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Runge-Kutta Residual Distribution Schemes

Résumé : On considère l’approximation de solution de lois de conservation
hyperboliques avec une combinaison des mèthodes de type Reisdual Distribu-
tion avec des schémas Runge-Kutta en temps. On propose une construction
de schéma non-linéaire de type Blended qui ne nécéssite pas la résolution d’un
systéme non-linéaire, donc permettan de retenir le caractére explicite de la mèth-
ode. L’approche proposée est validée sur des nombreaux cas test.

Mots-clés : Lois de conservation Hyperboliques, problèmes instationnaires,
schémas d’ordre deux, Residual Distribution, Runge-Kutta
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1 Introduction

In this paper we study the numerical solution of hyperbolic partial differential
equations. In the scalar case these equations take the following form:

∂tu+∇ · f(u) = 0 in Ω× [0, T ]. (1)

Ω is the spatial domain and T is the given final time. Equation (1) is equipped
with an initial solution:

u(x, t = 0) = u0(x) x ∈ Ω,

and boundary conditions defined on ∂Ω or a properly defined subset. The
above equation models the evolution of the conserved unknown u(x, t), the flux
of which is denoted here by f . Systems of equations are introduced later in
the text. The framework we shall design our schemes in is that of Residual
Distribution (RD).

The residual distribution framework (see [19] for a thorough overview) is
widely recognised as an efficient and accurate way of discretising steady state
hyperbolic PDEs. It was originally introduced by Roe [35] as an alternative to
the frequently-used finite volume and finite difference methods. Its ability to
perform genuinely multidimensional upwinding [1, 17] enables the construction
of approximations free of spurious oscillations, even in the vicinity of shocks
in the solution. More important, it facilitates construction of methods which
are capable of capturing the underlying physical processes incorporated within
the mathematical model in a truly multidimensional manner. Extension to
systems, although not straightforward, is well understood and covered in the
literature. Usually it is performed with the aid of Roe’s parameter vector in the
case of the Euler equations [20,34] or, for instance, the CRD approach of Csík et
al. [15] in more complex cases. In [1,24] it was demonstrated that when residual
distribution methods do provide plausible solutions, these are usually more ac-
curate than those obtained with the aid of more popular finite volume methods.
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4 Warzyński & Hubbard & Ricchiuto

However, the residual distribution framework lacks the robustness of the finite
volume approach, in particular, when it comes to discretising time-dependent
equations. Various techniques of extending residual distribution methods to
transient problems exist, but none is considered fully satisfactory. The existing
approaches can be grouped into two categories: the space-time and consistent
mass matrix frameworks.

The Space-Time residual distribution framework [4, 12, 13, 16, 21] is very
faithful to the RD and multidimensional upwinding spirit. Although it allows
construction of discretisations with all the desired properties, those methods are
subject to a CFL-type restriction on the time-step. This restriction is partic-
ularly disappointing when taking into account that they are, by construction,
implicit. In the two layer variant [14] one couples two space-time slabs at a
time and solves the equations simultaneously in both. The resulting system to
be solved at each step is larger, but the construction removes from one of the
layers the restriction on the time-step. In theory, this means that an arbitrarily
large time-step can be used. For a full discussion see [12]. More recently, Hub-
bard and Ricchiuto [25] proposed to drive the height of one of the space-time
slabs (and hence its associated time-step) to zero so that the scheme becomes
discontinuous-in-time. The resulting formulation is simpler than the original
whereas all of the properties are retained.

In this paper we focus on a different approach. The Consistent Mass Ma-

trix formulation was inspired by the discovery of a close relation between the
residual distribution and finite element frameworks [10]. This, quite naturally,
led to the introduction of a mass matrix mij (see, in particular, [32] and [18])
and coupling in space of the time derivatives of the nodal values. It was the
first successful attempt to construct second-order residual distribution schemes
for time-dependent problems. This approach was implemented and investigated
in a number of references, i.e. [4, 16, 18, 32] or [9]. In all of these references
the authors used multi-step methods to integrate the underlying PDE in time.
It is usually argued that the major disadvantage of this approach is the fact
that the resulting discretisations are implicit, i.e. the resulting linear system
is not diagonal (even if explicit multi-step methods are utilised) and therefore
expensive. In [33] Ricchiuto et al. modified the consistent mass matrix frame-
work by introducing the so-called shifted time operator. By combining it with
a multi-stage Runge-Kutta method, they derived a genuinely explicit scheme.
The resulting methods are indeed explicit, but the formulation is somewhat
complicated and leaves open the question of constructing a genuinely positive
method. Recently, the authors of this paper proposed to draw together the
discontinuous-in-space residual distribution scheme [2, 26] and the first order
forward Euler time-stepping procedure. The resulting scheme [39] is explicit
and positive, but so far only first order accurate.

In this contribution we focus on the consistent mass matrix formulation in
its original form. To integrate the underlying PDE in time we use the sec-
ond order TVD Runge-Kutta discretisation method due to Shu and Osher [37].
Although this time-stepping procedure is explicit, our methods are implicit in
the sense that at each time step (and each RK stage) a system of linear equa-
tions (regardless whether the PDE is linear or non-linear) has to be solved. We
show how to solve these linear systems efficiently and investigate the resulting
discretisations in terms of accuracy and positivity. The order of accuracy we
obtain, i.e. two, is similar as in [33]. However, by avoiding the shifted time

Inria



Runge-Kutta Residual Distribution Schemes 5

operator we construct a formulation that is more straightforward. The case in
which the resulting system of equations is non-linear (i.e. genuinely non-linear
schemes) will not be covered here. It is a subject of ongoing research.

This paper is structured as follows. In the following section we introduce the
notation and basic assumptions. In Section 3 we introduce the Consistent Mass
Matrix formulation and then move to the Runge-Kutta Residual Distribution
(RKRD) framework in Section 4. Extension to systems of non-linear equa-
tions is discussed in Section 5 and extensive numerical results are presented in
Section 6.

2 The Notation

Although our approach extends to R
3, for clarity and brevity we assume that

the spatial domain Ω is embedded in R
2. We also assume that Ω is subdivided

into non-overlapping triangular elements, denoted by E, belonging to Th, such
that: ⋃

E∈Th

E = Ω.

Di will stand for the subset of triangles containing node xi. It is assumed that
the temporal domain [0, T ] is discretized into a set of N + 1 discrete levels
{tn}n=0,1...,N such that:

t0 = 0, tN = T, tn < tn+1 and ∆tn = tn+1 − tn.

For each element E ∈ Th and for each node xi ∈ E, ψE
i is defined as the

linear Lagrange basis function associated with xi respecting:

ψE
i (xj) = δij ∀i, j ∈ Th,

∑

j∈E

ψE
j = 1 ∀E ∈ Th. (2)

As long as it does not introduce any ambiguity, the superscript E will be omitted.
At each time level tn the approximate solution unh is assumed to be globally
continuous and linear within each element E ∈ Th, and is given by:

unh(x) =
∑

i

ψi(x)u
n
i , (3)

where uni = unh(xi) are the nodal values of the approximate solution at time tn.
Having decided to focus on piece-wise linear approximations, we aim to design
a scheme that is second order accurate.

Last, but not least, we introduce the cell residual φE(u) :

φE(u) =

∫

E

∇ · f(u) dΩ.

Cell residuals are one of the key ingredients of all residual distribution approx-
imations. This will become apparent in the following sections.

RR n° 8370



6 Warzyński & Hubbard & Ricchiuto

3 The Consistent Mass Matrix Formulation

Cell residuals introduced in the previous section are used to construct the con-
sistent mass matrix semi-discrete approximation of (1):

∑

E∈Di

∑

j∈E

mE
ij

duj
dt

+
∑

E∈Di

βiφ
E = 0. (4)

The distribution coefficients βi (i = 1, 2, 3) define the so-called distribution
strategy. Note that each set of these coefficients leads to a distinct approxima-
tion. Four examples of such distributions are given in Section 4. Here we only
mention that for conservation, in every element E ∈ Th, the following condition
has to be satisfied:

β1 + β2 + β3 = 1 ∀E∈Th.

In the case of steady state problems for which piece-wise linear approximations
are implemented, existence of C ∈ R such that:

βi ≤ C ∀E ∈ Th ∀i ∈ E, (5)

i.e. the boundedness of βi, guarantees accuracy of order two (see [4] for details).
The definition of the mass matrix, mij , that guarantees accuracy of order two
in both space and time when transient problems are considered is not unique.
Four different approaches are known, only one of which will be employed here.
A thorough overview was given in [33] in which it was observed that their
Formulation 2 (naming as in [33]) gives best (in terms of accuracy and stability)
results. For each cell E ∈ Th this mass matrix is defined as:

mE
ij =

|E|
36

(3δij + 12βi − 1) (6)

with δij Kronecker’s delta. The consistency of this mass matrix with the dis-
tribution strategy follows from the dependency of mE

ij on βi. This formulation
was originally derived by März [32]. Its construction is based on the analogy
between the linearity preserving RD, i.e. methods for which Condition (5) is
satisfied, and the stabilized Galerkin finite element methods.

4 The Runge-Kutta Residual Distribution Frame-

work

The Runge-Kutta Residual Distribution framework is derived by first integrating
(1) in time using Runge-Kutta scheme. Here we choose the second order TVD
Runge-Kutta time-stepping indicated by Shu and Osher [37], which leads to the
following semi-discrete formulation:





δu1

∆t
+ ∇ · f(un) = 0,

δun+1

∆t
+

1

2

(
∇ · f(un) +∇ · f(u1)

)
= 0,

(7)

in which δuk = uk − un is the increment during the current Runge-Kutta stage
and u1 is the intermediate Runge-Kutta estimate approximating u at time t =

Inria



Runge-Kutta Residual Distribution Schemes 7

tn+1. Using the consistent mass matrix formulation (4) to integrate both stages
in (7) in space leads to:





∑

E∈Di

∑

j∈E

mE
ij

δu1j
∆t

+
∑

E∈Di

βiφ
E(un) = 0,

∑

E∈Di

∑

j∈E

mE
ij

δun+1
j

∆t
+

∑

E∈Di

1

2
βi

(
φE(un) + φE(u1)

)
= 0.

(8)

Equation (8) defines two linear systems to be solved at each time-step. These
systems can be written in a more compact form as:

{
u1 = un − ∆tM−1φ1,

un+1 = u1 − ∆tM−1φ
2,

(9)

which is the form that was employed to carry out numerical experiments in
Section 6. In Formulation (9) M is the global mass matrix, the entries of which
are defined by Formula (6), and φ1 and φ2 are the vectors of signals each node
has received, i.e.

φ1
i =

∑

E∈Di

βiφ
E(un), φ2

i =
∑

E∈Di

1

2
βi

(
φE(un) + φE(u1)

)
.

Formulation (9) (or, equivalently, (8)) defines the second order TVD Runge-
Kutta Residual Distribution (RKRD) framework. By choosing different time-
stepping routines one obtains different frameworks. However, we believe that
our choice is appropriate. The spatial accuracy of the residual distribution
framework in the form considered here is at most two. Combining it with higher
than second order time-stepping routine is unlikely to increase the accuracy.
This was investigated in [33]. Among the second order Runge-Kutta methods
the second order TVD method (7) is the most frequent choice, which brings us
to Formulation (9). For brevity, hereafter this formulation will be referred to as
the Runge-Kutta Residual Distribution (RKRD) framework.

Let us now introduce four examples of algorithms falling into the framework
of RKRD methods. Each such scheme is constructed by first choosing a distri-
bution strategy for cell residuals. This distribution determines the β coefficients
which are then substituted into (8) to complete the construction. There is a
number of well understood and established distribution techniques for cell resid-
uals within the RD framework. An overview can be found in [19]. Here we will
focus on the

• N, LDA, SU and BLEND

schemes leading to, respectively, the

• RKRD-N, RKRD-LDA, RKRD-SU and RKRD-BLEND

methods.

The RKRD-N scheme

Among linear and positive schemes, the N scheme of Roe [36] allows the

RR n° 8370



8 Warzyński & Hubbard & Ricchiuto

largest time-step and has the smallest cross diffusion [38]. The N scheme is
usually defined with the aid of the so-called flow sensors. For each vertex i ∈ E,
the corresponding flow sensors are defined as:

ki = −a(u) · ni

2
|ei|, k+i = max(0, ki), k−i = min(0, ki), (10)

in which ni is the outward pointing unit normal vector to edge ei (opposite the
ith vertex). |ei| denotes the length of ei and a(u) = ∂f

∂u
is the flux Jacobian.

We will also need the following quantities:

N =


∑

j∈E

k+j




−1

, uin = −
∑

j∈E

Nk−j uj.

Finally, the distribution itself reads:

βN
i φ

E = k+i (ui − uin).

The N scheme is only first order accurate and hence the RKRD-N scheme cannot
be expected to be more accurate than that. Recall that consistency of the mass
matrix discussed in Section 3 is to guarantee that the accuracy remains two when
a linearity preserving scheme is applied to time-dependent problems. However,
in the case of the N scheme the linearity preservation condition (i.e. Equation
(5)) is not satisfied and hence there is no need for such a consistency condition
to be considered. Moreover, the equivalence between the stabilised Galerkin
finite element and residual distribution methods was derived on the assumption
that the distribution coefficients are bounded (linearity preservation). Again,
the N scheme is not linearity preserving and hence Formulation (6) cannot be
used. Instead, we replace the mass matrix in this case with the diagonal matrix:

mN
ij = δij

|E|
3
.

Note that an identical formulation is obtained by row-lumping the high order
mass matrix (6).

The RKRD-LDA scheme

The Low Diffusion A scheme of Roe [36], more often referred to as the LDA
scheme, like the N scheme is linear, but not positive. However, this scheme has
one nice property which the N scheme lacks, namely the linearity preservation.
This means that in smooth regions, provided that the discrete representation of
the data is linear, it is second order accurate (see [1] for details). The distribution
coefficients for this scheme are given by:

βLDA
i =

k+i∑
j∈E k

+
j

≥ 0.

The consistent mass matrix that guarantees second order of accuracy is defined
by (6).

Inria



Runge-Kutta Residual Distribution Schemes 9

The RKRD-SU scheme

The SU distribution was inspired by the close link between the residual dis-
tribution and Galerkin finite element frameworks (in particular the Streamline
Upwind Petrov Galerkin approach [8,28,29]). Its derivation can be found in [19].
The distribution coefficients are given by:

βSU
i =

1

3
+ kiτ,

in which τ is a scaling parameter, taken here as

τ =


∑

j∈E

|kj |




−1

.

This scheme is linear and linearity preserving, but not positive. As in the case
of the LDA scheme, the consistent mass matrix is defined by (6).

The RKRD-BLEND scheme

Desire to construct methods which are simultaneously linearity preserving and
positive brings the need to consider non-linear distributions. As a representative
of this class of discretisations, the BLEND scheme will be now introduced. It
is obtained by blending the two linear schemes presented so far, namely the
positive N and the linearity preserving LDA schemes. The signals in this case
are defined as:

φBLEND
i = (1− θ(uh))φ

LDA
i + θ(uh)φ

N
i ,

in which θ(uh) is a blending coefficient. In this work we propose a blend-
ing parameter allowing retention of the explicit nature of the time-marching
scheme. In particular, we propose to combine our RKRD framework with the
time-shifted residual evaluation proposed in [33]. In every cell E this blending
coefficient is defined as:

θk(uh) =

∣∣∣ΞE(k)
∣∣∣

∑
j∈E

∣∣∣ΞN(k)
j

∣∣∣

where k = 1, 2 denotes Runge-Kutta stage and ΞE(k) the total shifted residual:

ΞE(k) =

∫

E

(
δuk + ek

)
dΩ.

δuk is the so-called shifted time-operator introduced in [33]:

δuk = uk−1 − un (11)

and e1 and e2 are the corresponding evolution operators:

e1 = ∇ · f(un), e2 =
1

2
∇ · f(u1) +

1

2
∇ · f(un).

RR n° 8370



10 Warzyński & Hubbard & Ricchiuto

Finally, ΞN(k)
j is determined by signals sent by distributing the residuals with

the aid of the N scheme and is defined as:

Ξ
N(k)
j =

|E|
3

δuk

∆t
+ βN

j

∫

E

ek dΩ.

The mass matrix for the BLEND scheme is defined as:

mBLEND
ij = θ(uh)m

N
ij + (1− θ(uh))m

LDA
ij .

Note that the above formulation guarantees that the resulting system of equa-
tions is linear. Indeed, had θk(uh) depended on un+1

h (or, to be more precise,
on δuk rather than on δuk), this would not have been the case and a system
of non-linear equations would have been constructed instead. Therefore the
RKRD-BLEND scheme is not genuinely non-linear. Our aim is to construct
efficient schemes and hence the desire to avoid non-linear approximations.

5 Non-linear Systems of Equations

To demonstrate the robustness of our approach, we shall employ it to solve
a system of non-linear hyperbolic PDEs, namely the Euler equations of fluid
dynamics. The system can be written in a vector form as

∂tw +∇ · F = 0 (12)

in which w is the vector of conserved variables and F = (g,h) are the conser-
vative fluxes. In the two-dimensional setting, i.e. in R

2, these are given by:

w =




ρ
ρu
ρv

Etotal


 , g =




ρu
ρu2 + p
ρuv

u(p+ Etotal)


 h =




ρv
ρuv

ρv2 + p
v(p+ Etotal)


 .

In the above ρ is the density and u and v are the x and y components of the
velocity, respectively. The total energy Etotal is related to the other quantities
by a state equation which, for a perfect gas, takes the form:

Etotal =
p

γ − 1
+

1

2
ρ
(
u2 + v2

)
.

Here γ is the ratio of specific heats (the Poisson adiabatic constant) and p is the
pressure. Only the case of air will be considered, that is γ = 1.4.

5.1 Conservative Linearisation

In the context of residual distribution methods, the Euler equations are most
frequently solved under the assumption that the “parameter vector” of Roe [34]:

z =




z1
z2
z3
z4


 =

√
ρ




1
u
v
H


 ,

Inria



Runge-Kutta Residual Distribution Schemes 11

varies linearly within each mesh cell. In the above H stands for the total en-
thalpyH = Etotal+p

ρ
. The parameter vector z and its linearity facilitate construc-

tion of a conservative linearisation. It is a very desirable feature when dealing
with hyperbolic equations as it guarantees that the position and strength of
non-linear discontinuities in the solution are approximated correctly.

By analogy with the scalar case, the cell residual, ΦE , lies at the basis of all
RD approximations of (12):

ΦE =

∫

E

∇ ·F(wh) dΩ =

∮

∂E

F(wh) · n dΓ. (13)

n is the outward pointing unit normal vector. In order to derive a discrete
system approximating (12), one has to find an efficient and accurate way of
calculating (13). Evaluating it in terms of the parameter vector gives:

ΦE =

∫

E

(
∂g

∂z
zx +

∂h

∂z
zy

)
dΩ. (14)

Assuming that z is piece-wise linear (and hence both zx and zy are piece-wise
constant), one can further expand (14) as:

ΦE =

(∫

E

∂g

∂z
dΩ

)
zx +

(∫

E

∂h

∂z
dΩ

)
zy. (15)

From quadratic dependence of the numerical flux on z (and hence the linear
dependence of the flux Jacobian on it), ΦE can be evaluated exactly using a one
point quadrature rule:

ΦE = |E|
(
∂g(z̄)

∂z
zx +

∂h(z̄)

∂z
zy

)
(16)

in which z̄ is taken as the average of the values of z at the vertices of the
corresponding triangle E:

z̄ =
z1 + z2 + z3

3
, with zi = z(xi) and xi ∈ E. (17)

Within each cell E, the gradient of z is constant. Denoting by ni the unit
outward pointing normal to edge ei ∈ E (opposite the ith vertex), it can be
calculated using:

∇z = − 1

2|E| |ei|
3∑

i=1

zi ni.

Equation (16), gives a very simple formula for evaluating cell residuals, but
expressed in terms of Roe’s parameter vector. A similar formula in terms of the
conservative variables would be more practical and natural to work with. This
can be achieved by first noting that:

zx =
∂z

∂w
wx, zy =

∂z

∂w
wy.

and then showing that the averaged gradient of w :

ŵx =
1

|E|

∫

E

wx dΩ, ŵy =
1

|E|

∫

E

wy dΩ

RR n° 8370



12 Warzyński & Hubbard & Ricchiuto

can be evaluated as:

ŵx =
1

|E|

∫

E

∂w

∂z
zx dΩ =

1

|E|

∫

E

∂w

∂z
dΩ zx =

∂w(z̄)

∂z
zx,

ŵy =
1

|E|

∫

E

∂w

∂z
zy dΩ =

1

|E|

∫

E

∂w

∂z
dΩ zy =

∂w(z̄)

∂z
zy.

It now follows that (16) is equivalent to:

ΦE = |E|
(
∂g(z̄)

∂w
ŵx +

∂h(z̄)

∂w
ŵy

)
, (18)

which is the formula that we used to get our results.
The linearisation process described above shows how to evaluate the cell

residuals ΦE exactly. This means the procedure outlined here is conservative
as: ∑

E∈Ω

ΦE =
∑

E∈Ω

∮

∂E

Fh · n dΓ =

∮

Ω

Fh · n dΓ.

In other words, the discrete flux balance (summed up over the whole domain)
reduces to boundary contributions, even though it is evaluated numerically.

A detailed description of how to evaluate the time derivative ∂tw using the
hypothesis of linear z can be found in [4]. Here we decided to use a mixed
approach and to simplify the calculations by evaluating the time derivative
using the hypothesis of linear w rather than z.

5.2 Matrix Distribution Schemes

Conservative linearisation discussed in the previous section is simply a tool
that is implemented to calculate cell residuals when the underlying system of
PDEs being solved is the Euler equations. The next step is to distribute those
residuals among the vertices of the given cell and degrees of freedom located at
each of those vertices (four unknowns per vertex in the case of two-dimensional
Euler equations). To this end we implemented the so called matrix distribution

approach devised in [3, 40, 41]. We note that contrary to the previous section
in which the parameter vector of Roe was presented, definitions presented here
are independent of the underlying system of PDEs being discretized. The only
condition is that the underlying system is hyperbolic.

Matrix distribution schemes are constructed by heuristically generalising
their scalar counterparts to systems of equations. Only the matrix LDA, N,
and BLEND schemes will be considered here, all of which are defined with the
aid of matrix flow parameters. For every cell E ∈ Th these are defined as (cf.
Equation (10)):

Kj = −1

2
(A(w̄),B(w̄)) nj |ej |,

with w̄ being the cell average of w (cf. Equation (17)) and A and B defined as
Jacobian matrices of the fluxes:

A =
∂g

∂w
, B =

∂h

∂w
. (19)

Vector nj is the unit normal to edge ej (opposite the jth vertex) pointing out-
ward from cell E. |ej | denotes the length of ej. Note that this definition is
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Runge-Kutta Residual Distribution Schemes 13

consistent with the definition of scalar flow sensors. Indeed, if f and u from
Equation (1) are substituted into (19) then the resulting quantity will be equal
to the scalar flow sensor, ki, introduced in Section 4.

Since the system is hyperbolic, the matrix flow sensor admits real eigenvalues
and a complete set of right and left eigenvectors. In other words, it can be
diagonalised:

Kj = RjΛjR
−1
j ,

with Rj being composed of the right eigenvectors of Kj and Λj containing the
corresponding eigenvalues on its diagonal and zero elsewhere. These matrices
can be found in, for example, Section 4.3.2 of the monograph by Godlewski
and Raviart [23]. The authors also give a very detailed presentation of the
conservative linearisation for the two-dimensional Euler equations.

Let now λ1, λ2, λ3 and λ4 denote the non-zero entries of Λj (eigenvalues of
Kj). The following matrices based on Λj:

Λ+
j = diag{max(0, λk)}4k=1, Λ−

j = diag{min(0, λk)}4k=1,

and

|Λj | = diag |λk|4k=1 = Λ+
j − Λ−

j ,

can now be used to define:

K+
j = RjΛ

+
j R

−1
j , K−

j = RjΛ
−

j R
−1
j , |Kj | = Rj |Λj |R−1

j .

The above definitions are, again, consistent with the corresponding ones in the
scalar case, cf. Equation (10). It is worth recalling that for all scalar residual
distribution methods/frameworks considered here, the flow sensors are evaluated
using only the previous (already calculated) solution. This guarantees that the
resulting systems of equations are linear. Matrix flow sensors are consistent
with their scalar counterparts and hence a similar property holds in the case
considered here. We will now present particular matrix distribution schemes.

The LDA scheme The split residuals for the matrix LDA scheme are defined
as:

φLDA
i = BLDA

i φE , BLDA
i = K+

i N, N =


∑

j∈E

K+
j




−1

,

The existence of matrix product K+
i N was proven in [1, 5].

The N scheme The matrix N scheme is defined by:

φN
i = K+

i (wi − win), win = −N
∑

j∈E

K−

j wj ,

The existence of matrix N was proven in [1, 5].
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14 Warzyński & Hubbard & Ricchiuto

The BLEND scheme The matrix BLEND scheme is given by:

φBLEND
i = ΘφN

i + (I − Θ)φLDA
i ,

with I the identity matrix. The entries of the non-linear blending matrix Θ

were computed using the following formula:

Θk,k =

∣∣∣φE
k

∣∣∣
∑

i∈E

∣∣∣φN
i,k

∣∣∣
. (20)

In expression (20), index k refers to the kth equation of the system, i.e. φE
k and

φN
i,k are the kth components of vectors φE and φN

i , respectively [15]. Note that
Θ is a diagonal matrix. Depending on the problem being solved (smooth or
exhibiting shocks), one is free to either give preference to the LDA scheme for
smooth problems (set all the diagonal values to minimum), or to the N scheme
for non-smooth problems (set all the diagonal values to maximum).

The mass matrix (6) for systems is derived by applying the procedure out-
lined in [32] to systems. Since at every vertex i ∈ E there are four degrees of
freedom, the mass matrix coefficient mE

ij becomes a 4 × 4 matrix ME
ij defined

as:

ME
ij =

|E|
36

(3δijI + 12BE
i − I),

in which BE
i is the corresponding distribution matrix and I is the identity

matrix.

6 Numerical Results

We used two types of triangulations, i.e. structured (regular and isotropic)
and unstructured, examples of which are illustrated in Figure 1. Further de-
tails regarding the meshes are discussed when particular results are presented.
The linear systems resulting from the RKRD discretization were solved us-
ing PETSc [6] (see also the manual [7]) within which the ILU preconditioned
GMRES solver was used. Since it gave good results, no other solver was im-
plemented. To guarantee convergence, the relative tolerance in PETSc, i.e. the
stopping criterion, was set to 10−8 in the case of scalar equations and to 10−5

for the Euler equations. Reducing it, i.e. setting to values lower than 10−5, did
not show any noticeable improvements (qualitative nor quantitative). However,
in the case of the scalar equations the extra overhead related to setting a lower
tolerance did not have a significant effect on the efficiency and we decided to
run our experiments using the reduced value. The initial estimate was always
set to zero.

In all computations the time-step ∆t was calculated using the following
formula:

∆ti = CFL
|Si|∑

E∈Di
αE

∀i ∈ Th.

The αE coefficient is defined as:

αE =
1

2
max
j∈E

∥∥∥∥
∂f(uj)

∂u

∥∥∥∥hE , (21)

Inria



Runge-Kutta Residual Distribution Schemes 15

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Representative structured (left) and unstructured (right) grids used
for transient problems.

hE stands for the reference length for element E in the scalar case, while for
the Euler equations this coefficient was set to:

αE =
1

2
max
j∈E

(||uj ||+ aj) .

hE stands for the reference length for element E. The velocity vector uj =
(uj , vj) is evaluated at vertex j ∈ E and the speed of sound aj is given by:

aj =

√
γpj
ρj

. (22)

The Courant-Friedrichs-Lewy (CFL) number was set to 0.9 in the case of scalar
equations and between 0.1 and 0.9 in the case of the Euler equations. Precise
values are given when the corresponding results are presented.

6.1 Scalar Equations

Three distinct scalar test problems were implemented. Test Cases A and B are
linear equations with smooth initial conditions which were used to measure con-
vergence rates. Test Case C is a non-linear equation with a piece-wise constant
initial condition, the solution to which exhibits shocks and rarefaction waves.
It was employed to investigate positivity. In all experiments, the final time was
set as:

• T = 1 for Test Cases A and C;

• T = π
2 for Test Case B.

Test Case A: The constant advection equation given by

∂t u + a · ∇u = 0 on Ωt = Ω× [0, 1]
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16 Warzyński & Hubbard & Ricchiuto

with Ω = [−1, 1] × [−1, 1] and a = (1, 0). The exact solution to this problem
(which was also used to specify the initial condition at t = 0) is given by

u(x, t) =

{
z5

(
70z4 − 315z3 + 540z2 − 420z + 126

)
if r < 0.4,

0 otherwise

in which r =

√
(x+ 0.5− t)

2
+ y2, z = − r−0.4

0.4 and x = (x, y). Note that this

function is C4(Ω) regular. The boundary conditions were set to

u(x, t) = 0 on ∂Ω.

Note that for structured grids the advection velocity given above is aligned with
the mesh.

Test Case B: The rotational advection equation, given by:

∂t u + a · ∇u = 0 on Ωt = Ω× [0,
π

2
]

with Ω = [−1, 1]× [−1, 1] and a = (−y, x). The exact solution to this problem
(which was also used to specify the initial condition at t = 0) is given by

u(x, t) =

{
z5(70z4 − 315z3 + 540z2 − 420z + 126) if r < 0.4,
0 otherwise

where r =
√
(x − xc)2 + (y − yc)2 and

z = −r − 0.4

0.4
, xc =

1

2
cos

(
t − π

2

)
, yc =

1

2
cos

(
t − π

2

)
.

The boundary conditions were set to:

u(x, t) = 0 on ∂Ω.

Contrary to Test Case A, here the advection velocity is generally not aligned
with the mesh. This test case is used to make sure that results obtained for
Test Case A are not biased by the direction of the flow.

Test Case C: The inviscid Burgers’ equation is given by:

∂t u + ∇ · f(u) = 0 on Ωt = Ω× [0, 1]

with f = (u
2

2 ,
u2

2 ). As for Test Cases A and B, the spatial domain is a square:
Ω = [−1, 1]× [−1, 1]. The initial condition was set to be piece-wise constant:

u(x, 0) =

{
1 if x ∈ [−0.6,−0.1]× [−0.5, 0]
0 otherwise

The boundary conditions were set to:

u(x, t) = 0 on ∂Ω.

The solution to this problem is discontinuous and exhibits rarefaction and shock
waves [30, 31] and was used to test for positivity.
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Linear equations (Test Case A and B) were solved on structured grids. To
demonstrate robustness of the methods discussed here, in particular to show
that they can be used with both structured and unstructured discretisations
of the domain, an unstructured mesh with 26054 elements (topology similar to
that on the right of Figure 1) was used in the case of the non-linear Burgers’
equation.

The grid convergence analysis confirmed that the N scheme is only first
order accurate whereas the LDA, SU and BLEND schemes exhibit convergence
of order two. These results are presented in Figure 2. The LDA and SU schemes
gave best results, the SU scheme being noticeably more accurate than the LDA
scheme. The BLEND scheme is slightly less accurate then both of them. This
is most likely due to its nonlinear nature. These experiments were carried out
on a set of regular triangular meshes (topology as on the left of Figure 1) with
the coarsest mesh of a 14 × 14 regular grid refined 6 times by a factor 2 in
each direction. The accuracy was monitored by the convergence of the L2 norm
of error at the final time of the simulation with respect to the exact solution.
The behaviour of the L1 and L∞ norms was qualitatively and quantitatively
very similar. Switching to unstructured meshes also led to qualitatively similar
results.
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Figure 2: Grid convergence for the implicit RKRD framework for Test Cases
A (left) and B (right).

Concerning Test Case C, i.e. the Burgers‘ equation, in Figure 3 we plotted
the contours and cross sections (along the symmetry line y−x = 0.1 and y = 0.3)
of the exact solution. Next to these plots the reader will find the maximum and
minimum values of the profile. Similar plots and quantities are given for the
approximate solutions obtained with the aid of the RKRD framework, see Fig-
ures 4-7. As expected, the N scheme gave a solution free of spurious oscillations
(it is positive), though more diffusive than other schemes. The solution ob-
tained with the aid of the LDA scheme exhibits oscillations near discontinuities
(again, as expected). To show that these were not due to the poor performance
of the linear solver, two extra experiments were carried out. First, the CFL
number was decreased to 0.1, all other parameters being the same as before.
The result of this experiment is shown in Figure 8. Clearly the new solution
is much smoother. Next, the RKRD-LDA scheme was tested with CFL set to,
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18 Warzyński & Hubbard & Ricchiuto

as previously, 0.9 and the relative tolerance in PETSc decreased to 10−16. The
final residual in this case was roughly (at each time-step and at each Runge-
Kutta stage) equal to 10−18. Results are shown in Figure 9. Clearly tuning
PETSc did not help, which implies it is the scheme itself, not the linear solver,
that is unstable. The RKRD-BLEND schemes performed much better than the
RKRD-LDA scheme. Blending helped smooth the solutions out and the re-
sulting approximations have smaller under/over-shoots. Although less diffusive
then the N scheme, the BLEND scheme is not 100% oscillation-free.
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Figure 3: 2d Burgers’ equation: the analytical solution. Left: contours at time
t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.
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Figure 4: 2d Burgers’ equation: RKRD-LDA scheme. Left: contours at time
t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.
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Figure 5: 2d Burgers’ equation: RKRD-SU scheme. Left: contours at time
t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.
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Figure 6: 2d Burgers’ equation: RKRD-N scheme. Left: contours at time
t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.
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Figure 7: 2d Burgers’ equation: RKRD-BLEND scheme. Left: contours at time
t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.

Finally, we want to comment on scaling and performance of the linear solver
that was applied to solve linear systems resulting from the RKRD discretization.
As mentioned earlier, only GMRES preconditioned with ILU was used. To
guarantee convergence, the linear solver was set to iterate until the relative
tolerance,

rtol =
||r||l2
||b||l2

,
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Figure 8: 2d Burgers’ equation: RKRD-LDA scheme with CFL set to 0.1. Left:
contours at time t = 1. Middle: solution along line y = 0.3 and along the
symmetry line. Right: minimum and maximum values of the solution.
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Figure 9: 2d Burgers’ equation: RKRD-LDA scheme with relative tolerance set
to 10−16. Left: contours at time t = 1. Middle: solution along line y = 0.3 and
along the symmetry line. Right: minimum and maximum values of the solution.

reached 10−8. In the above, r is the current residual and b is the right-hand-side
vector (since the initial estimate was set to zero, b is also the initial residual). For
all test cases and for all schemes the linear solver converged rather rapidly (on
average, in less than 10 iterations) with the final residual equal to roughly 10−11.
Some sample results are given in Table 1. The extremely rapid convergence in
the case of the N scheme should come as no surprise as the resulting linear system
is diagonal. The behaviour of the iterative solver when the BLEND scheme is
used may seem odd as the number of iterations needed for convergence for the
first and the second stage of the Runge-Kutta time-stepping differs by around
100%. This is due to the fact that during the first stage the blending parameter
picks the first order N scheme most of the time and the system of equations is
very close to a diagonal matrix. The opposite situation is taking place during
the second stage.

6.2 The Euler Equations

Also in the case of the Euler equations three distinct test problems were imple-
mented:

• Double Mach Reflection (the solution exhibits strong shocks);

• Mach 3 Flow Over a Step (the solution exhibits strong shocks);
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6272 25088 100352 401408 1605632

LDA
GMRES iter. 8.52/8.52 7.95/7.95 7.76/7.76 7.74/7.74 7.63/7.63

||rF ||2 1.39e-10 1.9e-11 1.92e-11 4.8e-12 6.55e-12

BLEND
GMRES iter. 4.30/7.56 4.44/8.21 4.33/8.68 3.29/7.82 4.27/8.57

||rF ||2 9.84e-11 2.09e-11 2.18e-11 1.03e-11 1.03e-11

N
GMRES iter. 2/2 2/2 2/2 2/2 2/2

||rF ||2 3e-17 4e-17 6e-17 7e-17 6e-17

SU
GMRES iter. 7.76/7.78 6.41/6.41 6/6 5.88/5.88 5.87/5.87

||rF ||2 2.4e-11 8.78e-11 8.61e-12 1.59e-12 5.13e-13

Table 1: Performance of the GMRES solver when applied to the linear systems
resulting from the RKRD discretisations (Test Case B). The table shows the
average number of iterations it took to reach the stopping criterion during the
first/second stage of the Runge-Kutta time-stepping and the l2 norm of the final
residual (when GMRES converged at the final time-step) at the second stage of
the Runge-Kutta time-stepping (denoted by ||rF ||2). Results are given for the
meshes used earlier in the grid convergence analysis (with 6272, 25088, 100352,
401408 and 1605632 elements, cf. top row of the table).

• Advection of a Vortex (the analytic solution is C2 regular).

Shocks appearing in the Double Mach Reflection and Mach 3 test cases were
too strong for the LDA scheme to cope with. This being the case, only the
RKRD-BLEND scheme was considered in these cases. For a comparison with a
first order scheme, the Double Mach Reflection test case was additionally solved
with the aid of the RKRD-N scheme.

Double Mach Reflection

This problem was originally introduced by Woodward et al. in [42]. It con-
stitutes a very severe test for the robustness of schemes designed to compute
discontinuous flows. The flow consists of the interaction of a planar right-moving
Mach 10 shock with a 30◦ ramp. In the frame of reference used, the x axis is
aligned with the ramp. The computational domain is the rectangle [0, 4]× [0, 1],
with the ramp starting at x = 1

6 and stretching till the right-hand-side corner
of the domain (x = 4, y = 0). The simulations were run until time T = 0.2
on three unstructured meshes with topology similar to that in Figure 10. The
coarsest mesh had 7865 cells, then it was refined to give a mesh with 55927 cells
and finally the experiment was run on a mesh with 278141 elements. At the
initial state, the shock forms a 60◦ angle with the x axis. See Figure 11 for the
geometry and initial values of the solution. The CFL number was set to 0.9.

For this test case it is customary to plot contours of the density field. These
are presented in Figures 12-17. Only the region between x = 0 and x = 3 is
displayed, although the grid continues to x = 4. The air ahead of the shock
remains undisturbed and the shorter domain makes the presentation clearer. All
the considered schemes successfully captured the interaction between the shock
and the ramp (see [11, 33] and [42] for reference results). As expected, refining
the mesh increased the resolution and the accuracy with which that interaction
was resolved. In all cases, the BLEND scheme gave a solution exhibiting higher
resolution and thus capturing the shocks more accurately than the N scheme.
The coarsest mesh was insufficient to capture the contact emanating from the
triple point and refining it led to a significant improvement. In the case of the
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Figure 10: The coarsest grid for the Double Mach Reflection test case, 7865
cells.
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Figure 11: The geometry and initial condition for the Double Mach Reflection
test case.

RKRD-BLEND scheme, values on the diagonal of the blending matrix Θ (cf.
Equation (20)) were set to the maximum value (i.e. the preference was given
to the first order N scheme). Otherwise, instabilities would stop the algorithm
from completing the simulation. The result in Figure 17 is comparable with
those obtained in [11] and [42] on meshes with similar resolution.

Mach 3 Flow Over a Step

This test was originally introduced in the paper by Emery [22] and more
recently reviewed by Woodward et al. in [42]. The problem begins with uniform
Mach 3 flow in a wind tunnel containing a step. The wind tunnel is 1 length unit
wide and 3 length units long. The step is 0.2 length units high and is located 0.6
length units from the left-hand end of the tunnel (see Figure 18 for the geometry
and the initial condition). The inflow and outflow conditions are prescribed at
the left and right boundaries (y = 0.0 and y = 3.0), respectively. The exit
boundary condition has no effect on the flow, because the exit velocity is always
supersonic. Initially the wind tunnel is filled with a gas, which everywhere has
density 1.4, pressure 1.0, and velocity (3, 0). Gas with this density, pressure, and
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Figure 12: Double Mach reflection: density contours for the RKRD-N scheme.
7865 cells (the reference mesh size is h = 1/30)
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Figure 13: Double Mach reflection: density contours for the RKRD-N scheme.
55927 cells (the reference mesh size is h = 1/80)
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Figure 14: Double Mach reflection: density contours for the RKRD-N scheme.
278141 cells (the reference mesh size is h = 1/190)

velocity is continually fed in from the left-hand boundary. Along the walls of the
tunnel reflecting boundary conditions are applied. The corner of the step is the
centre of a rarefaction fan and hence is a singular point of the flow. Following
Woodward and Colella [42], in order to minimize numerical errors generated at
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Figure 15: Double Mach reflection: density contours for the RKRD-BLEND
scheme. 7865 cells (the reference mesh size is h = 1/30)
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Figure 16: Double Mach reflection: density contours for the RKRD-BLEND
scheme. 55927 cells (the reference mesh size is h = 1/80)
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Figure 17: Double Mach reflection: density contours for the RKRD-BLEND
scheme. 278141 cells (the reference mesh size is h = 1/190)

this singularity, additional boundary conditions near the corner of the step were
prescribed. For every boundary cell E located behind the step and such that
∀x ∈ E 0.6 ≤ x ≤ 0.6125, all the variables were reset to their initial value. This
condition is based on the assumption of a nearly steady flow in the region near
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the corner. The simulations were carried out on an unstructured mesh with
71080 nodes with the reference length set to approximately 1

80 at the beginning
and the end of the domain and 1

1000 at the corner of the step. The zoom of the
mesh near the singularity point is illustrated in Figure 19. The CFL number
was set to 0.5 and the values on the diagonal of the blending matrix Θ (cf.
Equation (20)) were set to maximum (i.e. the preference was given to the first
order N scheme). Otherwise, instabilities close to the corner of the step would
prevent the algorithm from completing the simulation.

Density contours at times t = 0.5, t = 1.5 and t = 4.0 obtained with the
aid of the RKRD-BLEND scheme are plotted on Figures 20-22. All the figures
show a sharp resolution of the shocks and are comparable to results that one
can find in the literature obtained on meshes with similar resolution (see, for
instance, [25, 33] and [12]).

0.6

0.2

1

3

p = 1 , ρ = 1.4 , u = 3 , v = 0

Figure 18: Geometry and the initial condition for the Mach 3 test case.

Figure 19: The zoom of the grid used for the Mach 3 Flow Over a Step test case
near the singularity point.

Advection of a Vortex

The following problem was originally introduced in [21]. Its main appeal is
the fact that the exact solution to this test case is known. The problem was
solved on a rectangular domain [0, 2] × [0, 1] with an inflow boundary on its
left side (x = 0.0), outflow at the right end of the domain (x = 2) and solid
wall boundary conditions at the bottom and the top. The density for this test
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Figure 20: Mach 3 Flow Over a Step: RKRD-BLEND scheme, density contours
at time t = 0.5, CFL = 0.5
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Figure 21: Mach 3 Flow Over a Step: RKRD-BLEND scheme, density contours
at time t = 1.5, CFL = 0.5
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Figure 22: Mach 3 Flow Over a Step: RKRD-BLEND scheme, density contours
at time t = 4.0, CFL = 0.5

was constant and set to ρ = 1.4 throughout the domain. The centre of the
vortex, (xc, yc), was initially set to (0.5, 0.5) and was then advected during the
simulation with the mean stream velocity vm = (6, 0). The flow velocity was
given by the mean vm and the circumferential perturbation, i.e. v = vm + vp,
with:

vp =

{
15 (cos(4πr) + 1) (−y, x) for r < 0.25,
(0, 0) otherwise,
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with r =
√
(x− xc)2 + (y − yc)2. The pressure, similarly to the velocity vec-

tor, was given by its mean value pm = 100 plus perturbation, i.e. p = pm + pp :

pp =

{
∆p+ C for r < 0.25,
0 otherwise,

with ∆p + C defined so that the solution is C2 regular:

∆p =
152ρ

(4π)2

(
2 cos(4πr) + 8πr sin(4πr) +

cos(8πr)

8
+ πr sin(8πr) + 12π2r2

)
.

The regularity is guaranteed by choosing C such that p|r=0.25 = pm = 100.
With the above setup the maximal Mach number in the domain is M = 0.8.
The simulation was run until time T = 1

6 .
The first set of experiments was carried out on a structured mesh with

topology as in Figure 27 with 161×81 nodes. The computations were performed
with CFL = 0.8. In Table 2, the maximum and the minimum values of the
pressure obtained are given. Isolines of the pressure inside and in the close
vicinity of the vortex are shown in Figures 24-26. The N scheme gave the most
smeared out and the least accurate result. The minimum value of the solution
in this case is much higher than the exact one. The solution obtained with
the RKRD-BLEND scheme resembles the exact solution, Figure 23, the most.
It should be noted, though, that in this section the RKRD-BLEND scheme
was set in such a way that the preference was given to the LDA scheme (cf.
Section 5.2). In [21] similar experiments for this test problem were carried out
(i.e. investigation of contour plots and the maximum/minimum values of the
numerical solutions). Values presented in Table 2 show similar behaviour, but
contour plots presented here (in particular those obtained with the RKRD-LDA
and RKRD-BLEND schemes) are much more faithful to the exact solution than
those presented in the literature [21].

Scheme N BLEND LDA exact
pmin 98.77133 93.5180 92.90018 93.213
pmax 100.1191 100.0004 100.0803 100

Table 2: The minimum and maximum value of the pressure obtained with the
aid of the LDA, N and BLEND schemes using the RKRD framework.

The grid convergence analysis was performed to investigate the order of ac-
curacy of the RKRD-LDA and RKRD-BLEND schemes. Errors were measured
by means of the usual L∞ norm and the L2 and L1 norms of the relative pressure
error:

ǫp =
pexact − papprox

pm
,

in which pexact and papprox are the values of the analytical and numerical (ap-
proximate) pressure, respectively. Instead of calculating the error in the whole
domain, only nodes inside and in the close vicinity of the vortex, i.e. nodes for
which:

r =
√
(x− xc)2 + (y − yc)2 ≤ 0.35

were considered. This approach guaranteed that there was no interference be-
tween boundary and interior nodes and that the imposition of boundary con-
ditions did not affect the results. The experiments were performed on a set

RR n° 8370



28 Warzyński & Hubbard & Ricchiuto

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

exact

Figure 23: Travelling Vortex: pressure contours for the exact solution, 25600
cells
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Figure 24: Travelling vortex: pressure contours for the RKRD-N scheme, 25600
cells

of structured and unstructured meshes (topology as in Figure 27), for which
the reference length was varied from approximately 1

10 to 1
160 in the case of

unstructured meshes and from 1
20 to 1

320 in the case of structured grids. The
CFL number in this case was reduced to 0.1. Recall that it was set to 0.8 to
produce the contour plots, i.e. Figures 24-26. Such a modification was neces-
sary in order to demonstrate the accuracy for the coarsest meshes and to obtain
results exhibiting second order convergence. The simulations were run until
time T = 0.08 rather than T = 1

6 (i.e. making the vortex travel from (0.5, 0.5)
to (0.98, 0.5) instead of (1.5, 0.5)). The results on structured and unstructured
meshes are illustrated in Figures 28 and 29, respectively. The second order
of accuracy is reached quite rapidly, but only in the L2 and L1 norms. The
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Figure 25: Travelling vortex: pressure contours for the RKRD-LDA scheme,
25600 cells
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Figure 26: Travelling vortex: pressure contours for the RKRD-BLEND scheme,
25600 cells

RKRD-LDA scheme exhibited a small drop down in the order of accuracy when
moving to the finest meshes.

7 Conclusions

In this paper we introduced a new class of numerical approximations to time-
dependent hyperbolic PDEs, namely the framework of Runge-Kutta residual
distribution methods. The proposed framework facilitates construction of sec-
ond order accurate schemes and this was confirmed experimentally. The non-
linear RKRD-BLEND scheme, although not completely oscillation-free, gave
very encouraging results in terms of monotonicity. In particular it coped well

RR n° 8370



30 Warzyński & Hubbard & Ricchiuto

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Figure 27: The coarsest structured (left) and unstructured (right) grid used in
the grid convergence analysis for the Advection of a Vortex test case.
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Figure 28: Grid convergence for the RKRD-LDA (left, CFL = 0.1) and -
BLEND (right, CFL = 0.1) schemes for the Advection of a Vortex test case.
Errors calculated within a sub-domain surrounding the vortex. Simulation run
until T = 0.08. Unstructured meshes.

with all the severe test cases based on the system of non-linear Euler equations.

The future work will include incorporating discontinuous-in-space data rep-
resentation following the methodology of [26, 27] and Abgrall [2]. This will aid
the construction of a localised approximation for which there will be no need
to solve a global linear system. Another possibility that will be considered and
which is expected to lead to a construction of a second order accurate and pos-

itive scheme is a genuinely non-linear RKRD-BLEND scheme. Recall that in
this paper the blending parameter was designed in such a way that the result-
ing discrete system of equations was linear. By substituting δuk instead of δuk

into the definition one possibly will get a positive scheme. Finally, higher order
time-stepping combined with higher order spatial representation could be used
to design a higher than second order accurate scheme.
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Figure 29: Grid convergence for the RKRD-LDA (left, CFL = 0.1) and -
BLEND (right, CFL = 0.1) schemes for the travelling vortex test case. Errors
calculated within a sub-domain surrounding the vortex. Simulation run until
T = 0.08. Structured meshes.
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