mu-Limit Sets of Cellular Automata from a Computational Complexity Perspective

Abstract : This paper concerns $\mu$-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial $\mu$-random configuration. More precisely, we investigate the computational complexity of these sets and of related decision problems. Main results: first, $\mu$-limit sets can have a $\Sigma_3^0$-hard language, second, they can contain only $\alpha$-complex configurations, third, any non-trivial property concerning them is at least $\Pi_3^0$-hard. We prove complexity upper bounds, study restrictions of these questions to particular classes of CA, and different types of (non-)convergence of the measure of a word during the evolution.
Type de document :
Article dans une revue
Journal of Computer and System Sciences, Elsevier, 2015, 81 (8), pp.1623-1647
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00866094
Contributeur : Martin Delacourt <>
Soumis le : vendredi 19 juin 2015 - 17:17:50
Dernière modification le : vendredi 9 juin 2017 - 10:42:12
Document(s) archivé(s) le : mardi 25 avril 2017 - 14:11:34

Fichiers

paper_mulimit.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00866094, version 2
  • ARXIV : 1309.6730

Citation

Laurent Boyer, Martin Delacourt, Victor Poupet, Mathieu Sablik, Guillaume Theyssier. mu-Limit Sets of Cellular Automata from a Computational Complexity Perspective. Journal of Computer and System Sciences, Elsevier, 2015, 81 (8), pp.1623-1647. 〈hal-00866094v2〉

Partager

Métriques

Consultations de
la notice

452

Téléchargements du document

77