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Abstract
Static deflection as well as free and forced large-amplitude vibrations of thin rectangular rubber plates under
uniformly distributed pressure are investigated. Both physical, through a neo-Hookean constitutive law to
describe the non-linear elastic deformation of the material, and geometrical non-linearities are accounted
for. The deflections of a thin initially flat plate are described by the von Kármán non-linear plate theory. A
method for building a local model, which approximates the plate behavior around a deformed configuration,
is proposed. This local model takes the form of a system of ordinary differential equations with quadratic
and cubic non-linearities. The corresponding results are compared to the exact solution and are found to be
accurate. Two models reflecting both physical and geometrical non-linearities and geometrical non-linearities
only are compared. It is found that the sensitivity of the deflection to the physically induced non-linearities
at moderate strains is significant.
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Introduction

Shell-type structures are widely used in engineering and are frequently subjected to periodic external
loadings. In the vast majority of applications, classical materials like steels are considered. Nev-
ertheless, in modern bio-engineering for instance, numerical predictions require the simulation of
biological materials involving more sophisticated properties. Not only the geometrical non-linearity
(the non-linearity of strain-displacements relations), but also the physical or material non-linearity
(non-linearity of stress-strain relations) should be addressed. Reviews on geometrically non-linear
vibrations of shells and plates can be found in [11, 26, 27, 3].

Several models describing the physical non-linearity aspect are available. A simple phenomeno-
logical model was developed by Kauderer, yet ignoring the framework of the widely accepted strain
energy formulation [23]. This model is suitable for the description of non-linear elasticity of some
metals, like copper for instance, and recent associated applications for dynamical problems of shell-
type structures can be found in [6, 8]. Nevertheless, models of hyperelasticity are preferred [23] for the
description of rubber-like materials and soft biological tissues. However, due to the complicated nature
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of the corresponding derivations, only a few studies on the dynamics of shell and plate structures
made of hyperelastic materials are reported [15, 16]. A majority of these studies deal with simple
geometries (spherical and circular cylindrical shells, circular membranes) and assume that the shape
after deformation is identical. This allows for the derivation of closed-form expressions.

The first investigation on the radial oscillations of circular cylindrical tubes was undertaken by
Knowles [20, 21]. He considered tubes made of isotropic incompressible hyperelastic material and
reduced the equations of motion to second order ordinary differential equations. In the same line,
the paper by Akkas [1] deals with large-amplitude normal oscillations of a spherical membrane
subjected to a uniform inflating step-pressure. It is found that a dynamic snap-out instability problem
can occur for some values of the material coefficients. The relationship between the static behavior
of the membrane and the dynamic instability is discussed; below the dynamic snap-out pressure
threshold, the motion of the spherical membrane is always periodic. Finite-amplitude vibrations
of non-linearly elastic incompressible spherical and circular cylindrical shells are mathematically
examined by Calderer [10]. Due to the considered geometry it is assumed that the deformed structures
are still a spherical or circular cylindrical shell, respectively. Under this assumption the radial periodic
vibrations are investigated. Verron et al. [31] explored the dynamic inflation of spherical membranes
of Mooney–Rivlin material for which a maximum in the frequency of oscillation versus pressure is
detected.

Akyuz and Ertepinar [2] investigated cylindrical shells subjected to traction. Unlike other exist-
ing works in the literature, hyperelasticity is implemented through a Levinson-Burgess polynomial
compressible material: this model is very similar to neo-Hookean one and coincides with it for incom-
pressible materials. The static equilibrium in the finite deformation framework is first investigated, in
the vicinity of which small-amplitude free vibrations are explored through small perturbation theory.
The governing equations are solved numerically using a shooting method and the associated results
compare well with the finite element solution. The condition of existence of periodic vibrations with
respect to the geometrical and material shell properties is obtained.

Ref. [18] introduces an approximate non-linear ordinary differential equation for the displacement
due to a sudden external pressure of an incompressible spherical membrane made of hyperelastic
material modeled with the Ogden law. Below a critical pressure for which structural failure is observed,
the dynamic response of the membrane is a non-linear periodic oscillation. In the same spirit, the work
of Ren [28] determines the critical suddenly exerted pressure for an incompressible neo-Hookean
tube. Below the critical pressure, the fixed point is a center surrounded by an homoclinic orbit and
the shell undergoes non-linear periodic oscillations. However, above this threshold, the fixed point
becomes an unstable saddle node, the phase-plane portrait features a non-closed curve and the shell’s
displacements ultimately diverge.

Haslach and Humphrey [17] studied the transient vibrations of an isotropic incompressible hypere-
lastic spherical membrane in a fluid under initial perturbation. The membrane is assumed to deform
uniformly and keeps a spherical shape for all times. A single non-linear ordinary differential equation
driving the dynamics of this membrane is solved. A few material models, such as the Fung and Skalak
biological model as well as the neo-Hookean, Mooney-Rivlin, Alexander and Ogden rubber models
are considered in order to clarify which one is the most suitable for the description of the dynamic
behavior of soft biological tissues. It is shown that rubber structures exhibit bifurcations in their
dynamic response that are not present in traditional models for biological tissues.

In works of Zhu et al., the oscillations of a membrane [37] and a balloon [36] made of dielectric
elastomer are studied. The non-linearly elastic behavior of the material is derived from an incom-
pressible neo-Hookean strain energy density with an additional term corresponding to the dielectric
energy. In [37], the superharmonic, harmonic, and subharmonic resonances, caused by an external
sinusoidal pressure are found in agreement with experimental data previously obtained by Fox and
Goulbourne [14, 13]. In [36], the stability of the static equilibrium is investigated along with the
surrounding oscillations. It is found that the vibration amplitude of the balloon may jump at certain
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values of the excitation frequency, exhibiting hysteresis. However, only a low-dimensional model is
used in this study. Complementary results on the dynamics of a dielectric incompressible neo-Hookean
spherical shell are reported in [33]: the system is more stable with an increasing thickness of the shell.

Yuan et al. [35] studied the dynamic inflation of infinitely long cylindrical tubes. The inner surface
of the tube is subjected to periodic step pressures. The incompressible Ogden material model is
implemented and the strain energy density function reduces to neo-Hookean type. Sensitivity of the
dynamics to the material parameters, the structure geometry, and the applied pressure is discussed.
In [34], the authors explored the dynamic symmetric response of a spherical membrane made of
incompressible material with the Rivlin-Saunders constitutive law. The membrane is subjected to
periodic step loads on its inner and outer surfaces. A spherically symmetric deformation is assumed
and the expressions for principal stretches are derived. The corresponding differential equation that
approximately drives the normal oscillation of the spherical membrane is obtained. It is found that
periodic oscillations do not exist and that the shell will be fractured ultimately with time when the
prescribed external load exceeds a critical threshold that depends on material parameters.

Ogden and Roxburgh studied plane vibrations superimposed to the pure homogeneous deformation
of a rectangular plate made of incompressible [24] and compressible [29] hyperelastic materials. The
sensitivity of the frequency spectrum to the pre-stress and geometrical parameters for a plane-strain
plate problem is provided for neo-Hookean, Varga and Blatz-Ko hyperelastic laws.

Gonçalves et al. [16, 30] investigated linear and non-linear free and forced vibrations of pre-
stretched annular hyperelastic membranes. The membrane material is assumed to be incompressible,
homogeneous, isotropic, and is described by a neo-Hookean constitutive law. The in-plane displace-
ments are ignored while the transverse displacement field is approximated by a series of natural modes.
Both studies report that a single degree-of-freedom model correctly predicts large vibrations. It is also
shown that (i) a lightly stretched membrane displays a highly non-linear hardening response, (ii) the
non-linearity decreases as the stretching ratio increases, and (iii) the response becomes essentially
linear for a deformed radius of at least twice the initial value. In Ref. [16], a comparison is conducted
for different hyperelastic models such as the Mooney-Rivlin, Yeoh, Ogden and Arruda-Boyce models.
The results show that the membrane exhibits the same non-linear frequency-amplitude behavior for all
tested models, with just a slight difference for the Ogden model.

This literature review highlights the fact that previous works, in a vast majority, employ incompress-
ible neo-Hookean laws to describe rubbers’ non-linear elastic behaviors: accordingly, this model is also
considered in the present investigation, which extends hyperelastic plate finite amplitude bending vibra-
tions to commonly ignored in-plane displacements. Also, the common and simplifying pre-assumed
shape of deformation is discarded here since potential internal resonances can combine several modes
in the sought vibratory signatures, making the targeted deformation pattern quite complicated [3]. The
present study attempts to overcome the above-mentioned restriction for the large-amplitude static as
well as vibratory investigations of a rubber rectangular plate. The von Kármán model is exploited to
capture geometrically non-linear bending as it is reputed to be sufficiently accurate for thin isotropic
plates [3]. The associated governing equations neglect shear strains and rotary inertia; in addition,
thickness stretching/compression cannot be readily recovered and the transverse normal strain has to
be determined through additional considerations. Accordingly, the absence of transverse normal stress
together with an incompressibility constraint are utilized within a method that iteratively builds a local
model capable of accurately approximating the plate’s vibratory response around a static deformed
configuration. A comparison with a purely geometrically non-linear model is carried out.

1. Lagrange equations
The static and dynamic deflections of a thin rubber plate are considered and the well-known Lagrange
framework is used to derive the corresponding governing equations of motion:

d
dt

� @L
@ Pqi

�
�
@L

@qi
D Qi (1)
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where L D T �… is the Lagrange’s functional of the system of interest; it comprises the potential
energy of elastic deformation … D

”
V W dv, integral of the strain energy density W over the volume

V , and the kinetic energy of the plate, T expressed as [3]:

T D
1

2
�h

“
S

. Pu2
C Pv2

C Pw2/ds (2)

where S is the surface area of the middle plane of the plate; � is the pass-density per unit length
of the plate material, and h is the thickness of the plate. In Eq. (1), the displacements u.x; y; t/,
v.x; y; t/, and w.x; y; t/ live in a three-dimensional Euclidian space and are defined in a Cartesian
frame .x; y; t/: they will soon be expressed in terms of the generalized coordinates qi . The generalized
forces are denoted Qi .

2. Geometrically non-linear strain-displacement relationships
The geometrical non-linearity of the system is reflected through the non-linear von Kármán plate
theory [3] yielding the following strain-displacement relationships:

�1 D
@u

@x
C
1

2

�@w
@x

�2
� z

@2w

@x2
(3)

�2 D
@v

@y
C
1

2

�@w
@y

�2
� z

@2w

@y2
(4)

�12 D
@u

@y
C
@v

@x
C
@w

@x

@w

@y
� 2z

@2w

@x@y
(5)

where �1, �2, and �12 are the components of the Lagrange strain tensor for thin plates. The displace-
ments are expanded into truncated series:

w.x; y; t/ D

NWX
iD1

qi .t/Wi .x; y/ (6)

u.x; y; t/ D

NUX
iD1

qiCNW
.t/Ui .x; y/ (7)

v.x; y; t/ D

NVX
iD1

qiCNWCNU
.t/Vi .x; y/ (8)

where Wi .x; y/, Ui .x; y/, and Vi .x; y/ are admissible space functions that satisfy the homogeneous
boundary conditions of the problem. The eigenmodes of the underlying linear system are convenient
candidates since they form a complete set. The total number of degrees of freedom is given by
N D NW CNU CNV .

3. Physical relations

3.1 Strain energy density
The non-linear elasticity of natural rubbers shall be described by a neo-Hookean constitutive law. In
this work, the strain energy density for compressible neo-Hookean material proposed by Bower [7] is
preferred:

W D
E

4.1C �/
. NI1 � 3/C

E

6.1 � 2�/
.J � 1/2 (9)

where NI1 D I1J
� 2

3 , both I1 and J respectively being the first invariant and the square root of the
third invariant of the right Cauchy-Green deformation tensor C; E and � are the Young’s modulus
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and Poisson’s ratio of plate material, respectively. In case of fully incompressible material (i.e. when
J ! 1; � ! 0:5) the second term in (9) is well defined and tends to zero [23, 7].

Results stemming from the neo-Hookean strain energy density (9) and the usual linear strain
energy density—i.e. linear elasticity—are compared. For thin plates, the linear strain energy density
has the following expression [3]:

W D
E

4.1C �/

� 2

1 � �
.�2

1 C �
2
2 C 2��1�2/C �

2
12

�
(10)

In this context, space and time components of the solution can be uncoupled and the Lagrange
equations become simple ordinary differential equations with quadratic and cubic non-linearities [3]:

Rqn C 2�n�n Pqn C

NX
iD1

kniqi C

NX
i;jD1

knij qiqj C

NX
i;j;lD1

knij`qiqj q` D Qn; n D 1; : : : ; N (11)

where �n is the natural frequency of the n-th linear mode, and �n, the corresponding damping ratio;
kni , knij , and knijl are known coefficients resulting from the integration in space. The generalized
forces Qn are calculated by differentiation of the virtual work done by external forces. Governing
equations of type (11) are well known and several dedicated techniques are available to find their
numerical solution [3].

3.2 Invariants of the Cauchy-Green deformation tensor
In order to derive the expressions of the right Cauchy-Green deformation tensor C invariants in terms
of the displacements, the Lagrange strain tensor is introduced in Cartesian coordinates:

E D
1

2

0@2�1 �12 0

�12 2�2 0

0 0 2�3

1A (12)

Expressions of �1, �2, and �12 (but not �3) are listed in equations (3), (4), and (5), respectivly. The
right Cauchy-Green deformation tensor C is then defined as follows [7]:

C D 2EC I D

0@2�1 C 1 �12 0

�12 2�2 C 1 0

0 0 2�3 C 1

1A (13)

and its three invariants are easily expressed in terms of the Lagrange strain tensor components:

I1 D tr.C/ D 2.�1 C �2 C �3/C 3 (14)

J 2
D jCj D .2�3 C 1/

�
.2�1 C 1/.2�2 C 1/ � �

2
12

�
(15)

NI1 D I1J
� 2

3 D
2.�1 C �2 C �3/C 3

3

q
.2�3 C 1/

�
.2�1 C 1/.2�2 C 1/ � �

2
12

� (16)

3.3 Transverse normal strain
The expression of the transverse normal strain �3 with respect to the plate’s displacements u, v, and
w has to be determined to later be inserted into Eqs. (14)-(16). In order to derive its expression, two
approaches based on distinct assumptions are proposed. The first one uses the hypothesis of zero
transverse normal stress, which is a common assumption in thin plates theory. The second approach
relies on the incompressibility condition of the plate material.
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3.3.1 Assumption of zero transverse normal stress
The condition of zero transverse normal stress is enforced by use of the second Piola-Kirchhoff stress
tensor S whose components are:

Sij D 2
@W

@Cij
D
@W

@Eij
(17)

where Cij and Eij are the components of tensors C and E, respectively. The transverse normal strain
�3 is deduced from the condition S33 D 0 where S33 is expressed as follows:

S33 D
@W

@E33
D
@W

@�3
D

E

4.1C �/

@ NI1

@�3
C
E.J � 1/

3.1 � 2�/

@J

@�3
(18)

The derivatives of the invariants in terms of strain tensor components read:

@ NI1

@�3
D
@I1

@�3
J�

2
3 �

2

3
I1J
� 5

3
@J

@�3
D 2J�

2
3 �

2

3
I1J
� 5

3
.2�1 C 1/.2�2 C 1/ � �

2
12

J

D 2J�
2
3

�
1 �

I1

�
.2�1 C 1/.2�2 C 1/ � �

2
12

�
3J 2

� (19)

and:

@J

@�3
D

2
�
.2�1 C 1/.2�2 C 1/ � �

2
12

�
2

q
.2�3 C 1/..2�1 C 1/.2�2 C 1/ � �

2
12/

D
.2�1 C 1/.2�2 C 1/ � �

2
12

J (20)

Then, Eq. (18) takes the form:

S33 D
�
.2�1 C 1/.2�2 C 1/ � �

2
12

�� E

3.1 � 2�/

J � 1

J
�

EJ�
2
3

2.1C �/

I1

3J 2

�
C

EJ�
2
3

2.1C �/
(21)

Since rubber has very low compressibility [7], it seems reasonable to assume that the invariant J ,
which captures the volume change, is close to unity. Accordingly, J is rewritten as J D 1 C J 0

yielding:

S33 D
E

2.1C �/
.1C J 0/�

2
3

�
1 �

I1

�
.2�1 C 1/.2�2 C 1/ � �

2
12

�
3.1C J 0/2

�
C

E

3.1 � 2�/

J 0
�
.2�1 C 1/.2�2 C 1/ � �

2
12

�
.1C J 0/

(22)

where J 0 is assumed to be small. This allows for an expansion of (22) as a truncated series in J 0:

S33 D
E

2.1C �/

�
1 �

2

3
J 0 C

5

9
J 02 C

40

81
J 03 �

110

243
J 04 C : : :

�
��

1 �
I1

3

�
.2�1 C 1/.2�2 C 1/ � �

2
12

�
.1 � 2J 0 C 3J 02 � 4J 03 C 5J 04 C : : :/

�
C

E

3.1 � 2�/

�
.2�1 C 1/.2�2 C 1/ � �

2
12

�
.J 0 � J 02 C J 03 � J 04 C : : :/

(23)

Invariant J 2 is recast in the following form

J 2
D .2�3 C 1/

�
.2�1 C 1/.2�2 C 1/ � �

2
12

�
D 1C 2.�1 C �2 C �3/C 4.�1�2 C �1�3 C �2�3/ � �

2
12 C 8�1�2�3 � 2�

2
12�3

D 1C JA

(24)
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We can subsequently expand J around unity:

J D
p
1C JA � 1C

JA

2
�
.JA/2

8
C
.JA/3

16
�
5.JA/4

128
C : : : (25)

and then approximate J 0 as follows:

J 0 �
JA

2
�
.JA/2

8
C
.JA/3

16
�
5.JA/4

128
C : : : (26)

The transverse normal strain �3 is finally represented as a polynomial in the strain components �1, �2,
and �12:

�3 D

X
i2f1;2;12g

�i�i C

X
i;j2f1;2;12g

�i;j �i�j C

X
i;j;k2f1;2;12g

�i;j;k�i�j �k C

X
i;j;k;m2f1;2;12g

�i;j;k;m�i�j �k�mC : : : (27)

In (27), there is no constant term because �3 D 0 when �1 D �2 D �12 D 0.
Expressions for JA, J 0, and �3 given in (25), (26), and (27) are inserted into (23) and the

coefficients associated to the strain terms of the same power are balanced leading to a system of linear
algebraic equations in the unknown �-coefficients defined in Eq. (27). These systems and expressions
for the coefficients are detailed in Appendix A.

3.3.2 Assumption of incompressibility
The incompressibility condition yields J D 1 [23]. By assuming the absence of hydrostatic pressure,
the expression of �3 can readily be deduced from Eq. (15):

�3 D
1

2
�
.2�1 C 1/.2�2 C 1/ � �

2
12

� � 1
2

(28)

Since the Poisson ratio is � D 0:5 for an incompressible material, the corresponding neo-Hookean
strain energy density (9) for thin plates becomes:

W D
E

3

�
�1 C �2 C

1

2
�
.2�1 C 1/.2�2 C 1/ � �

2
12

� � 1
2

�
(29)

The series expansion of (29) up to the second powers in the strain components coincides with
expression (10) (see Appendix B for details). That is, for small strains, both theories give identical
equations which also means that these theories are consistent.

The expansion of (28) in a series around zero has the form:

�3 �� .�1 C �2/C 2.�
2
1 C �

2
2 C �1�2/C

�2
12

2
� 4.�3

1 C �
3
2 C �

2
1�2 C �1�

2
2/ � 2.�1�

2
12 C �2�

2
12/

C 8.�4
1 C �

4
2 C �

3
1�2 C �1�

3
2 C �1�2�

2
12/C 6.�

2
1�

2
12 C �

2
2�

2
12/C

�4
12

2
(30)

Surprisingly, the coefficients in (30) coincide with the coefficients of expansion (27) when it is
assumed � D 0:5. Accordingly, a quite interesting feature is observed: both approaches lead to the
same expansion for incompressible materials.

4. Local expansion of the neo-Hookean strain energy density
Expression (29) is not a polynomial in strains, which essentially complicates the investigation of the
plate’s behavior. Solutions of such non-linear systems are conceivable only numerically, and still for
low-dimensional models. As a first approach, substitution of the truncated series (30) into (29) allows
one to obtain W in a polynomial form and, hence, the Lagrange equations in this case are ordinary
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differential equations with higher-order (higher than three) polynomial non-linearities. However,
higher-order equations are not desirable since their integration quickly becomes tedious as their size
blows up with the number of degrees of freedom N .

In order to simplify the analysis, expression (29) is first transformed. In particular, governing
equations in the form of ordinary differential equations with polynomial non-linearities of order not
higher than three are targeted. It is worth noting that such a model will capture the dynamic response
of the plate in the vicinity of a certain static configuration only. A certain static deformed configuration
is supposed to be known and identified by a set of generalized coordinates q.0/ D fqi

.0/giD1;:::;N

around which a new deformed configuration q D fqigiD1;:::;N is to be calculated:

q D q.0/
C ˛q.1/ (31)

where ˛ � 1 is a small formal parameter. The strain components can be expressed as:

�1 D �
.0/
1 C ˛�

.1/
1 I �2 D �

.0/
2 C ˛�

.1/
2 I �12 D �

.0/
12 C ˛�

.1/
12 (32)

In expressions (32), all ˛-dependent terms are included in ˛�.1/
i and the quantities �.0/

1 , �.0/
2 , �.0/

12 do
not depend on the unknown generalized coordinates q.1/.

Expression (29) is then expanded as a series in the small parameter ˛, keeping terms up to the
second power:

W.q.0//D
E

3

�h
�

.0/
1 C�

.0/
2 C

1

2„
�
1

2

i
C˛

�
�

.1/
1 C�

.1/
2 C

�

„2

�
C˛2

�4�2�.4�
.1/
1 �

.1/
2 �.�

.1/
12 /

2/„

2„3

��
(33)

where:

„ D .2�
.0/
1 C 1/.2�

.0/
2 C 1/� .�

.0/
12 /

2
I � D �

.1/
1 C �

.1/
2 C 2�

.0/
1 �

.1/
2 C 2�

.0/
2 �

.1/
1 � �

.0/
12 �

.1/
12 (34)

The small parameter ˛ is only formal. In the sequel, the additional deflection q.1/ is assumed to be
small with respect to q.0/.

The expression in square brackets in (33) does not depend on the generalized coordinates and
vanish during differentiation. The denominators in (33) do not depend on the unknown vector of
generalized coordinates q.1/ and Eq. (33) is thus polynomial in qi

.1/. Once the space and time
participations are separated, Eqs. (11) take the following form:

Rq.1/
n C2�n�n Pq

.1/
n C

NX
iD1

kni .q.0//q
.1/
i C

NX
i;jD1

knij .q.0//q
.1/
i q

.1/
j C

NX
i;j;`D1

knij`.q.0//q
.1/
i q

.1/
j q

.1/

`
D Qn

(35)

for n D 1; : : : ; N . These equations stand for the so-called local model which describes the behavior
of the plate around the deformed static configuration q.0/. The latter is calculated through a sequence
of steps that are now detailed. The external static load is indicated by a single-value parameter P and
a deformed configuration q.0/ is known by assumption:

Step 1. The static counterpart of (35) where Rq.1/ D Pq.1/ D 0 is built according to the strain energy
density (33). A total of N C 1 unknowns (N generalized coordinates stored in q.1/ together
with the applied load P ) are identified.

Step 2. By choice, the first generalized coordinate is enforced to be q1
.1/ D H withH � q1

.0/. The
number of equations balances the number of unknowns.
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Step 3. The system of equations is solved using the Newton-Raphson method and generalized coordi-
nates qi

.1/, i D 2; : : : ; N as well as the applied force P are determined.

Step 4. The static configuration is updated through q.0/  q.0/ C q.1/ before going back to Step 1
of the next iteration.

The iterations continue until a desired deflection is reached. Overall, the above strategy is a sequential
Newton-Raphson procedure in which, one of the initial unknowns, namely q.1/

1 is iteratively increased
and advantageously replaced by the applied external pressure P in the list of unknowns.

5. Exact low-dimensional models with both material and geometric non-linearities
Here we describe an approach that allows one to check the relevance and accuracy of the approximate
numerical solution obtained with the local models method previously detailed. This approach consists
of the numerical solution to the Lagrange Eqs. (1) in the static case with strain energy density (29).
Since the latter is a smooth function in the generalized coordinates, integration and differentiation
commute:

@

@q

�•
V

W dv
�
D

•
V

@W

@q
dv D Q (36)

For a prescribed pressure P , the current numerical solution q is substituted into (36). Accordingly,
@W
@qi

becomes a function of the space coordinates only and it is possible to perform the full three-
dimensional numerical integration of Eqs. (36). The resulting system of algebraic equations is solved
through the Newton-Raphson method and the corresponding solution is named the exact solution
hereinafter. However, system (36) is computationally expensive and it is possible to solve it only for
few degrees of freedom.

6. Numerical example

6.1 Static analysis
As an example, a simply supported rectangular rubber plate illustrated in Fig. 1 is considered. It is
defined on the following domain:

V D
˚
x 2 Œ0I a�; y 2 Œ0I b�; z 2 Œ�h=2I h=2�

	
(37)

with the geometrical parameters a D 0:1 m, b D 0:12 m, h D 5 � 10�3 m, and material characteristics
� D 0:5, E D 107 Pa, � D 1100 kg=m3. The plate is simply supported with immovable edges thus

a

b

hh

�

�

n

n

x

y

z

Figure 1. Plate of interest and corresponding coordinate system

producing the common boundary conditions [3]:

w
ˇ̌
@S
DM

ˇ̌
@S
D u

ˇ̌
@S
D v

ˇ̌
@S
D 0 (38)

9



−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1

ε11

σ 1
1

(1
07

Pa
)

Figure 2. Cauchy stress-strain diagram for uniaxial tension: neo-Hookean law; Hooke’s law

where @S denotes the boundary of the plate. The associated stress-strain diagram for uniaxial tension
and compression is depicted in Fig. 2. The bending moment per unit length M reads [3]:

M D �D
�@2w

@n2
C �

@2w

@�2

�
(39)

where n and � are the outer normal and tangent directions to @S , respectively. The corresponding
linear eigenmodes are simple sine functions [3]:

w.x; y; t/ D
X

n;m2N
wn;m.t/ sin

�n�x
a

�
sin
�m�y

b

�
(40)

u.x; y; t/ D
X

n;m2N
un;m.t/ sin

�n�x
a

�
sin
�m�y

b

�
(41)

v.x; y; t/ D
X

n;m2N
vn;m.t/ sin

�n�x
a

�
sin
�m�y

b

�
(42)

The deflection under uniformly distributed constant pressure P is now investigated. Due to symmetry
considerations on the geometry of the plate as well as on the distribution of the external load, the odd
bending modes are solely participating into the solution when no internal resonances are activated:

w.x; y; t/ D
X

n;m2N
w2nC1;2mC1.t/ sin

�.2nC 1/�x
a

�
sin
�.2mC 1/�y

b

�
(43)

and respective in-plane modes in the solution have the form [3, 9]:

u.x; y; t/ D
X

n;m2N
u2n;2mC1.t/ sin

�2n�x
a

�
sin
�.2mC 1/�y

b

�
v.x; y; t/ D

X
n;m2N

v2nC1;2m.t/ sin
�.2nC 1/�x

a

�
sin
�2m�y

b

� (44)

The problem is also appropriately scaled as detailed below:

qi D
w2nC1;2mC1

h
; i D 1; : : : ; NW

qi D
u2n;2mC1

h
; i D NW C 1; : : : ; NW CNU

qi D
v2nC1;2m

h
; i D NW CNU C 1; : : : ; N

(45)
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and � D �1t where �1 is the circular frequency of the first natural mode of the deformed plate.
In expressions (45) the two-index generalized coordinates w2nC1;2mC1; u2n;2mC1; v2nC1;2m are
replaced by single-index coordinates qi . For each particular aspect ratio and thickness of the plate,
different terms have to be considered in expansions (43) and (44) in order to reach a good accuracy.

6.1.1 Geometrically non-linear bending

Attention is paid to strain energy density (10) where geometrical non-linearities only are considered.
The results are obtained for an increasing number of generalized coordinates in (43) and (44). In Fig. 3

Size Participating eigenmodes
3 dofs w1;1; u2;1; v1;2

12 dofs wi;j ; i; j D 1; 3I ui;j ; vj;i ; i D 2; 4I j D 1; 3

27 dofs wi;j ; i; j D 1; 3; 5I ui;j ; vj;i ; i D 2; 4; 6I j D 1; 3; 5

34 dofs wi;j ; i; j D 1; 3; 5; 7I ui;j ; vj;i ; i D 2; 4; 6I j D 1; 3; 5

Table 1. Eigenmodes used for models with increasing numbers of dofs

the central deflection of the plate with respect to the applied pressure is depicted. For each curve, the
participating eigenmodes are listed in Table 1.

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−2.5

−2

−1.5

−1

−0.5

0

3 DOFs

12 DOFs

34 DOFs

27 DOFs

w( a
2 ,

b
2 )/h

P
(1

05
Pa

)

Figure 3. Deflection-pressure curves for models with geometrical non-linearity only

The convergence is such that the various approximations approach the solution from alternating
sides. The 27-dof solution lies between the 3-dof and 12-dof solutions, but closer to the 12-dof solution;
similarly, the 34-dof solution lies between the 12-dof and 27-dof solutions, but closer to the 27-dof
solution. The maximal difference between the 12-dof and 34-dof models for a given pressure P in
the range of deflections Œ0; 100h� is 2.2%. Accordingly, it is understood that the 12-dof is sufficiently
accurate and solely investigated in the sequel.

6.1.2 Physically and geometrically non-linear bending

Exact model The results for systems with 3, 12, 27 and 34 dofs with both types of non-linearities
are obtained by the local model method (see section 4) and the strain energy density (9) is used. Also,
the exact solutions (see section 5) are found for the 3 and 12 dof systems. The participating modes in
this subsection and in the remainder of the paper are the ones listed in Table 1.

The comparison of deflection-pressure curves for the model with only geometrical non-linearity
and exact solution for the 12 dof systems is shown in Fig. 4. We can see that the difference within a
range of deflection up to 30h is small. Only a 6% maximal difference for a given pressure is observed
in this range.
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Figure 4. Comparison of the exact deflection-pressure curves considering only geometrical and both geometrical
and physical non-linearities; 12 dofs

The strain intensity over the thin plate is defined as [19]:

�INT D

r
2

3

q
.�1 � �2/2 C .�1 � �3/2 C .�2 � �3/2 C 3=2 �

2
12 (46)

For a central deflection of 30h, maxx;y;z �INT D 0:1. At higher strains, the effect of physical non-
linearity is significant. This result was expected due to the asymptotic expansion of the neo-Hookean
strain energy density, as discussed in the Appendix B. The powers up to second order in the asymptotic
expansion for the neo-Hookean strain energy density coincide with the physically linear strain energy
density. These powers properly reflect the behavior at small strains. However, the neo-Hookean strain
energy density expansion contains higher powers, which causes the difference at moderate strains.

Local model As displayed in Fig. 4, for deflections up to 30h, the model with only geometrical non-
linearity satisfactorily approximates the solution involving both non-linearities. Therefore numerical
iterations to obtain deflection curves are started at a deformation of 30h in Fig. 5 and only exact
solutions are shown for smaller deflection.

Fig. 5 compares the corresponding results with both non-linearities and an increasing number of
dofs to the available exact solutions. It is shown that the local model provides a sufficiently good
approximation of the underlying plate behavior. Again, the 12 dof model stands as a convincing
compromise between prediction capabilities and computational cost. The maximal difference in
deflection in the range of deflection Œ0; 100h� is 2% with respect to the 34 dof model.

6.2 Dynamic analysis
We study the free and forced vibrations around a pre-loaded state, where physical non-linearity has
significant effect. The initial deformed configuration is such that w1;1 D 80h as illustrated in Fig. 6.
Comparison with the exact static solution shows that the local model is accurate for deflections up to
10h, limit of our dynamic analysis.

6.2.1 Free and forced vibrations
The harmonic balance method [25] is applied to obtain periodic solutions of the system of type (35)
through a Fourier expansion of the generalized coordinates:

qi .�/ D Ai;0 C

NhX
jD1

Ai;j cos.j��/; i D 1; : : : ; 12 (47)
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Figure 5. Deflection-pressure curves with physical and geometrical non-linearities. Local models: , and
exact solution: 3 dofs, 12 dofs
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Figure 6. Deflected plate: the deflection is of the order of the plate in-plane size

where � is the non-dimensional frequency, normalized with respect to �1. Harmonics Ai;j are
determined from the system of non-linear algebraic equations written by balancing of coefficients
associated to the same harmonics in equations (11) after substitution into Eq. (47). A convergence
analysis shows that Nh D 8 in (47) is a good compromise.

Fig. 7 displays the forced response to a periodic pressure excitation of amplitude Pd D 26:5 Pa
with damping ratio �n D � D 0:001, as well as the corresponding backbone curves of the free response
around the first eigenfrequency of the pre-loaded plate illustrated in Fig. 6. The response exhibits two
peaks, the first one being associated to the 2:1 internal resonance with in-plane mode v1;2 (softening
branch in Fig. 7), and two Neimark-Sacker bifurcations at � D 0:9981 and � D 1. Stable and
unstable orbits are shown by solid and dashed lines, respectively. The stability analysis is based on the
calculation of frequency multipliers [25, 32]. The forced response between the two Neimark-Sacker
bifurcations is quasi-periodic, i.e. it features amplitude modulations.

The analysis of the linearized version of system (35) shows that the first eigenfrequency of the
deformed plate is equal to 2302.12 rad/s, about 86 times greater than first eigenfrequency of the flat
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Figure 7. Forced response and backbone curves for principal bending mode w1;1: stable motions;
unstable motions; quasi-periodic motions; TR, Neimark-Sacker bifurcation. Pd D 26:5 Pa, � D 0:001

plate given by [22]:

�1 flat D h�
2

s
E

12�.1 � �2/

� 1
a2
C

1

b2

�
(48)

It is well-known that the amplitude-frequency relationship for simply supported flat plates is highly
non-linear [5, 4]. However, the deformed plate under analysis exhibits very weak non-linearity (the
difference between frequency of vibrations with amplitude 10h and linear eigenfrequency is only
0.8%), but the behavior of the plate is not that of simple linear oscillations. As already mentioned,
interaction with in-plane modes is observed in both backbone curves, shown in Fig. 7. This effect of
weaken non-linearity in stretched membranes is reported in [16, 30].

In order to verify the harmonic balance solution, the exact system of equations:

d
dt

�@T
@ Pq

�ˇ̌̌
q0

C

•
V

@W

@q

ˇ̌̌
q0

dv D 0 (49)

is numerically integrated through the Runge-Kutta time-marching technique for free vibrational
response. Prescribed initial displacements are obtained from the truncated Fourier series (47) at � D 0.
Initial velocities are zero. The central deflection versus time is displayed in Fig. 8(a). This figure shows
good agreement between the time response of the exact model and the periodic response predicted by
the combination of the local model and harmonic balance. It should be mentioned that the vibrations
are non-symmetric with respect to the mean value of the response. Fig. 8(b) shows the contribution of
main harmonics to the vibration response at the center of the plate. There appears to be a significant
contribution of second harmonic in the response, explaining the asymmetry of the vibrations which
stemms from the initially curved shape of the plate initiated by the external static pressure.

The forced vibrations are further explored through the AUTO software [12]. External forcing
comes from a time-dependent periodic pressure with a constant mean-value that corresponds to the
deformed configuration around which the local model was built. The frequency responses for principal
bending and in-plane generalized coordinates are shown in Figures 9; Fig. 9(b) shows the minimum of
w1;1=h. From Fig. 9(a) with Fig. 9(b), is noticed again the asymmetric deflection of the plate with
respect to the static configuration. Fig. 7 shows the magnification of the part of frequency response
from Fig. 9(a). As can be seen from Fig. 7, the backbone curves and forced response agree well.
Strong coupling between bending and in-plane coordinates is observed for both branches near the first
eigenfrequency. Concerning participations u2;1 and v1;2, the softening branch is predominant in the
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Figure 9. Frequency responses: stable motions; unstable motions; quasi-periodic motions.
Pd D 26:5 Pa, � D 0:001

forced response because the frequency of vibration in this regime is close to a half of the first in-plane
eigenfrequency.
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6.2.2 A posteriori reduced-order models
A posteriori inspection of the contribution of the generalized coordinates in the free response of the
plate is carried out. Fig. 10 shows four generalized coordinates with respect to the principal bending
coordinate w1;1 and its derivative with respect to time Pw1;1 along the hardening-type regime depicted
in Fig. 7. The two coordinates w1;3 and v1;2 are non-linear with respect to w1;1 and Pw1;1, while
u2;1 and u4;1 are linear, as illustrated in Figures 10(b) and 10(c). The dependences of the remaining
generalized coordinates on w1;1 and Pw1;1 are also almost linear ones and the amplitudes of these
coordinates are much smaller compared to the amplitudes of the major contributions w1;1, w1;3, u2;1

and v1;2. This paves the way to further reduction of the model dimension.
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Figure 10. Sections of the first non-linear modal manifold defined with respect to w1;1 and Pw1;1

7. Conclusions
A method devoted to the analysis of large-amplitude vibrations of plates with physical as well as
geometrical non-linearities is developed. The method is tested on a thin rectangular rubber plate.
The problems of static bending under pressure and free and forced vibrations near the corresponding
deformed configuration are investigated. Unlike most existing approaches, in the proposed method the
sought shape of the deformed plate is not pre-assumed but is a direct output in the form of a series of
linear modes.

A local model which describes the dynamics around a certain deformed configuration is system-
atically constructed. The advantage of this model is the simplicity. It is shown that the behavior
of a rubber plate involving both geometrical and material non-linearities, being the non-linearity of
higher order, can be accurately described by a system of ordinary differential equations with only
quadratic and cubic polynomial terms. Static and dynamic responses approximated through the
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proposed technique compare well with the exact solutions. It is found that while at small strains the
influence of the material non-linearity is weak, it becomes significant at finite strains. The deflection
under a prescribed pressure is essentially underestimated when the material non-linearity is ignored.

Also, the vibration frequency in the vicinity of a deformed configuration is almost linear as
opposed to the oscillations near the plate’s flat configuration, which usually show strong amplitude-
frequency dependence. However, strong non-linear effects like Neimark-Sacker bifurcations and
internal resonances still emerge in the system: this justifies the necessity of non-linear models for
the analysis of hyperelastic plates. As an extension, the developed method is suitable to thin-walled
hyperelastic structures with more complicated geometries and more sophisticated hyperelastic laws.
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A. Serial expansion of the transverse normal strain
The coefficients involved in series (27) are detailed. Balancing the first power in the strain components
yields the following system:

�1

� 1

3.1 � 2�/
C

2

3.1C �/

�
C

1

3.1 � 2�/
�

1

3.1C �/
D 0

�2

� 1

3.1 � 2�/
C

2

3.1C �/

�
C

1

3.1 � 2�/
�

1

3.1C �/
D 0

�12

� 1

3.1 � 2�/
C

2

3.1C �/

�
D 0

(50)

whose solution is:

�1 D �2 D
�

� � 1
I �12 D 0 (51)

Similarly, the set of equations for the coefficients of second power in the strain components is:

�12;12

� 1

3.1 � 2�/
C

2

3.1C �/

�
�

1

6.1 � 2�/
D 0

�2;12

� 1

3.1 � 2�/
C

2

3.1C �/

�
D 0

1

18

� 3

1 � 2�
C

4

1C �
C

6�2

1 � 2�
C

8�2

1C �
�

9�2
2

1 � 2�
�
32�2

2

1C �
C
6�2;2

1 � 2�
C
12�2;2

1C �

�
D 0

�1;12

� 1

3.1 � 2�/
C

2

3.1C �/

�
D 0

�
2.�2 � 2�2 � 2�1 C 16�1�2 � 3�1;2/

9.1C �/
C
3C �2 C �1 � 3�1�2 C �1;2

3.1 � 2�/
D 0

1

18

� 3

1 � 2�
C

4

1C �
C

6�1

1 � 2�
C

8�2

1C �
�

9�2
1

1 � 2�
�
32�2

1

1C �
C

6�1;1

1 � 2�
C
12�1;1

1C �

�
D 0

(52)

whose solution is:

�1;1 D �2;2 D
7 � 33� C 40�3

18.� � 1/3
I �1;2 D

.� C 1/.13 � 52� C 46�2/

9.� � 1/3

�12;12 D
� C 1

6.� � 1/
I �1;12 D �2;12 D 0

(53)
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Linear systems of higher powers are omitted here for sake of brevity. Still, the coefficients of third
power are:

�1;1;1 D �2;2;2 D
.� C 1/.�62C 274� � 123�2 � 560�3 C 520�4/

81.� � 1/5

�1;1;2 D �1;2;2 D
.� C 1/.�46C 94� C 349�2 � 1028�3 C 5680�4/

27.� � 1/5

�1;12;12 D �2;12;12 D �
.� C 1/.4 � 37� C 40�2/

27.� � 1/3

�1;1;12 D �2;2;12 D �1;2;12 D �12;12;12 D 0

(54)

and the coefficients of the fourth powers are:

�1;1;1;1 D �2;2;2;2 D
.� C 1/.1436 � 4554� � 8547�2 C 39712�3 � 24012�4 � 32640�5 C 30320�6/

1458.� � 1/7

�1;1;1;2 D �1;2;2;2 D
2.� C 1/.113C 4536� � 27393�2 C 46102�3 � 279�4 � 61404�5 C 40040�6/

729.� � 1/7

�1;1;2;2 D
.� C 1/.�376C 7086� � 30387�2 C 40840�3 C 15600�4 � 75216�5 C 44168�6/

243.� � 1/7

�1;1;12;12 D �2;2;12;12 D �
.� C 1/.�147C 716� � 515�2 � 1036�3 C 1080�4/

729.� � 1/5
(55)

�1;2;12;12 D �
.� C 1/.�155C 620� � 151�2 � 1444�3 C 1228�4/

81.� � 1/5

�12;12;12;12 D
.� C 1/.�2 � 28� C 37�2/

162.� � 1/3

�1;1;1;12 D �1;1;2;12 D �1;2;2;12 D �2;2;2;12 D �1;12;12;12 D �2;12;12;12 D 0

B. Consistency between the neo-Hookean and the linear elasticity strain en-
ergy densities

Three-dimensional strain-stress relations lead to [3]:

�3 D
�3

E
�
�

E
.�1 C �2/ (56)

Now we focus at expressions for infinitesimal strains. For thin plates we can assume �3 Š 0. Under
this assumption,

�1 D
E

1 � �2
.�1 C ��2/ I �2 D

E

1 � �2
.�2 C ��1/ (57)

yielding:

�3 D
�

� � 1
.�1 C �2/ (58)

Then, the invariants (15) can be written as:

I1 D 2
2� � 1

� � 1
.�1 C �2/C 3 (59)

J 2
D 1C 2

2� � 1

� � 1
.�1 C �2/C

4�

� � 1
.�2

1 C �
2
2/C

4.3� � 1/

� � 1
�1�2 � �

2
12 CO.�

3/ (60)
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The asymptotic expansion is applied to J�
2
3 (neglecting terms O.�3/):

J�
2
3 � 1 �

1

3

�
2
2� � 1

� � 1
.�1 C �2/C

4�

� � 1
.�2

1 C �
2
2/C

4.3� � 1/

� � 1
�1�2 � �

2
12

�
C
2

9

4.2� � 1/2

.� � 1/2
.�2

1 C �
2
2 C 2�1�2/ (61)

D 1 �
2.2� � 1/

3.� � 1/
.�1 C �2/C

4.2 � 5� C 5�2/

9.� � 1/2
.�2

1 C �
2
2/C

4.1 � 4� C 7�2/

9.� � 1/2
�1�2 C

1

3
�2

12

The first term in (9) is transformed into:

NI1 � 3 D I1J
� 2

3 � 3 D
�
2
2� � 1

� � 1
.�1 C �2/C 3

�
J�

2
3 � 3

�
4.1 � � C �2/

3.� � 1/2
.�2

1 C �
2
2/ �

4.1 � 4� C �2/

3.� � 1/2
�1�2 C �

2
12

(62)

The second term in (9) has expansion:

.J � 1/2 D .
p

J 2 � 1/2 �
1 � 4� C 4�2

.� � 1/2
.�2

1 C �
2
2/C

2.2� � 1/2

.� � 1/2
�1�2 (63)

Expressions (62) and (63) are substituted into (9) and the coefficients of equal powers in �i�j ,
i; j D 1; 2; 12 are collected. This gives:

W D
E. NI1 � 3/

4.1C �/
C
E.J � 1/2

6.1 � 2�/
� E

� �2
1 C �

2
2

2.1 � �2/
C
��1�2

1 � �2
C

�2
12

4.1C �/

�
(64)

and this expression coincides with Eq. (10).
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