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Abstract—In this work we propose the use of a modified transformations (homography) and more generally on nonlinear
version of the correlation coefficient as a performance criterion transformations [5], [13], [14], [15].
Lor thﬁ 'r;age b"’l‘"gnrqnem prpb]emf. Jhe proposed mohdlflcatlon Once the geometric parametric transformation has been defined
as the desirable characteristic of being Invariant with respect o ajianment problem reduces itself into a parameter estimation

to photometric distortions. Since the resulting similarity measure . . .
is a nonlinear function of the warp parameters, we develop two problem. Therefore the second step towards its solution consists

iterative schemes for its maximization, one based on the forward N coming up with an appropriate performance measure, that is,
additive approach and the second on the inverse compositional an objective function. The latter, when optimized, will yield the
method. As it is customary in iterative optimization, in each optimum parameter estimates. Most existing approaches adopt
iteration the nonlinear objective function is approximated by an  measures that rely ol norms of the error between, either the
alternative expression for which the corresponding optimization hole image profilespixel-based techniquer specific feature

is simple. In our case we propose an efficient approximation that of the image profilesféature-based techniquel2]. Clearly the

leads to a closed form solution (per iteration) which is of low . !
computational complexity, the latter property being particularly 2 NOrm is by far the most popular selection so far [1], [3], [6],

strong in our inverse version. The proposed schemes are tested[7], [9], [10], [13], [15], [16]. Thel based objective function is
against the Forward Additive Lucas-Kanade and the Simul- usually referred as the Sum-Squared-Differences (SSD) measure
taneous Inverse Compositional algorithm through simulations. and the corresponding optimization problem is known as the SSD
Undv_sr noisy_ conditions and photom_etric distortions our f(_)rward technique [5], [9]. Variations of this approach have been proposed
version achieves more accurate alignments and exhibits faster for the important problem of optical flow determination [5], [7],

convergence whereas our inverse version has similar performance . .
as the Simultaneous Inverse Compositional algorithm but at a [17], and robust versions that can combat outliers were developed

lower computational complexity. in [18]. . o o o
For the optimum parameter estimation all existing objective

functions require nonlinear optimization techniques. Depending
on the adopted solution strategy, the corresponding techniques
can be broadly classified into two categories. The first includes
|. INTRODUCTION gradient based or differential approaches and the second direct
The parametric image alignment problem consists in findingsgarch techniques [12]. Gradient based schemes, because of their
transformation which aligns two image profiles. The profiles casw computational cost, are regarded as more well fitted for
either be entire images as in the image registration problem [€y applications [13], [19]. They are, however, characterized
[2], or sub-images as in the region tracking [3], [4], [5], motiorhy noticeable convergence failure whenever homogeneous areas
estimation [6], [7], [8], [9] and stereo correspondence probleand/or single slanted edges (aperture problem [20]) are present.
[10], [11]. In image registration, the alignment problem needgleaningless estimates may also arise whenever we have strong
to be solved only once, whereas in region tracking a templaigsplacement values. Direct search techniques, on the other hand,
image has to be matched over a sequence of images. Finallylin not suffer the latter drawback. Indeed these approaches can
motion estimation and stereo correspondence, the goal is to figkily accommodate large motions, since they rely on global
the correspondence for all image points in a pair of images. image searches. Unfortunately the latter require an exceedingly
The alignment problem can be seen as a mapping between ffiigh computational cost which becomes more intense in cases
coordinate systems of two images, therefore the first step towatiSine quantization needed in the case of accurate estimates [6].
its solution, is the suitable selection of a geometric transformgfforts to reduce complexity by adopting interpolation instead
tion that adequately models this mapping. Existing models as fine quantization or hybrid techniques that combine the two
basically parametric [12] and their exact form depends heavifyasses can be found in [9], [15], [21].
on the specific application and the strategy selected to solve the\ common assumption encountered in most existing techniques
alignment problem [3], [13]. The class of affine transformationig the brightness constancyf corresponding points or regions in
and in particular several special cases (as pure translation) hawe two profiles [20]. However, this assumption is valid only in
been in the center of attention in many applications [1], [2], [3kpecific cases and it is obviously violated under varying illumi-
[4], [6], [10], [11], [13]. Alternative approaches rely on projectivenation conditions. It becomes therefore clear that in a practical

This work was supported by the General Secretariat for Research aSAEiJatlon, it is important the alignment algorithm to be able to
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o1 compensate for photometric distortions in contrast and brightness

Index Terms— Image registration, motion estimation, gradient
methods, parametric motion, correlation coefficient.



have been proposed in [1], [6], [8], [10], [16]. Alternative schemeE(p) which involves thd, norm of the intensity difference of the
make use of a set of basis images for handling arbitrary lightinggo images. Since in real applications, due to different viewing
conditions [3], [22] or use spatially dependent photometric modetirections and/or different illumination conditions, the brightness
[7]. constancy assumption is violated, it is necessary to include an
In this paper we adopt a recently proposed similarity measuadditional photometric transformatiobi(1, «) that accounts for
[2], [11], the enhanced correlation coefficienas our objective the photometric changes and which is parametrized by a vector
function for the alignment problem. Our measure is characterizetl unknown parametera. A typical optimization problem has
by two very desirable properties. First, it is invariant to photomethe following form
ric distortions in contrast and brightness. Second, although itisa ) »
nonlinear function of the parameters, the iterative scheme we are%l,‘cI,}E(p’ o) = e D () = ¥ (Tu(¢(xsp), @) [ (2)
going to develop for the optimization problem, will turn out to be x€7
linear, thus requiring reduced computational complexity. Despit¥e must mention that optimization problems of the form of
the resemblance of our final algorithm to well known variant€2) are often ill-posed and it is usually necessary to impose
of Lucas-Kanade alignment method which take lighting changestra regularity (smoothness) conditions in order to obtain an
into account [10], [19], its performance, as we are going to se&gceptable solution [17].
is notably superior. We would like to mention that the enhanced Solving the optimization problem is clearly not a simple task
correlation coefficient criterion was successfully applied to thgecause of the nonlinearity involved in the correspondence part.
problem of 1-D translation estimation in stereo correspondendegomputational complexity and estimation quality of the existing
[11] and 2-D translation estimation in registration [2]. schemes depends on the spedifinorm and the models used for
The remainder of this paper is organized as follows. In Sectigvarping and photometric distortion. As far as the norm power
1, we formulate the parametric image alignment problem. Sectidé® concerned most methods uge= 2 (Euclidean norm). This
[l contains our main analytic results, namely the definition oill also be the case in our approach which we detail in the next
our objective function; the development of a forward and agection.
inverse compositional iterative scheme for its optimization, and
the relation of the proposed schemes to existing SSD techniques.
In Section IV our schemes are tested in a number of experimentdJnder the warping transformatioe(x; p), the coordinates
against the currently most popular algorithms, namely the Lucasz, k = 1,...,K of the target areaZ’ are mapped into the
Kanade and Simultaneous Inverse Compositional method. Finaftpordinatesy(p) = ¢(xx;p),k = 1,...,K. Let us define
Section V contains our conclusions. the reference vectori, and the correspondingvarped vector
iw(P) as iy = [Ir(x1) Ir(x2) - L(xg)l', iw(p) =
[Tw(y1(p)) Tw(y2(p)) -+ Iw(yx(p))), and denote with, and
Suppose we are given a pair of image profiles (intensities)(p) their zero mean versions which are obtained by subtracting
Iy (x), I, (y) where the first is theeferenceor templateimage from each vector its corresponding arithmetic mean. We then
and the second thevarped and x = [z1,z2])',y = [y1,92]’, Propose the following criterion to quantify the performance of
denote coordinates. Suppose also that we are given a sefthsf warping transformation with parameters
coordinates” = {xy, k =1, ..., K} in the reference image, which . - 2
is calledtarget area The alignment problem consists in finding Eroc(p) = ||+ — iw(p) , (3)
the corresponding coordinate set in the warped image. Of course il liw (@)l
we are not interested in arbitrary correspondences but rathemihere|| - || denotes the usual Euclidean norm.
those that are structured and can be modeled with a well definedt is apparent from (3) that our criterion is invariant to bias
vector mappingy = ¢(x;p), wherep = [p1,---,pn]" is @ and gain changes. This also suggests that our measure is going
vector of unknown parameters. Such correspondence problem$e invariant to any photometric distortions in brightness and/or
arise often in practice with the most common case being motiém contrast. Consequently, to a first approximation, we can com-
estimation in a sequence of images. In this application due to thietely disregard the photometric transformation and concentrate
relative motion between scene and camera whole (target) areakely on the geometric. It is also interesting to mention that our
appear differently in time. measure exhibits statistical robustness against outliers, as it is
Assuming that a transformation model is given (and under theported in [23]. All these positive characteristics clearly support
validity of the brightness constancy assumption), the alignmesdir expectation that the proposed criterion will turn out to be
problem is simply reduced to the problem eftimatingthe a suitable objective function for the parametric image alignment
parameterg such that problem.

Ill. PROPOSEDCRITERION AND MAIN RESULTS

Il. PROBLEM FORMULATION

Ir(x) = Iu(¢(x;p)), Vx € T. €]
o ) . A. Performance Measure Optimization
In order to have a chance of obtaining a unique solution it is

necessary that the numbeF of unknown parameters does not Once the performance measure is specified we then continue

exceed the numbek’ of target coordinates. Of course in practicé’vith its minimization in order to compute the optimum parameter
values. It is straightforward to prove that minimizifggcc(p)

we usually haveN < K which suggests that (1) is an over-, ; o ; .
determined system of (nonlinear) equations. is equivalent tomaximizingthe following enhanced correlation
oefficient[11]

Most existing algorithms attempt to compute the parameter vel
tor p by minimizing thedifferenceor thedissimilarity of the two (p) = itiw(p) _ iw(p) @
profiles. Dissimilarity is expressed through an objective function PP) = il @)~ " iw®)]’




where, for simplicity, we denote with. = i,-/|[i-|| the normalized of the objective functiorp(p) defined in (4):

version of the zero-mean reference vector, which is constant. o+ () + GE)A

Notice that even if,, (p) depends linearly on the parameter vector p(p) ~ p(Ap[p) = it D) T PI2P (8)

p the resulting objective function is still nonlinear with respect to i (B) + G(P) APl

p due to the normalization of the warped vector. This of coursghere G(p) and i, (p) are the column-zero-mean versions of

suggests that its maximization requires nonlinear optimizatidg#(p) andi. (p) respectively.

techniques. Let us from now on, for notational simplicity, drop the depen-
As it was mentioned in Introduction maximizing(p) can dence of the warped vectors pnwe can then write our previous

either be performed using direct search or gradient based @pproximation as follows

proaches. Here we are going to use the latter. As it is customary

in iterative techniques, we are going to replace the original opti- p(Ap|p) = = — —.

mization problem by a sequence of secondary optimizations. Each \/lliw 12 4 2i, GAp + Ap'G'GAp

secondary optimization relies on the outcome of its predecessomthoughp(Apm) is nonlinear inAp, its maximization is sim-

thus generating a Cham of pa_ra}meter estimates vx./hlch.hopef ll% and results in a closed-form expression. This is a consequence
converges to the desired optimizing vector. At each iteration we P the next theorem which provides the necessary result

not have to optimize the objective function, butapproximation ' ) )
to this function. Of course the approximation must be selected Theorem I: Consider the scalar function

iﬁw + ifnGAp

)

so that the resulting optimizers are simple to compute. Next, let u+ulx
us introduce the approximation we are going to apply for our fx) = v+ 2vix + XOx (10)

objective function and derive the solution that maximizes it.
Assume thatp is “close” to some nominal parameter vecto
p and writep = p + Ap, where Ap denotes a vector of per-
turbations. Lety = ¢(x; p) be the warped coordinates under thé” _
; v>viQTly (11)
nominal parameter vector and= ¢(x; p) under the perturbed.

Consider the intensity of the warped image at coordingte®id then, as far as the maximal value #{x) is concerned, we
apply a first order Taylor expansion with respect to the parametegstinguish the following two cases:

then we can write Caseu > u*Q~!v: here we have a maximum, specifically

_ 1t 09 (x; P)
Lw(y) = Iw(y) + [Vylw(y)] ——Ap, (5) u—utQ—1v)2
op max f(x) = % +utQ1lu (12)
where Vy I, (y) denotes the gradient vector of length 2 of the = ]
intensity functionZ,,(y) of the warped image, evaluated at thavhich is attainable for
nominal warped coordinateg. Since ¢ (x; p) is a vector trans- i fuo—viQ v
formation of length 2 (in order to yield the warped coordinates), x=Q w—uwQ-ivi VY
then %’;p) denotes the size x N Jacobian matrix of the R o
transform with respect to the parameters, evaluated at the nomindf@s€u < u’Q™ v: here we have a supremum which is equal
parameter values. Note that we have silently assumed that e
intensity function/,, and the warping transformatiop are of S‘ip fx)=vu'Q 'u (14)

sufficient smoothness to allow for the existence of the requiredd b hed arbitrarily cl b leci
partial derivatives. and can be approached arbitrarily close by selecting

IWhere u,v are scalars;u,v are vectors of lengthv; @ is a
square, symmetric and positive definite matrix of si¢eand
v, @ are such that

(13)

We can now apply (5) for all coordinates.,, k =1,..., K of x=Q ! {\u—v}, (15)
the target ared . This will yield the following linearized version N o
of the warped vector with parametess with ) positive scalar and of sufficiently large valfue
Proof: The proof makes repeated use of the Schwartz
iw(p) = iw(P) + G(P)Ap (6) inequality. All details are presented in the Appendix. ]

Let us now examine whether we can apply Theorem | for
where G(p) denotes the size< x N Jacobian matrix of the the maximization ofp(Ap|p) defined in (9). For this we need
warped intensity vector with respect to the parameters, evaluatgdverify the validity of (11). For the problem of interest this
at the nominal parameter valugs In order to specify exactly translates into the following inequalitii, || > i, Pgiw, Where
this matrix let us assume that the warping transformation is ¢f, — G(G*G)~'G?. This relation is trivially satisfied because
the form ¢ (x; p) = [¢1(x; ), ¢2(x; p)]", whereg:, ¢» are scalar p, is an orthogonal projection operator (i.8% = Pg and
functions. Then thék, n) element of the matrixz can be written Pt = Pg) and therefore we can writfi,||? = || Pgiw|| + ||[1 —
as Pgliwl]® > ||Pgiwl® = i Pgiw, WhereI denotes the identity

2 matrix. We have equality if and only iff — Pgliw = 0, which
GP)kn = Z ( Olu(y) X 0¢i(Xk; p) ) (7) s true whenevet,, is a linear combination of the columns 6f
i=1 9y Opn p=p Clearly the probability of this to happen is zero especially under
the presence of noise. Consequently the desired inequality, for all
practical purposes, is strict.

y=yr(P)
wherek = 1,...,K; n = 1,...,N and we recall thaty =
[y1,y2]t are the coordinates in the warped image.

We now need to compute the zero-mean version of the warpedyigre precisely we mean that for evey> 0 there exists a sufficiently
vector. With the help of (6) we obtain the following approximatiorarge scalar\. such that the resulting(x) is ¢ close to the upper bound.



TABLE |
OUTLINE OF THE PROPOSEDFORWARD ADDITIVE ECC (FA-ECC) REFINEMENT ALGORITHM

Initialization
Use reference imagg- to compute the zero-mean normalized vedtor
Initialize po and setj = 1.

Iteration Steps
Sy : | Using ¢(x; pj—1) warp I, and compute its zero-mean counterpart vetigip;_1).
Sy : | Using ¢(x; pj—1) compute the Jacobiafi(p;_1) using (7).
S3 : | Compareili, with i\ Pgi, and compute perturbationsp; either from (16) or using (17) and (18).
Sy : | Update parameter vecter; = p;_;1 + Ap;. If [[Ap;|| > T then,j + + and gotoS;; else stop.

Since we can apply Theorem |, according to (13), the optimiB. Forward Additive ECC lIterative Algorithm

ing perturbation is equal to Let us now translate the above results intoitarative scheme
b1t [ wl® =1 Poiw: in order to obtain the solution to the original nonlinear opti-
Ap=(G'G) G {er - 1w} » (18)  mization problem. Assuming that estimaig_; of the parameter
S friw =GR vector is available from iteration— 1, we can computé. (p; 1)
whenili, > il. Psiw; or according to (15), and G(p;—1); then we can approximate(p) following (8) with
o AtAn—1At [\ 3 the help ofp(Ap,|p;—1) and optimize this approximation with
Ap=(G7G) G {Al" - lw} ’ (17 respect t(mp(j. T7k1|is]will) lead to the following parameter update
when i1, < iPgiw. Where A must be selected so that the/Ule p; = pj—1 + Ap;. As it is indicated in Steppy, we stop
resulting p(Ap|p) satisfiesp(Ap|p) > p(0|p). In other words iterating whenever the norm of the updating veaigs; becomes
we would like to select a perturbation that will increase th@maller than some predefined threshold valueThe iteration
correlation and will make it non-negative. The following lemm&t€Ps are summarized in Table | and the corresponding algorithm
provides possible values fo. we call it the Forward Additive ECC (FA-ECC).
Given the numberK of pixels in the target ared, and the

Lemma |: Letiti, < itPgiw an fine the following tw . .
emma etiriu < irPgi, and define the following two parameter vector estimagg _; of length NV, the complexity per-

val for : . ; -
alues fora iteration of the proposed scheme can be easily estimated. From
. it, Poiw Y it Paiw — it 18) Table | and taking into account that usually> N, we realize
1= iLPoi, 2= i Poi, : that the most computationally demanding part is Stgpwhich

5 5 involves the computation akp; with the help of (16) or (17). As
Then for)\? AL we have thalo(Ap|p) > p(0[p); for A > A2 \ye can see, in this step we need to form the maffi&; which
that p(Ap[p) > 0; finally for A > max{A1, A2} we have both requireso(K N?) operations. This is the leading complexity in

inequalities valid. . our algorithm since all other steps require at mosg N') per
Proof: By substituting the value oAp from (17) in (9), the jieration.

objective function becomes the following function bf

(itiw — it Pgiw) + N Pgir (19) C: Inverse Compositional ECC lterative Algorithm

\/(|ﬁw||2 — it Poiw) + A2t Pgi, When the alignment problem is restricted to specific classes of
. . o ) ) parametric models, it is possible to devise more computationally
It is easy to verify that the derivative of() is non-negative, efficient versions, since certain parts of the algorithm can be

therefore f()) is increasing in\. This suggests that fox > A, computed off-line [3], [13], [15]. If for example we adopt the

f) =

we havef(A) > 0. Notice now that forx = A; we can write methodology proposed in [19] we can come up with the Inverse
e o s N 2, Compositional ECC (IC-ECC) version of our algorithm that has
iy — i Pgiw + \/(IMPG‘“’) (‘TPG‘T) B the significantly reduced complexit@ (KX N) per iteration. We
fa) = i | > p(0[p), briefly mention that the methodology found in [3], [13], [15]

(20) relies in interchanging the role &f, andi,.. Consequently matrix
with the last inequality being a consequence of applying th& becomes the Jacobian matrix of the template intensity vector
Schwartz inequality oni’Pgi, and recalling thatP; is an and since the warping function for this vector is the identity,
orthogonal projection operator. B matrix G is constant and>*G can be computed off-line. The

Remarks:One should expect that, as approaches;, to use latter is the reason behind the one order of magnitude reduction
mostly (16) since fori,, ~ i, we havei'i, ~ iti, > i’ Pgi. ~ in computational complexity. The outline of our alternative algo-
it Poiw. It is interesting however to note that if one insists omithmic version IC-ECC can be easily obtained from Table | by
using (16) at all times then, wheneviii,, < i.P;i. holds, we appropriately modifying our FA-ECC version.
end up with anegativecorrelationp(Ap|p) (this being true even  Regarding inverse algorithms (additive and compositional) as
if p(0]p) > 0) which is alwayssmaller than p(0|p). In other well as the forward compositional algorithms we should point out
words instead of increasing the correlation coefficient (as it that they can be appliednly to specific classes of warps. It is
the desired goal) in this case wlecreaset. This clearly suggest also known that inverse algorithms are more susceptible to noisy
that it is preferable to use (17) with a value bfas indicated in conditions than their forwards counterparts [13]. These important
Lemma I, Equ. (18). weaknesses limit the usage of such algorithms in practice.



D. Relation to Existing SSD Based Measures in negative correlations corresponding to local minima 4¢p)

In this subsection we are going to derive our performance mdgstéad of the desired maxima. In other words there are more
sure in a different way. This will also help us in related it to th&hances for the iterative algorithm to be locked in erroneous local
two, currently most popular SSD approaches in the literature. FgFrema, than it is the case with our approach.
our analysis we are going to assume that photometric distortion isﬁn alterpatlve measure arises if in (21) we interchange the roles
limited only to global brightness and contrast changes. Under tfiw andir, that is,
simple type of photometric changes we can define the followin . .

b ype o P J 9 E(p, a) = [larir + a2 — iw(p)*. (24)

performance measure for our parametric alignment problem
. .2 This is the approach adopted by Lucas-Kanade [10] and is known

B, a) = ariv(p) + a2 = i[I%, @D generate along with its variants the most widely used algo-
wherea = [a1 as]’ is the parameter vector for the photometrigithms in practice. Following similar steps as in the previous two
transformation. Our goal of course is to minimize the objesases, let us first minimize with respect to the two photometric
tive function with respect to all parameters. Regarding the firparameters. This yields
photometric parameter, we must point out that negative values ) - 9 9
of a; produce theinversion effect where colors are reversed. Erx(p) = J{{%E(p’a) = [fiw(@)I*{1 = p"(P)}- (25)
Consequently, if there exists the a-priori knowledge that suc
color inversion cannot take place, then it is logical to limit
only to positive values. Now if we first minimize the objective
function with respect tev;, a2 We obtain the following interesting
result

hV@e observe in the current outcome that the resulting criterion
has two terms that depend on the parameggrsnamely the
familiar part{1 — p?(p)} but also the magnitude of the warped
image ||in(p)||?> (which is not constant). Therefore minimizing
Erx(p) with respect to the parameters involves the minimization
E(p)= min E(p,a) = |i|]? {1 - [max{p(p),o}]2}, (22) of the combination of the two terms. The first observation is
120,02 that this criterion will not necessarily produce the same solution
where p(p) is the correlation function defined in (4). Noticeas our measure. Second, due to the téfim(p)||® it is clear
that since the reference image is constant, so is the fiésfitf that an iterative algorithm can lock in solutions which result in
contained in the previous relation, therefore further minimizaf,, (p)||?> ~ 0 (for example areas with uniform intensity). And
tion with respect top is equivalent to minimizing the term third, because of the terpt (p) the algorithm can lock in negative
(1 — [max{p(p), 0}]?). But this expression is decreasingyifp), correlations.
consequently we can equivalently maximize the correlation func-Despite the previous observations, the Lucas-Kanade perfor-
tion p(p), thus recovering our criterion. The final optimizationmance measure gives rise to the most popular iterative algorithms
problem makes a lot of sense. Indeed notice that sji{g@ is for the image alignment problem. For this reason we are going
free from photometric distortions (the simple type we consides use it as a point of reference and compare it against our
here) and under the knowledge that there is no color inversionsdheme. Consequently, let us present its forward additive (FA-
is quite plausible to look for the mogibsitive correlation. LK) updating version in more detail. Substituting the linear
If we drop the constraind; > 0 then the minimization of the approximation ofi, (p) in (25), then minimizing with respect
objective function in (22) is the optimization problem proposed by Ap, we obtain the following optimum updating perturbation
Fuh and Maragos [6]. By optimizing first with respectde, aa e et x
yields Apik = (G'G)'G! {WL _ iw} , (26)
Feni(p) = min B(p.a) = [W21- ()} (23) Lol
102 which is applicable at all times. Comparing (16) with (26) we
Notice that the resulting measure is now a decreasing functiasalize that the difference is only in the scalar quantity that
of |p(p)|, therefore any further minimization with respect po precedes the vectdr. As we are going to see, this seemingly
is equivalent to maximizing the absolute valygp)| of the slight variation, in combination with (17), will result in significant
correlation function. It is clear that this optimization problenperformance improvements.
does not take into account the prior knowledge that there is noFor the Lucas-Kanade approach it is possible to define a special
color inversion. In [6] maximization was achieved by adoptingSD based measure that can handle arbitrary linear appearance
an exhaustive search approach in thieD quantized parameter variations. For its minimization, an iterative algorithm that makes
space. Clearly in a non color-inversion situation such a search wille of the inverse additive update rule was proposed in [3] by
give rise to the correct maximum positive correlation (providefiager and Beluhmer. Based on the same SSD measure, Baker
of course that the warped image does not contain parts that gt@il. [19], by adopting the inverse compositional approach, pro-
the negative of the target area). However, as we mentionedpdsed several variants of the Hager-Beluhmer algorithm. Among
the Introduction, exhaustive search approaches are characterige@e alternative algorithmic schemes the Simultaneous Inverse
by high computational complexity which becomes exceedingompositional (SIC) algorithm is reported to have the best
demanding when we are interested in fine sub-pixel accuracy.performance [19]. Therefore this algorithm will also be tested
Although not proposed in [6], alternatively we could adopt afh the next section.
iterative approach similar to the one suggested for our measure.
If however we attempt to maximizép(p)| using the same
approximation as in (8), then one can show that the optimum
perturbationAp is always given by (16). As it was indicated in In this section we perform a number of simulations in order
our remarks (after Lemma [), adopting this strategy may resutt evaluate our forward FA-ECC and inverse IC-ECC algorithmic

IV. SIMULATION RESULTS
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Fig. 1. MSD in dB as a function of number of iterations under the presence of nojse 8 gray levels); (a)op = 2, (b) op = 6, (€) op = 10. In (d),
PoC as a function of, for jmax = 15.

version. As we mentioned above we will also simulate the Fothe event thagll the competing algorithms have converged. By
ward Additive LK (FA-LK) algorithmic version that copes with “convergence” we mean thafjmax) < Tvisp- In other words we
photometric distortions, and the Simultaneous Inverse Composonsider that an algorithm has converged when its squared error
tional algorithm which is considered as the most effective inverséj) at a prescribed maximal iteratiofi... is below a certain

LK scheme. For all aspects affecting the simulation experimentireshold levell'\isp.

we made an effort to stay exactly within the framework specified The second quantity which is of importance is clearly the
in [13], [19]. To model the warping process we are going tpercentage of converging (PoC) runs. Therefore we define this
use the class of affine transformations. We know that the 2duantity as being the percentage of algorithms that converge up
rigid body or similarity transformation are members of this classo a predefined maximal iteratiof..... POC will be depicted as
Furthermore the Jacobian of the affine model is a constant matiXunction of the point standard deviatiey which is the most
meaning that it can be computed off-line. Before proceeding witmportant factor that affects the performance of all algorithms.
the presentation of our simulation results let us first briefly presentSince it is only natural to prefer an algorithm that converges
the experimental setup and the figures of merit we are going daickly with high probability we propose a third figure of merit

adopt. that captures exactly this aspect. Specifically, for characteristic
_ ] ) values ofo, and thresholdg9sp, we apply the algorithms for
A. Experimental Setup and Figures of Merit a maximal number of iteration$y; 4 x. Then we compute the

In order to create a reference and a warped image we foll@umulativePoC achieved by each algorithm @saq. increases
the procedure proposed in [13]. In brief, i) be a given image from 0 to jj; 4 x. This third figure of merit is proposed here for
andx;,i = 1,2, 3 the coordinates of three points which define théhe first time.
boundaries of the desired target area. We perturb these points bin all experiments we use the “Takeo” image as the warped
adding Gaussian noisk’(0,02) (o, captures the strength of theprofile and generate a reference image as was previously de-
geometric deformation), select a vectag such that the points scribed. We make 5000 realizations of image pairs and we
xo + x;, ¢ = 1,2,3 lie in the interior of the support of the add independent and identically distributed, zero-mean Gaussian
given image, and define the parameter vegiprof the affine intensity noise of standard deviatie before running the com-
transformation that maps the original points to the translated noiggting algorithms. Although in [13], [19] we find three different
ones. We apply this transformation to all points of the target arsgenarios, here due to lack of space, we only focus in the one
to warp it. With the help of bilinear interpolation we compute thavhere we add noise to both image profiles (since this is the most
new intensities. This process defines the reference prifile).  interesting from a practical viewpoint).

For the warped image we use the given one.

All algorithms are initialized in the same way namaly = B. First Experiment
[ 001 xp]". Atiteration each algorithm pr_owdes _the parameter |, g experiment, for the intensity noise, we use a standard
estimatesp,. Iq order to_measure the quality of this estimate Weviation o; which corresponds to 8 gray levels and compare
use the following quantity the convergency characteristics of the competing algorithms for a

R ) maximum number of iterationg,.. = 15 and Tygp = lpixel?.
e(j) = gz & (xi;pr) — d(xi5 ;)| (27)  Fig.1(a)-(c) depicts the convergence profiles of the algorithms
i=1 for different values ofr,. We observe the appearance of an MSD
which quantify the existing squared error between the exdtbor value in each algorithm which is due to the presence of
warped version of the points;, ¢ = 1,2,3 and their estimated the intensity noise. Fig. 1(d) presents the corresponding PoC as a
counterparts. function of .

By averaging this error over many realizations that differ in As we can see each algorithm attains a different MSD floor
the point noise realization, we can compute the Mean Squasmaue, with our FA-ECC version converging to the lowest one and
Distance (MSD) value. Obviously by computing this value in eachith a rate which can be significantly better. Specifically, for weak
iteration of an algorithm we form a sequence that captures geometric deformations all algorithms reach almost comparable
learning ability. Of course it is unrealistic to expect that anyfloor values and have comparable convergence rates with FA-
of the algorithms will converge at all times. This is particularhECC being slightly faster than its rivals. However in the case of
apparent for high values ef,. For this reason, in order to quantifymedium to strong deformations, FA-ECC reaches an MSD floor
the algorithmic performance in a meaningful way and have thalue which is 3-db lower than the inverse versions and slightly
right picture of the convergence characteristic, we adopt the idesver than the LK algorithm. On the other hand convergence is
followed in [13]; namely to define the MSD buabnditionedon significantly superior compared to all other algorithms. Regarding
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our inverse IC-ECC version, as we can see, it has comparablesmatch Under the second scenario, all algorithms achieve the
performance as the SIC algorithm. The same characteristics apgdyne MSD floor value. As far as PoC is concerned we observe
also to PoC where FA-ECC exhibits a larger percentage afrather steady and robust behavior for the forward algorithms
successful convergences while IC-ECC matches the performanceler both scenarios while inverse schemes, under first scenario,
of SIC. Regarding the third figure of merit, we applied thexhibit a significant performance reduction as compared to the
algorithms for a maximal number of iteratiorig;,,, = 100. In  second one.

order to test the accuracy of the alignment we selected a thresholéinally we present the corresponding curves of the third figure
value Tyisp = (1/18 pixel)? (i.e., -25dB) assuring thafyisp is  of merit in Fig.3(b) under the first scenario, since under the
higher than the MSD floor value of all competing algorithmssecond one both inverse and FA-ECC algorithm exhibited a
Fig. 3(a) depicts the corresponding curves for three values,of similar performance. As in the previous experiment we permit
As we can see, for weak deformations all algorithms are almastmaximal number of 100 iterations with a threshéigsp =
completely successful after the 10-th iteration. When however t{ie/10pixel)? (i.e., -20dB), since now we have higher MSD
geometric deformation becomes stronger, FA-ECC outperforfisor values. Again FA-ECC outperforms the other algorithms.
its competitors significantly. Again IC-ECC is comparable to SIGComparing Fig. 3(a) with Fig.3(b) we can also notice a robust
and consistent behavior of FA-ECC with respect to intensity noise
and photometric distortion model mismatch.

In summary, we can safely conclude that our proposed schemes
are preferable to the corresponding variants of the LK algorithm.
Clearly our forward version is more effective than the forward
LK scheme regarding both speed and percentage of convergence.
On the other hand, our inverse version has performance which is
= comparable to the performance of SIC which is the best inverse

» ™ version of the LK algorithm. However the point that makes our

PoC (%)
PoC (%)
2

40 60
Iteration

40 60
Iteration

. @ ) IC-ECC version preferable to SIC is the reduced computational
Fig. 3. PoC as a function of iteration (a) noisy images,= 8 gray levels complexity which isO(K N) as compared to SIC which requires

and (b) noisy ¢; = 8 gray levels) and photometrically distorted images O(K(N + 2)2) operations.

) We should also mention that we evaluated the algorithms under
C. Second Experiment diverse uncertainty conditions. Only in the case of zero intensity

In this simulation we consider the realistic case of photdwise (in other words when the warped image follows the warping
metrically distorted images under noisy conditions. We considerodel exactly), we observed that the performance of both inverse
two different scenarios. In the first we impose the photometridgorithms and the FA-ECC to be similar and outperforming in all
distortion on the reference image, while in the second on tfigures of merit the LK algorithm. This performance difference
warped one. Since all competing algorithms perfectly compens&h in fact become quite significant if the geometric deformations
for linear photometric distortions, we consider a nonlinear trangre strong (f.es;, > 6). However due to lack of space we cannot
formation of the form/(x) «— (I(x) -+ 20)%%, which is applied present these result in more detail.
to the intensity of each image pixel. We repeat the same set of
S|mulat|on§ a§ in the first experlr.nenF, only nowlwe impose the V. CONCLUSIONS
photometric distortion before adding intensity noise.

The results we obtained are shown in Fig. 2. As we can seeln this paper we proposed a ndw based iterative algorithm
the performance of our forward algorithm seems to be almdsiilored to the parametric image alignment problem. The new
unaffected, achieving under both scenarios almost the same aodeme aimed at maximizing the Enhanced Correlation Coeffi-
the lowest MSD floor value. On the other hand, the performancent function which constitutes a measure that is robust against
of both inverse algorithms and FA-LK scheme seems to be vitajeometric and photometric distortions. The optimal parameters
affected. Comparing Fig. 2 to Fig. 1 we observe that underere obtained by solving iteratively a sequence of approximate
the first scenario FA-ECC performs even better than before. monlinear optimization problems which enjoy a simple closed
fact the MSD floor value is now 3-dB and 5-dB lower than théorm solution with low computational cost. In addition, based on
value attained by the FA-LK algorithm and the inverse algorithnbe inverse compositional update rule we developed an efficient
respectively. We should note here, that the MSD floor is dumodification of the forward algorithm. Our iterative schemes
not only to the intensity noise but also to the photometnimdel were compared against two variants of the LK algorithm through



numerous simulations. Under ideal conditions the proposed #te desired upper bound arbitrarily close (but there is no finite
gorithms and the Simultaneous Inverse Compositional algorithior which we can attain it exactly!). This concludes the prdif.
exhibited similar performance outperforming the forward LK
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