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INFORMED SEPARATION OF SPATIAL IMAGES OF STEREO MUSIC RECORDINGS
USING SECOND-ORDER STATISTICS

Stanislaw Gorlow*

Univ. Bordeaux
LaBRI, UMR 5800
33400 Talence, France

ABSTRACT

In this work we address a reverse audio engineering problem,
i.e. the separation of stereo tracks of professionally produced
music recordings. More precisely, we apply a spatial filtering
approach with a quadratic constraint using an explicit source-
image-mixture model. The model parameters are “learned”
from a given set of original stereo tracks, reduced in size and
used afterwards to demix the desired tracks in best possible
quality from a preexisting mixture. Our approach implicates
a side-information rate of 10 kbps per source or channel and
has a low computational complexity. The results obtained for
the SiSEC 2013 dataset are intended to be used as reference
for comparison with unpublished approaches.

Index Terms— Informed source separation, low-order
statistics, professionally produced music recordings, spatial
filtering, stereo images

1. INTRODUCTION

Most if not all of today’s professionally produced music has
undergone two basic processes: mixing and mastering. Many
established music distribution formats, moreover, are strictly
stereo. While in the mastering stage the final mix is prepared
and transfered to a data storage device, mixing represents the
process that ends up in a summation of individually recorded
and edited audio from distinct mono or stereo sources into a
composite stereo mixture. The apparent placement of sources
between the speakers in a stereo sound field is also known as
“imaging” [1] in professional audio engineering. The notion
of spatial “images” in a source separation context can e.g. be
found in [2]. The separation of stereo images of individual or
grouped sources is the central point of the present paper.

For the reason that the total number of source channels is
usually greater than the number of mixture channels, mixing
is mathematically underdetermined. So, demixing constitutes
an ill-posed source separation problem that cannot be solved
without additional assumptions or prior information. We use
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the knowledge of the mixing process and low-order statistics
of the sources as additional information for our algorithm in
order to find the optimal solution. The content of the paper is
therefore an extension to our previous work on the informed
separation of mono sources [3]. We introduce a more general
source-image signal model based on common studio practice
and also generalize the mixture model to a sum of images of
mono and stereo sources. The demixing problem is likewise
addressed in an informed source separation context [4]. With
the proposed approach one can decompose the final mix into
distinct tracks or into the background and foreground objects
and in the same manner one can separate the vocal from the
instrumental track for karaoke.

The organization of the paper is as follows. The problem
at hand is given in Section 2. Section 3 illustrates the source-
image signal model, the estimation of model parameters, and
how the latter can be reduced in size. The extended mixture
model is discussed in Section 4. There it is also shown how a
source of interest and its image are separated using a linearly
constrained spatial filter. The proposed approach is evaluated
on five multitracks of changing sound complexity in Section
5. Section 6 concludes the paper with an outlook.

2. PROBLEM STATEMENT

The problem at hand is stated as follows. Given access to the
original stereo images of distinct sources, recover a subset of
the images in best possible quality from a mixture composed
of the original images using a source-image-mixture model.
The model parameters shall be estimated from the accessible
image signals and used during recovery. The amount of data
associated with the model parameters should furthermore be
kept to a minimum.

3. PARAMETRIC ANALYSIS

3.1. Source-image model

We model the signals in the complex subband domain. Each
subband signal is said to be a zero-mean circular symmetric



complex Gaussian stochastic process that evolves over time
n. The set of subband signal components at a given instant n
of a single source is deemed to be mutually independent, and
so is the set of sources. The sources are thus uncorrelated. A
source may be mono or stereo. The two channels of a stereo
source are treated as two separate mono sources. So, a stereo
source can be thought of in terms of a centered spatial image
of an acoustic source that was recorded with two independent
microphones.

A mono source is assigned a location in the stereo sound
field via pan control, whereas a stereo source or its centered
image is positioned via balance control:

u; (n) = ailelsil(n) + aireT.siT(n) (1)

= a; os;(n),

where o denotes the Hadamard or entrywise product between
the time-invariant steering vector a; = [ai i ]' and the ith
stereo source s; = [si sir ]T. In the case of a mono source,
Syt = Sir = 8. Accordingly, u; represents the stereo image
of the ith source. In (1), {e;, e, } is the standard basis of R?,
a;, € R? and s;(n) € C?. The subband index k is omitted for
simplicity. The ¢th steering vector a; is defined as

A sin Gi
a 2 2= , @)
las|  |cos6;
in the case of a mono source, or else as
A A
a; = ——, 3
Q; ref

where
ay ifay > a,

Qi ref = . (4)
a;- otherwise,

in the case of a stereo source.

3.2. Model parameter estimation

Consider the stereo image of a distinct source as given. From
the stereo signal, we can estimate the model parameters that
are used as prior information for source separation, which is
detailed in Section 4. These parameters describe the source’s
location and how the signal power or variance is distributed
over time and frequency. We apply the following protocol.

First, we compute the zero-lag cross-covariance between
the left and the right channel and normalize it by the product
of average power in each channel using the root mean square
(RMS) as measure:

cov (U, i)

corr (Uihuir) = W, (5)

where the sample covariance is defined as

| X
cov (ugp, wsr) = ~ Z uir(n)u,.(n) ©)
n=1

with * denoting complex conjugation. The RMS is given by

)

In our case, corr is identical with Pearson’s correlation. The
computation of (5) may be carried out in either the subband
domain or the time domain. In the latter case, u;;(n) is real.
The sample size N corresponds to the duration of the signal
over which it can be considered (wide-sense) stationary and
ergodic. The correlation coefficient may also be computed on
a sample basis assuming non-stationarity. Then, if the sample
variance

var {corry, (i, wir)}

N
1
= Z [corr,, (wir, wir) — COTT, (Wi, uiT)]2 ®)
n=1
— 0,
where
1N
COTT, (Wil Wir) = N nz_:l corty, (il, Uir ) )

the source is considered as mono and its respective pan angle
is estimated according to
P ¢ RMS;,
; = arcco ,
’ RMS;;

(10)

where arccot is the arccotangent. In the reverse case, that is
if the source is stereo, its power balance is estimated as

RMSi,—\ref

ith a; rer = 1, 11
RMS; ret W Gref (11

CAli,ﬂref =
where ref € {I,r} is the channel with the greater RMS value
and —ref is the complementary channel.

The mean signal power or variance of a subband signal is
formally given by (k is the subband index)

Gij = E {lsiﬂcﬂ, (12)

where E is the statistical expectation. When using the short-
time Fourier transform (STFT) for the analysis of speech and
audio, stationarity and ergodicity are usually assumed for the
time-domain segment that is time-frequency transformed [3].
The resulting subband signals are non-stationary, and so ¢;;
— gbijk(n), i.e. the subband variance is instantaneous. Thus,
{@ijr(n)}, is likewise the short-time power spectral density
(STPSD) of the jth channel at instant n. For a mono source,
@ijk = ¢ir. The STPSD describes the variance distribution
of the corresponding time-domain segment over frequency. It
is estimated in the STFT domain according to

Gije(n) = [Sij(k,n)|>  withje {i,r}  (13)



or dir(n) = |Si(k,n)|%, where {Si(k,n), Sir(k, n)}, is the
spectrum of a stereo source and {.S;(k,n)}, the spectrum of
a mono source, respectively. Individual spectra are obtained
from the corresponding images by

Si(k,n) = [sind; cosf;]u(n), (14)

in the case of a mono source, or else by

Si,rcf(ka n) = ui,rcf,k(n) (lsa)
and
3 Uirset k(M) o g,
S —ret(k,n) = Qi —ref (15b)
0 otherwise,

in the case of a stereo source.

3.3. Parameter quantization and coding

Here, we present one possible coding strategy that serves the
reduction of side information. The discussion of the strategy
is outside the scope of the paper. Our objective is to propose a
scalable coding scheme with a compact representation of the
metadata. Other methods, especially for spectrogram coding,
can be found in [5], e.g.

The pan angle 6 of a mono source is rounded to the nearest
integer value using a mid-tread uniform quantizer defined as

T 1
Q=4[5 +3), 16)
where A is the step size and |- | represents the floor function.
The balance parameter a; —.f for a stereo source is encoded
using an A-law or p-law compressor together with a uniform
quantizer as in (16). For a given input = € [0, 1], the A-law
compressor output is

A-
S ifo <4
Calr) = 1+logA (17
M Otherwise ’
1+logA

where A is the compression parameter and log is the natural
logarithm. The output of the p-law compressor is

~log(1+p-x)
O g

where p is the associated compression parameter. Using A-
law or p-law compression, the signal-to-noise ratio (SNR) is
kept constant over almost the entire range of a; —ef [6]. The
STPSD of a mono source (or a channel of a stereo source) is
quantized on an ERB-like frequency scale according to

; (18)

ub (z)

diz(n) = ub (2) —ib () +1 Z (Zgik(n)’ (19

k=Ib (2)

where 1b (2) = inf {k | 2z, = z}, ub (2) = sup{k | zx = z},
z is the quantization index and

2, = |21.410g,, (4.37f,/Nk +1)]. (20)

In (20), fs is the sampling rate and NV is the STFT size. The
average power values are then converted from linear scale to
logarithmic scale and quantized using (16). These values are
encoded using differential pulse-code modulation (DPCM) in
combination with Huffman coding. The difference between
adjacent power values is calculated in the direction of time or
frequency or between channel pairs depending on what gives
the lowest entropy.

4. SEPARATION OF STEREO IMAGES

4.1. Mixture model and spatial covariance matrix

The mixture is considered to be obtained by superposition of
distinct stereo images that were created according to (1). To
account for professionally produced music recordings, s;(n)
is regarded as having undergone prior processing in the form
of linear and nonlinear audio effects [7]. The mixture signal
is thus formulated as

u;k(n)

—_—
xk(n) = Z a; os;p(n)
icl (21)

= Z apspk(n) + Z a; o qu(n)’

peP qeQ

where set P = {i € | | Vn[syr(n) = sirx(n)]} represents the
mono sources, while Q = {i € || In[syx(n) # sir(n)]} =
I\ P represents the stereo sources, respectively.

The local mixture spatial covariance matrix is given by

Rxx,k(n) =E [xk? (n)xll;| (n)]

= apa) gpi(n)
peP (22)

+ Z aqa;— o ®yi(n),
q€eQ

where {¢,(n)}, is the pth mono source’s STPSD and

Pqi1,k(1) ¢q,lr,k(n)]

23
6% (1) Ggrri(n) )

Q4k(n) = [

where * denotes complex conjugation. In (23), {¢q,u,x(n)},,
and {¢g -k (n)}, are the gth stereo source’s left- and right-
channel STPSDs, while {¢g i, x(n)}, is the short-time cross
spectral density (STCSD).

In the next section it is shown how the summation of the
stereo images can be “undone” by means of spatial filtering.
There, in (26) and (30), the inverse of Rxx (1) needs to be
computed. The condition number of a matrix & is often used



to estimate how accurate the solution will be in the presence
of observation errors in xx(n). When xj(n) is noise-free, as
in our case, one may also use the condition number to argue
that the accuracy of the separation of sources, which is based
on spatial decorrelation, improves when the left and the right
channels of a stereo source are uncorrelated. In that case, the
condition number

)\max [Rxx,k(n)]

: 24
Amin [Rxx,k(n)] ( )

R ()] |

where Apmax and Apmin are the two eigenvalues of Rxx (1),
has the lowest value. Also in our experience, NONZero cross-
covariance terms lead to a degradation of sound quality with
regard to underdetermined mixtures. As a result, (23) can be
simplified as

(I)qk (n) = diag [¢qlk(n)7 d)qu (TL)] (25)

Using (22) and (25), Rxx,x(n) can be reconstructed from the
mixing coefficients and the STPSDs, d; and {¢;;x(n) }x, ¢ =
1,2,....I.

4.2. Image separation of a mono source

Let us assume that there are more than two active sources in a
time-frequency (TF) point (&, n). In this case, a mono source
component is separated from the mixture signal with the aid
of the power-conserving minimum-variance (PCMV) spatial
filter [3]

Ppi(n)

Wor(n) = R}, (n)a,, | ——2—t— 26
Pk}( ) xx,k( ) 4 a;}rR;i)k(n)ap ( )
according to
Spk (1) = Wy, (n)x(n). @7
The corresponding image component estimate is
Upi(n) = apSpr(n). (28)

If the number of active sources is at most two, the demixing
becomes trivial given that the mixing system is known.

4.3. Image separation of a stereo source

A stereo source component is separated from the mixture in a
similar manner, where the left-channel and the right-channel
components are estimated simultaneously according to

Sqk(n) = Wqu(n)xk(n) (29)
with the PCMYV spatial filter matrix being

Woi(n) = Rl (n) @7 (n)

xx,k

aing { [R5 ][R m] 1 o

On the analogy of (28), the corresponding image component
estimate is given by

Uy (n) = ag 0 845(n). 31

From (25) and (30), it can be seen that when multiple stereo
sources are present in the mixture, their component estimates
exhibit the same phase between different sources. Only their
spectral envelopes are shaped differently. Furthermore, when
the mixture is a combination of stereo sources only, qu(n)
in (30) is diagonal. As a result, s4;;(n) is separated from the

respective mixture channel using the mono PCMV filter:

e R
7 13 7%

8qjk(n) =

5. PERFORMANCE EVALUATION

In this section, we evaluate our approach by applying it to a
subset of professionally produced music recordings from the
SiSEC 2013 [8] dataset. The task is to decompose an artistic
mixture into a subset of constituent images that represent the
sources of interest alias foreground objects and the image of
the background—where applicable. The term “background”
refers to the sum of background objects. The original images
are given as a reference.

5.1. Performance metrics

We use the evaluation criteria suggested by the SiSEC 2013
committee. These include the performance metrics from the
PEASS toolkit [9, 10] and the decoder runtime in seconds per
CPU clock rate in GHz. For every mixture, we also give the
side-information rate. Furthermore, we include PEMO-Q [11,
12] in our evaluation.

5.2. Experimental design

We use the following testing framework. With respect to the
STFT, we employ a 2048-point fast Fourier transform (FFT)
with a Kaiser-Bessel derived window of the same length and
a 50-% overlap between succeeding frames. The pan angle 0
is quantized and coded with 7 bits, while the balance G ¢ is
quantized with 16 bits using the A-law compander with an A
of 87.6. The STPSD is quantized with 6 bits per power value
using a 76-band nonuniform frequency scale. The probability
mass function of the difference between contiguous STPSD
values is modeled with a Laplace (u, b) distribution with i =
—0.2 and b = 2. The simulations are run in MATLAB on an
Intel Core 15-520M 2.4-GHz CPU.

5.3. Experimental results

The results of the experiment are summarized in Table 1. As
can be observed, the image-to-spatial distortion ratio (ISR) is



Track Type foris SDR ISR SIR SAR OPS TPS IPS APS PSM; ODG
Vocal stereo 0.89 976 16.8 11.5 21.7 038 0.61 0.68 0.79 0.76 —2.96
Drums stereo 1.00 8.72 124 133 195 025 086 0.66 0.05 034 -3.30
Guitar stereo 0.96 926 16.3 101 234 034 0.52 047 0.67 0.76 —2.97
“The Ones We Love” by Another Dreamer — 59.6 kbps — 10.6 s GHz
Vocal stereo 0.99 835 17.1 931 209 019 0.54 062 0.86 0.74 —-3.00
Bass mono 450  8.60 8.82 0.38 052 0.34 054 -3.21
Piano stereo 0.83 311 692 414 174 044 0.63 0.51 0.60 0.80 —2.88
Background  stereo 0.94 4.74 833 817 181 047 0.60 0.58 0.59 069 -—-3.07
“Roads” by Bearlin — 69.8 kbps — 7.4 s GHz
Vocal stereo 0.90 9.15 155 10.8 195 0.76 0.62 0.86 0.68 0.81 —2.82
Drums stereo 0.99 515 6.66 7.07 152 027 079 064 0.10 040 —3.28
Bass mono 450  5.59 5.24 0.30 047 0.07 —-0.10 —3.38
Claps stereo 0.99 892 138 11.9 206 0.05 096 0.67 000 -0.03 —3.37
Background  stereo 0.97 476 106 580 149 046 0.62 051 0.60 072 -3.03
“Remember the Name” by Fort Minor — 82.2 kbps — 13.0 s GHz
Vocal mono  47.9 145 15.9 0.53 088 0.87 085 —2.66
Guitar stereo 0.97 14.8 174 205 271 056 098 0.77 0.81 0.88 —2.53
“Que Pena/Tanto Faz” by Tamy — 31.8 kbps — 5.8 s GHz
Vocal stereo 1.00 6.77 145 748 202 063 0.72 0.77 0.56 0.76 —2.96
Drums stereo 0.97 839 146 102 199 049 082 0.66 0.34 0.53 —3.22
Bass stereo 0.93 522 119 587 163 0.32 0.53 0.52 0.30 0.24 -3.32
Background stereo 0.93 4.61 11.8 479 177 040 061 0.59 0.70 0.77 —-2.94

Ultimate NZ Tour — 80.7 kbps — 8.4 s GHz

Table 1. The SiSEC 2013 development set used in the experiment and the obtained results. The ISR, SAR and TPS values for

mono sources are framed.

between 6.66 and 17.4 dB for a stereo source, and is greater
or equal to 18.5 dB for a mono source. Similarly, the highest
source-to-artifacts ratio (SAR) is obtained for a mono source,
which is 27.7 dB. The target-related perceptual score (TPS)
shows a weak correlation not only with both the ISR and the
SAR, but also with PEMO-Q’s perceptual similarity measure
PSMy, which then again does not take spatial hearing effects
into account. The lowest TPS is at 52 %. The measured side-
information rate is around 10 kbps per mono source or stereo
channel. The execution time of the algorithm is low and also
faster than real time.

Table 2 compares the performance of our system with the
figures reported in SiSEC 2011 for two oracle systems [13].
Their performance figures provide an upper bound for binary
masking-based systems. In Table 2, positive delta values are
in boldface. A significant improvement can be noticed for all
items with regard to the SAR, going up to 22.4 dB. The TPS
is also higher in most cases, and so is the signal-to-distortion
ratio (SDR).

6. CONCLUSION

In this paper we presented an extension to our previous work
on the informed separation of audio sources. By generalizing
the mixture model to a sum of stereo images, we have shown
how a particular source of interest or its image can be filtered
out from a stereo mixture using prior information. From our
source-image model we inferred that the pursued approach is
most effective when the foreground objects are in mono and
only the background object is in stereo, which was validated
in our experiment.
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