some nonnegative integer \(d \). One can suppose that \(\{x_1, \ldots, x_{16}\} \) is a basis of the orthogonal complement of \(\mathbb{g}^{p_6} \) in \(\mathbb{g}^f \). Then the Pfaffian of the matrix

\[(r_{ij}, 1 \leq i, j \leq 16) \]

is in \(\mathbb{g}^f \mathbb{p}_3^g \) so that \(\mathbb{g}^f \mathbb{p}_3^g \) is a common divisor of \(dp_1 \mathbb{g}^{p_7} \mathbb{g}^{p_7} \) in \(S(\mathbb{g}^e) \). Since

\[\deg p_1 + \cdots + \deg p_7 = 2 + 22 = 2 + \frac{1}{2}(\dim \mathbb{g}^{p_6} + \ell), \]

we conclude that \(\mathbb{g}^e \) is nonsingular by Corollary 7.3.(ii). \(\square \)

Claim 7.10. Suppose that \(S(\mathbb{g}^e)^{\mathbb{g}^f} \) is a polynomial algebra. Then for some homogeneous polynomials \(p_5' \) and \(p_6' \) of degrees at least 5 and at most 8 respectively, \(S(\mathbb{g}^e)^{\mathbb{g}^f} \) is generated by \(p_1, p_2, p_3, p_4, p_5', p_6', p_7 \). Furthermore, the possible values for \((\deg p_5', \deg p_6') \) are \((5, 8)\) or \((6, 7)\).

Proof. Since the semiinvariants are invariants, by Claim 7.9 and Proposition 7.4.(ii), there are homogeneous generators \(\varphi_1, \ldots, \varphi_{\ell} \) of \(S(\mathbb{g}^e)^{\mathbb{g}^f} \) such that

\[\deg \varphi_1 \leq \cdots \leq \deg \varphi_{\ell}, \]

and

\[\deg \varphi_1 + \cdots + \deg \varphi_{\ell} = \frac{1}{2}(\dim \mathbb{g}^{p_6} + \ell) = 22. \]

According to [Mo06c, Thm. 1.1.8] or [Y06b], the center of \(\mathbb{g}^e \) has dimension 2. Hence, \(\varphi_1 \) and \(\varphi_2 \) has degree 1. Thereby, we can suppose that \(\varphi_1 = p_1 \) and \(\varphi_2 = p_3 \) since \(p_1 \) and \(p_3 \) are linearly independent elements of the center of \(\mathbb{g}^e \). Since \(p_2 \) and \(p_4 \) are homogeneous elements of degree 2 such that \(p_1, \ldots, p_4 \) are algebraically independent, \(\varphi_3 \) and \(\varphi_4 \) have degree 2 and we can suppose that \(\varphi_3 = p_2 \) and \(\varphi_4 = p_4 \). Since \(p_7 \) has degree 3, \(\varphi_5 \) has degree at most 3 and at least 2 since the center of \(\mathbb{g}^e \) has dimension 2. Suppose that \(\varphi_5 \) has degree 2. A contradiction is expected. Then

\[\deg \varphi_6 + \deg \varphi_7 = 22 - (1 + 1 + 2 + 2 + 2 + 2) = 14. \]

Moreover, since \(p_1, \ldots, p_7 \) are algebraically independent, \(\varphi_7 \) has degree at most 8 and \(\varphi_6 \) has degree at least 6. Hence \(p_7 \) is in the ideal of \(k[p_1, p_3, \varphi_3, \varphi_4, \varphi_5] \) generated by \(p_1 \) and \(p_3 \). But a computation shows that the restriction of \(p_7 \) to the nullvariety of \(p_1 \) and \(p_3 \) in \(\mathbb{g}^f \) is different from 0, whence the expected contradiction. As a result, \(\varphi_5 \) has degree 3 and

\[\deg \varphi_6 + \deg \varphi_7 = 13. \]

One can suppose \(\varphi_5 = p_7 \) and the possible values for \((\deg \varphi_6, \deg \varphi_7) \) are \((5, 8)\) and \((6, 7)\) since \(\varphi_7 \) has degree at most 8. \(\square \)
Suppose that $S(\mathfrak{g})^0$ is a polynomial algebra. A contradiction is expected. Let p'_5 and p'_6 be as in Claim 7.10 and such that $\deg p'_5 < \deg p'_6$. Then $(\deg p'_5, \deg p'_6)$ equals $(5, 8)$ or $(6, 7)$. A computation shows that one can choose a basis $\{x_1, \ldots, x_{37}\}$ of \mathfrak{g}^r with $x_{37} = p_5$, with p_1, p_2, p_3, p_4, p_7 in $\mathbb{k}[x_3, \ldots, x_{37}]$ and with p_5, p_6 of degree 1 in x_1. Moreover, the coefficient of x_1 in p_5 is a prime element of $\mathbb{k}[x_3, \ldots, x_{37}]$, the coefficient of x_1 in p_6 is a prime element of $\mathbb{k}[x_2, \ldots, x_{37}]$ having degree 1 in x_2, and the coefficient of x_1x_2 in p_6 equals $a^2 p_2^2$ with a a prime homogeneous polynomial of degree 2 such that a, p_1, p_2, p_3, p_4 are algebraically independent. In particular, a is not invariant. If p'_5 has degree 5, then

$$p_5 = p'_5 r_0 + r_1$$

with r_0 in $\mathbb{k}[p_1, p_2, p_3, p_4]$ and r_1 in $\mathbb{k}[p_1, p_2, p_3, p_4, p_7]$ so that p'_5 has degree 1 in x_1, and the coefficient of x_1 in p_5 is the product of r_0 and the coefficient of x_1 in p'_5. But this is impossible. So, p'_5 has degree 6 and p'_6 has degree 7. We can suppose that $p'_6 = p_5$. Then

$$p_6 = p_5 r_0 + p'_6 r_1 + r_2$$

with r_0 homogeneous of degree 1 in $\mathbb{k}[p_1, p_3]$, r_1 homogeneous of degree 2 in $\mathbb{k}[p_1, p_2, p_3, p_4]$, and r_2 homogeneous of degree 8 in $\mathbb{k}[p_1, p_2, p_3, p_4, p_7]$. According to the above remarks on p_5 and the coefficient of x_1x_2 in p_6, r_1 is in $\mathbb{k}^* p_3^2$ since r_1 has degree 2.

For p in $S(\mathfrak{g})^r$, denote by \overline{p} its image in $S(\mathfrak{g})^r/p_3 S(\mathfrak{g})^r$. A computation shows that for some u in $S(\mathfrak{g})^r/p_3 S(\mathfrak{g})^r$,

$$\overline{p_5} = \overline{p_5}^2 u, \quad \overline{p_6} = -\overline{p_4 p_7} u.$$

Furthermore, $\overline{p_4}$ and $\overline{p_7}$ are different prime elements of $S(\mathfrak{g})^r/p_3 S(\mathfrak{g})^r$ and the coefficient u_1 of x_1 in u is the product of two different polynomials of degree 1. The coefficient of x_1 in $\overline{p_6}$ is $u_1 \overline{p_4} \overline{p_7}$ since

$$\overline{p_6} = \overline{p_5 r_0} + \overline{r_2}.$$

On the other hand, the coefficient of x_1 in $\overline{p_6}$ is $-u_1 \overline{p_4 p_7}$, whence the contradiction since r_0 has degree 1.

7.4. **Another result.** We are not able so far to deal with all even nilpotent elements of a Lie algebra of type \mathbf{D} with odd rank. We can however state the following result. In what follows, we retain the notations of Subsection 5.3.

Theorem 7.11. Let $\mathfrak{g} = \mathfrak{so}(\mathbb{V})$ and let e be a nilpotent element of \mathfrak{g} associated with the sequence $\lambda = (\lambda_1, \ldots, \lambda_k)$. Assume that λ verifies the condition (e) and that $\lambda_1 = \cdots = \lambda_\ell > 0$. Then there are algebraically independent elements r_1, \ldots, r_ℓ in $S(\mathfrak{g})^0$ such that r_1, \ldots, r_ℓ are algebraically independent.

Proof. Let $s \in \{1, \ldots, m\}$ and $i \in K_s$ written as $i = k_1 + \cdots + k_{s-1} + j$, with $j \in \{1, \ldots, k_s\}$. For the sake of simplicity, set

$$k^*_i := k_1 + \cdots + k_{s-1}.$$

Assume that $j > k_s/2$ and let $R^{(s)}_j$ be as in Lemma 5.21. Since $R^{(s)}_j$ has degree j, for some polynomial $\hat{R}^{(s)}_j$,

$$(p^*_s)^j R^{(s)}_j (\frac{p^*_{k_s-1}+1}{p^*_{k_s-1}}, \ldots, \frac{p^*_{k_s-1}+k_s/2}{p^*_{k_s-1}}) = \hat{R}^{(s)}_j (p^*_{k_s-1}, p^*_{k_s-1}+1, \ldots, p^*_{k_s-1}+k_s/2).$$

Then by Lemma 5.14 and Lemma 5.21,

$$(p^*_{k_s-1})^{j-1} p^*_{k_s-1} + j = \hat{R}^{(s)}_j (p^*_{k_s-1}, p^*_{k_s-1}+1, \ldots, p^*_{k_s-1}+k_s/2).$$

Define polynomials r_1, \ldots, r_ℓ of $S(\mathfrak{g})^0$ as follows.

- If $k^*_l < k$, then
 - for $l \in \{1, \ldots, \ell\} \setminus \{v_i, i \in (K_1 \cup \cdots \cup K_m) \setminus (I_1 \cup \cdots \cup I_m)\}$, set $r_l := q_l,$
for $i \in (K_1 \cup \cdots \cup K_m) \setminus (I_1 \cup \cdots \cup I_m)$, set

$$r_{v_i} := (q_{v_i^{s+1}})^{j-1} q_{v_i^{s+1} \nu_j} - \hat{R}_j^{(s)}(q_{v_i^{s+1}}, q_{v_i^{s+1} \nu_j}, \ldots, q_{v_i^{s+1} k_i/2}).$$

- If $k' = k$, then

* for $l \in \{1, \ldots, \ell\} \setminus \{v_l, \; i \in (K_1 \cup \cdots \cup K_m) \setminus (I_1 \cup \cdots \cup I_m)\}$, set $r_l := q_l,$

* for $i \in (K_1 \cup \cdots \cup K_m) \setminus (I_1 \cup \cdots \cup I_m)$, set

$$r_{v_i} := (q_{v_i^{s+1}})^{j-1} q_{v_i^{s+1} \nu_j} - \hat{R}_j^{(s)}(q_{v_i^{s+1}}, q_{v_i^{s+1} \nu_j}, \ldots, q_{v_i^{s+1} k_i/2})$$

if $v_i \neq \ell$, that is $i \neq k$, and set

$$r_{v_k} := (q_{v_k^{s+1}})^{k-1}(q_{v_k})^2 - \hat{R}^{(m)}(q_{v_k^{s+1}}, q_{v_k^{s+1} \nu_j}, \ldots, q_{v_k^{s+1} k_m/2})$$

otherwise.

Then

$$d r_1 \wedge \cdots \wedge d r_\ell = p (d q_1 \wedge \cdots \wedge d q_\ell) \quad \text{where} \quad p = \prod_{s=1}^m (q_{v_s^{s+1}})^{k_s/2 + \cdots + k_i - 1}.$$

Hence,

$$\deg ^e p = \sum_{s=1}^m (k_1 + \cdots + k_{s-1})(k_s/2 + \cdots + k_\ell - 1).$$

Let δ^* be the sum of the degrees of the polynomials $^e r_1, \ldots, ^e r_\ell$. By construction, one has

$$\delta^* \geq \sum_{i=1}^\ell \deg ^e q_i + \sum_{s=1}^m (k_1 + \cdots + k_{s-1})(k_s/2 + \cdots + k_\ell - 1) + \text{card}((K_1 \cup \cdots \cup K_m) \setminus (I_1 \cup \cdots \cup I_m))$$

$$= \sum_{i=1}^\ell \deg ^e q_i + \deg ^e p + \frac{k'}{2}.$$

On the other hand, by Remark 5.24, one has $\dim g^e + \ell - 2 \sum_{j=1}^\ell \deg ^e q_i = k'$. As a result,

$$\sum_{i=1}^\ell \deg ^e r_i \geq \deg ^e p + \frac{1}{2}(\dim g^e + \ell),$$

whence the theorem by Lemma 7.1(ii) and (iii).

7.5. A conjecture. All examples of good elements we achieved satisfy the hypothesis of Theorem 4.1. This leads us to formulate a conjecture.

Conjecture 7.12. Let g be a simple Lie algebra and let e be a good nilpotent of g. Then for some homogeneous generators q_1, \ldots, q_ℓ of $S(g)^e$, the polynomial functions $^e q_1, \ldots, ^e q_\ell$ are algebraically independent. In other words, the converse implication of Theorem 4.1 holds.

References

Jean-Yves Charbonnel, Université Paris Diderot - CNRS, Institut de Mathématiques de Jussieu - Paris Rive Gauche, UMR 7586, Groupes, représentations et géométrie, Bâtiment Sophie Germain, Case 7012, 75205 Paris Cedex 13, France

E-mail address: jyc@math.jussieu.fr

Anne Moreau, Laboratoire de Mathématiques et Applications, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France

E-mail address: anne.moreau@math.univ-poitiers.fr