N

N

Experimenting a Conflict-Driven Clause Learning
Algorithm

Gilles Audemard, Laurent Simon

» To cite this version:

Gilles Audemard, Laurent Simon. Experimenting a Conflict-Driven Clause Learning Algorithm. 14th
International Conference on Principles and Practice of Constraint Programming (CP’08), 2008, Syd-
ney, Australia. pp.630-634. hal-00865295

HAL Id: hal-00865295
https://hal.science/hal-00865295

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00865295
https://hal.archives-ouvertes.fr

Experimenting Small Changes in Conflict-Driven Clause
Learning Algorithms

Gilles Audemard and Laurent Simoh

L Univ Lille-Nord de France CRIL / CNRS UMR8188,
Lens, F-6230audemard@ril . fr,
2 Univ Paris-Sud, LRI/ CNRS UMR8623 / INRIA Saclay
Orsay, F-91405i mon@ri . fr

Abstract. Experimentation of new algorithms is the usual companiatice
of papers dealing with SAT. However, the behavior of thogpm@thms is so
unpredictable that even strong experiments (hundreds rafhimearks, dozen of
solvers) can be still misleading. We present here a set aérarpnts of very
small changes of a canonical Conflict Driven Clause Lear(@igCL) solver and
show that even very close versions can lead to very diffdsehaviors. In some
cases, the best of them could perfectly have been used tincenthe reader of
the efficiency of a new method for SAT. This observation camtained by the
lack of real experimental studies of CDCL solvers.

1 Introduction

Conflict-Driven Clause Learning algorithms (CDCL) haveibeae of the major break-
throughs in the practical solving of industrial SAT probkerince the introduction of
ZChaff in 2001 [8], a lot of progresses have been made [3]sahdrs can now tackle
problems of millions of clauses. All techniques and metheaibedded in “modern”
solvers are well known: dynamic heuristics [8, 4], learnj@j restarts [6, 1] and lazy
data structures [8]. Efficient solvers can nowadays beevwriftom scratch in less than

a thousand lines of code.

However, we believe that the underlying mechanisms arersttl understood. They
result from extensive tests rather than strong experimstidies, where paradigms
would be proposed and tested against observations. Wedgtiat new breakthroughs
in the next years may only come if we begin to really undexbtan reasons of solvers
performances. A new technique may be good, but can stilltoeihaway and not pub-
lished because of a dramatic side effect of a previously awknbehavior of CDCL
solvers. It is thus crucial to begin an in-depth study of nradslvers, without trying

to improve their performances at first. In this short papertwy to consider a typical
CDCL solver, MNISAT [3], as a physical system that we try to test against well ad-
mitted ideas. Our final aim here is more to cast new questmtisetcommunity, given
some observations of MISAT performances, rather than proposing a full and tested
paradigm of CDCL solvers. As a side effect of our studies, Nustrate how far one
may improve MNISAT performances with only a couple lines hack. This last obser-
vation may for instance be a standard to know whether or notsodvers bring really
new ideas or may result from a side effect of small changegahanical CDCL solver,
MINISAT.

s0f . - r r 7 800 | "
k - f’ /Z R ¥ f |
i i "
700 ! L ?(x* 700 j »@ ¥ ki
§ 600 » X 600 »Z i
4 / R [7 F ¢
500 i 2 500 s
H : / A H / s
o 400] L g o J oy
% ," T/ * / / = v* e ,:'
g 0 - :x 300 / #{p 5 o
~ « 7 [i7&re]
200 e i 200 (% L]
g
100 100 ik s s
o ! 0 B o
o 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90
Number of solved instances Number of solved instances
a. Shuffle Neighboorhood b. One-Parameter Neighboorood

Fig. 1. Studying Shuffling (left) and Parameters (right) (mediametion 40 launches)

2 Shuffling Effects: the Lisa Syndrome, revisited

It is well admitted that shuffling instances have a negatfieceon industrial bench-
marks (see the so-called “Lisa” Syndrom in [7], related t}).[Zhis observation has
motivated, in SAT Contests and SAT Races, to consider omlggrbenchmarks. Thus,
it is admitted that modern solvers explicitly use a hewitat suppose a non-shuffled
instance. Over all explanations, one intuition is that fiesiables have more chances to
be input variables than additional variables introducedriter to avoid combinatorial
explosion. During the first phase,IMISAT chooses decision variables in lexicographic
order (some solvers choose variables according to theurromeces in the input for-
mula). However, it is not clear how much one may lose by smgfféin instance. If the
above explanation holds, and if order of clauses and vasadle related to some im-
portant structural property between clauses and litetta¢s) one should loose a lot by
shuffling an instance before callingIMsAT.

All experiments are done with instances of the SAT Race ZB@fling is done on
variables order, clauses order and literals order in ealsel (like in [2]).

Figure 1.a shows the traditional performance plot for ss\a@mparison. It gives
the CPU time (in seconds) needed to solve a given number t@noss. We can read
that MINISAT (without SATELITE preprocessing) is able to solve 55 problems. Curves
"best” (respectively’best6”, "best24” and”best50”) plot the result of virtual solvers
which would have the best CPU time obtained on all 50 shufiled (respectively the
5th, 24th and 50th (median) percentile). Thus, a very sinspigfling (50 times) of
instances allows to solve 69 instances in less than 900 de¢oncomparison to the 55
instances solved with only one run on the original probleMhat is more striking, is
that there is 24% of chances to obtain better results by syffistance (see “best24”
curve). This resultis clearly higher than one would haveljoted if it was only justified
by the topology of the original problem (input/output véulies encoding).

1000 - — - I Time 1o solve an instance for size
4

. Low —— X
TS High ---x--- 7
R All - b

500 Wy

.
e
e iy
. H
100 + A H
v 400 i
s
: A
200 it

minisat with noise

"
Time (s) to solve an instance
g
8

1 10 100 1000 0 20 40 60 80 100 120
minisat Number of solved instances

a. 10% Noisy Parameters b. Effect on clause deletion by size

Fig. 2. Noisy parameters (left, median on 40 runs) ; Clauses delétight, median on 20 runs)

3 Parameters effects

When tuning the solver, a number of parameters have to béksetie randomness of
the heuristics, the number of conflicts before restarjsWe study how performances
can be enhanced by changing only one of these valuesnmd«r. We took 10 different
magic values of NNISAT parameters and studied all (1-parameter) neighboors gs the
were different solvers. For each value, we tried bottnMAT with SATELITE (called
simp and without it (calleatore), on all original benchmarks. Between 5 and 8 different
values were tested for each of 10 paramétesbich give us 126 solvers (half with
SATELITE).

Figure 1.b gives the results for somietual solvers based on parameter neighbor-
hood. Eachbest of Ncurve corresponds to the subset of N solvers that give thie bes
results, if the N solvers were ran in parallel on N computEnst observation: using
two versions of MNISAT (the best couple of solvers were core WRBSTARTI NC=1
and simp with MNISAT default values) can pay a lot. It seems that keeping a very
fast restart policy, but without preprocessing, may pays®hed a new light on re-
cent works on restart policies. We report the best of 3 se\aso based on variants of
restart policies: NNISAT simp with default values, MiISAT core WithRESTARTI NC=1
and MINISAT core withRESTARTI NC=1.1.

8 VARDECAY (inverse of the variable activity decay) {0.5, 0.75, 0.85, 0.90, 0.95, 0.99,
0.999}; VARI NC (init. amount to bump vars)e {1, 2, 5, 10, 50}; RESTARTI NC
(factor by which the restart limit is multiplied after reg® € {1, 1.1, 1.25,
1.5, 1.75, 2, 4, 8}; RESTARTFI RST (init. restart limit) € {10, 50, 100, 200, 500,
1000, 5000, 10000, 50000}; RANDOWARFREQ (frequency with which MNISAT choose
a random variable rather than the heuristics based @ne)0, 0.001, 0.002, 0.003,
0.01, 0.05, 0.1, 0.5}; LEARNTSI ZEI NC (factor that increases the limit of learnt clauses)
€{0.5,0.8, 1, 1.1, 1.2, 1.5, 2, 4}; LEARNTSI ZEFACTOR (limit for learnt clauses as a fac-
tor of the total number of clauses) {1, 1.5, 2, 3, 4, 5, 8}; CLAI NC (init.amount to bump
clauses withe {1, 2, 5, 10, 50}; CLAUSEDECAY (inverse of the clause activity decay fac-
tor) € {0.5, 0.75, 0.85, 0.90, 0.95, 0.99}; POLARI TYMODE (branching)e { false, true}

The second observation is based on the proximity of all bestives (except for
the best of all, that even though, joins all best-N curvesatend), which means that
MINISAT really reaches its limits there. One may cast doubts on @lemgrovement
of CDCL solvers if any brand new solver does not really imgrthvis “hard” limit.

Figure 2.a reports another experiment: we tookiMAT and, each time one of the
10 constants was requested, we added 10% random noise te itaW'see that the
“noisy” M INISAT now behaves like another solver. When new methods exhibitzsi
performance plot w.r.t MNISAT, nothing can be really drawn from it. This can only
be due to some hidden noise. Last observation we made: Winsideoing the whole
neighborhood, usingB ELITE as a preprocessor is not so important. We measured that
differences between best of all simp versions and best a@ioail versions are only by
one more bench solved for the first version.

4 Learning large or short clauses?

In order to avoid memory explosion, modern solvers clearigarnt clauses database.
Clauses with less activity (the number of times that theaesgds were directly, and
recently, considered when analyzing the reasons for thifictyrare deleted. However,
it is not necessary for CDCL solver completeness to keepiedauses until the end.
They just have to provide a reason for current assertingalge This reason, repre-
sented as a clause, can be forgotten when it becomes unagcd¥s analyze here the
behavior of MNISAT when one forces it to forget some clauses. Our first goal is to
know whether some classes of clauses may be removed witeguading MNISAT
performances. The second is more important. We believarttmbvements of future
CDCL solvers are related to highlightingniportant learnt clauses (yet another time,
in a multi-core context, it would be worth sharing a clauseMeen processes only if it
isimportant see [5] for example).

We conducted this experiment as follows. First, we rumwMAT on shuffled in-
stances (20 times), and store, for each benchmark, the mesitia of learnt clauses.
Then, we run 3 versions of MISAT. The first one forgets 25 % of learnt clauses of
any size. In the second (resp. third), it forgets 50% of daud size less than (resp.
greater than) the computed median size (for a given bendf)ntr each parameter,
and each benchmark, we consider the median CPU time oveu#@estinstances. This
experiment should show what is highly believed: the sizeafrt clauses matters.

Results are summarized in figure 2.b and, contrary to whasusilly believed, it
seems that short clauses are sighificantlymore important than large ones. Indeed,
removing short, large or any clauses produces approxieigtiie same results at the
end. This was already pointed out in previous, theoretigatks, that shown that some
proofs need large clauses, but it is surprising to measupesaictice that deleting 50%
of short clauses is not so different than deleting 50% ofdariguses. We also tried
to characterize important clauses with other parametemiger of resolutions step
during conflict analysis, minimal resolution depth of clasjs but results are identical,
andimportantclauses are very hard to characterize, with a global measure

5 Conclusion

In [2], it was already proposed to use shuffling techniquestiaracterize the behav-
ior of solvers, and to begin a real experimental study of thelmwever, this is not
a sufficient framework to really test solvers against hypsi$, as they were physical
systems. This work is a first step in this direction. We toolaaanical, well known,
solver, MINISAT, and built experimental studies in order to validate or lickzie some
well admitted ideas. So, what can be drawn from our very snegberiments? First,
shuffling instances is not as bad as one may have expectefi%rofthe case, it may
pay, which is probably to high to confirm that the locality afriables and the order of
clauses in real world problems really matters. It is ofteguad that shuffling instances
is useless and has no meaning at all from a practical pointewi.\However, if one
wants to add good learnt clauses somewhere in a formula, yopr@processing tech-
nigue, then it is essential to understand where to add itjfahé order really matters
and how. At last, we showed that it is not possible to consstiert clauses as globally
more important than large clauses, which is highly coumttritive and was believed
to be false. We also show that, by moving parameters, one tot@ynoreally different
solvers.

In the next years, CDCL framework will probably be extenddulti-core archi-
tectures, which will increase their complexity and theinfuedictability”. If one wants
to understand their behavior, a lot of effort has to be made Would it be satisfactory
to use the multi-core ability of next processors generatiug by using different shuf-
fled instances of the same benchmarks? We shown in this fdegttea tot of progress
has to be done in order to really, deeply, understand why CBrelLso efficient, and
what mechanisms are essential. In the quest for efficienisyurgent to begin to study
them, from a real, deep, experimental perspective.

References

1. A.Biere. Adaptive restart strategies for conflict dri@AT solvers. IfProceedings of SAT'Q8
pages 28-33, 2008.

2. F. Brglez, X.Y. Li, and M. F. Stallmann. On SAT instancessles and a method for reliable
performance experiments with SAT solvedsinals of Mathematics and Artificial Intelligence
43:1-34, 2005.

3. Niklas Een and Niklas Sorensson. An extensible sat-solveEnrico Giunchiglia and Ar-
mando Tacchella, editorSAT, volume 2919 oL NCS pages 502-518. Springer, 2003.

4. Eugene Goldberg and Yakov Novikov. BerkMin: A fast andustbSAT-solver. Discrete
Applied Mathematicsl55(12):1549-1561, 2007.

5. Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: Solver dp8ori. In System description for
the SAT-RACE2008.

6. Jinbo Huang. The effect of restarts on the efficiency ofisdalearning. Irproceedings of
IJCAI'07, pages 2318-2323, 2007.

7. D.Le Berre and L. Simon. Essentials of the SAT'03 comjuetitSAT'03 2003.

8. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malika®@: Engineering an efficient
SAT solver. InProceedings of DAC'Qlpages 530-535, 2001.

9. Joao P. Marques Silva and Karem A. Sakallah. Grasp - a eawls algorithm for satisfiabil-
ity. In ICCAD, pages 220-227, 1996.

