In vitro photophysical and photobiological properties of Ce6-based dendrimer nanoparticles.


To cite this version:

Estelle Bastien, Raphaël Schneider, Lina Bezdetnaya, Beate Röder, Steffen Hackbarth, et al.. In vitro photophysical and photobiological properties of Ce6-based dendrimer nanoparticles.. 15th Congress of the European Society for Photobiology, ESP 2013, Sep 2013, Liège, Belgium. pp.CDROM, 2013. <hal-00866009>
In vitro photophysical and photobiological properties of Ce6-based dendrimer nanoparticles

Estelle Bastien1,2, Raphael Schneider3, Lina Bezdetnaya1,2, Beate Röder4, Steffen Hackbarth4, Annegret Preuß4, Jordane Jasiewski5, Vadzim Reshetov1, Henri-Pierre Lassalle1,2

1Centre de recherché en Automatique de Nancy, Université de Lorraine, CNRS UMR 7039, Vandœuvre-lès-Nancy, France
2Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
3Laboratoire Réactions et Génie des Procédés, Ecole National Supérieure des Industries Chimiques, Université de Lorraine, Nancy, France
4Institut of physic, Humboldt University, Berlin, Germany
5Laboratoire d’ingénierie des biomolécules, Université de Lorraine, Vandœuvre-lès-Nancy, France

Context: The photosensitizers vectorization enables better tumor localization and therefore a better tumoricidal PDT efficacy. Dendrimers are hyperbranched macromolecules that are considered as an attractive class of biocompatible nanovectors for drug targeting in tissues. In this study we report a novel PDT drug-carrier system, composed of chlorin e6 grafted to the periphery groups of poly(amido amine) dendrimers (PAMAM).

Materials & Methods: The size and zeta potential of our nanoparticles were determined by dynamic light scattering (DLS). The nanoparticle singlet oxygen generation in pharynx carcinoma (FaDu) cells was assessed by luminescence at 1268 nm. Phototoxicity was evaluated by MTT assay. Uptake was assessed by chemical extraction associated with fluorescence spectroscopy measurements. Finally, the uptake mechanism was determined by the use of endocytosis specific inhibitors.

Results: Ce6-dendrimers nanoparticles displayed a 40 times greater uptake along with a 25 fold higher photocytotoxic activity in FaDu cells compared to free Ce6. Also, a much longer singlet oxygen lifetime was demonstrated for Ce6-dendrimers compared to Ce6. Cellular incorporation of nanoparticles was completely inhibited at 4°C, demonstrating that uptake was mediated via endocytosis. Further investigations using specific inhibitors revealed that incorporation was partially mediated by macropinocytosis pathway.

Conclusion: Dendrimeric based nanoparticles showed a good photodynamic efficacy towards cancer cells in vitro, suggesting them as a promising vehicle for PDT. In the future we shall test dendrimer-based nanoparticles in vivo, in pre-clinical models.