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Abstract 

In this paper, we present a statistical method based on GMM 

modeling to map the acoustic speech spectral features to visual 

features of Cued Speech in the regression criterion of 

Minimum Mean-Square Error (MMSE) in a low signal level 

which is innovative and different with the classic text-to-visual 

approach. Two different training methods for GMM, namely 

Expecting-Maximization (EM) approach and supervised 

training method were discussed respectively. In comparison 

with the GMM based mapping modeling we first present the 

results with the use of a Multiple-Linear Regression (MLR) 

model also at the low signal level and study the limitation of 

the approach. The experimental results demonstrate that the 

GMM based mapping method can significantly improve the 

mapping performance compared with the MLR mapping 

model especially in the sense of the weak linear correlation 

between the target and the predictor such as the hand positions 

of Cued Speech and the acoustic speech spectral features. 

Index Terms: Cued Speech, LSP, MFCC, GMM mapping. 

1. Introduction 

The framework of this paper is speech communication for deaf 

orally-educated people. Speech is concerned here in its 

multimodal dimensions and in the context of automatic 

processing. Indeed, the benefit of visual information for 

speech perception (called “lip-reading”) is widely admitted. 

However, even with high lip reading performances, without 

knowledge about the semantic context, speech cannot be 

thoroughly perceived. The best lip readers scarcely reach 

perfection. On average, only 40 to 60% of the phonemes of a 

given language are recognized by lip reading ([1]), and 32% 

when relating to low predicted words ([2]) with the best results 

obtained amongst deaf participants - 43.6% for the average 

accuracy and 17.5% for standard deviation with regards to 

words ([3], [4]), with an advantage of deaf women with 

33.3 % for females but only 23.5 % for males (see the study on 

word perception of [5]). The main reason for this lies in the 

ambiguity of the visual pattern. However, as far as the orally 

educated deaf people are concerned, the act of lip-reading 

remains the main modality of perceiving speech. This led 

Cornett ([6]) to develop the Cued Speech system (CS) as a 

complement to lip information. CS is a visual communication 

system that makes use of hand shapes placed in different 

positions near the face in combination with the natural speech 

lip-reading to enhance speech perception from visual input. 

This is a system (See Figure 1) where the speaker, facing the 

perceiver, moves his hand in close relation with speech (See [7] 

for a detailed study on CS temporal organization in French 

language).  

 
 

Figure 1: Hand placements for coding vowels in French 

Cued Speech (from [7]). 

CS is largely improving speech perception for deaf people 

([2]), relating to the identification of American-English 

syllables; and ([8]), relating to the identification of sentences 

in American-English language (scores between 78 and 97%). 

Moreover, CS offers to deaf people a thorough representation 

of the phonological system, inasmuch as they have been 

exposed to this method since their youth, and therefore it has a 

positive impact on the language development (see [9] for CS 

in French language). 

As we have seen from this short review, the Cued Speech 

method offers a real advantage for complete speech perception. 

Nowadays, one of the important challenges is the question of 

speech communication between normal hearing people who do 

not practice CS but produce acoustic speech and deaf people 

with no auditory rests who use lip-reading completed by CS 

code for speech perception. To solve this question, one can use 

a human translator. Another solution is based on the 

development of automatic translation systems. This paper is a 

contribution to this topic. In a more general framework, two 

sources of information could contribute to this translation 

operation: (i) The a priori knowledge of the phonetic, 

phonologic and linguistic constraints; (ii) the a priori 

knowledge of the correlations between the different vocal 

activity: neuronal and neuro-muscular activities, articulatory 

movements, aerodynamic parameters, vocal tract geometry, 

face deformation and acoustic sound. Different methods allow 

their modelling and their optimal merging with the input 

signals and the output ones. On an axis ordering the methods 

in function of their dependence upon the used language, one 

can find at the two extremities: (i) the method using the 

phonetic level of interface, combining speech recognition and 

speech synthesis to take into account speech phonology 

organization. Note that the recognition and synthesis 

processing can call on very various modelling techniques. If 

the phonetic models based on Hidden Markov Models (HMM) 

are the basis of the main recognition systems, synthesis based 

on concatenative of multi-parametered units of various lengths 

is still very popular. Note the increasing interest of synthesis 

by trajectory models based on HMMs ([10], [11]) allowing the 

jointed learning of the recognition and synthesis systems; (ii) 

The methods using the correlation between signals without the 

help of the phonetic level but using various mapping 

techniques. These techniques capture the correlations between 



input and output samples using Vector Quantification or 

Gaussian Mixture Model ([12], [13]). For Cued Speech, the 

classic method to convert audio speech to CS components 

consists of coupling a recognition system to a text-to-visual 

speech synthesizer ([7], [14], [15], [16]). The link between the 

two systems requires at least the phonetic high level. Before 

this work, no studies aimed at using the very low signal level. 

This work is a contribution to this challenge in the case of oral 

French vowels. A new approach based on the mapping of 

speech spectral parameters with the visual components made 

of CS and lip parameters is proposed. In this context the 

objective of the mapping process is to deliver visual 

parameters that can be used as target parameters for visual 

speech synthesis. In this paper, we explore the GMM-based 

mapping. Berthommier ([17]) applied a similar procedure to 

estimate the DCT coefficients of the lip region in the objective 

of speech enhancement of noisy signal. The present paper 

deals with normal speech in the case of speech supplemented 

by CS. In the following, we will start by defining the audio 

and visual parameters which will be taken into account in the 

mapping process. Then we will first present the results with 

the linear approach and then the improvement obtained with 

the use of multiple GMMs. 

2. Experimental set-up and spectral, lip 

and Cued Speech material 

2.1. Database recording 

The data have been derived from a video recording of a 

speaker pronouncing and coding in CS a set of 50 isolated 

French words. The words were made of 32 digits (from 0 to 

31), 12 months and 6 more ordinary words. Each word was 

presented once on a monitor placed in front of the speaker, in a 

random order. The corpus has been uttered 10 times. The 

speaker is a female native speaker of French graduated in CS. 

The recording has been made in a sound-proof booth and the 

image video recording rate was set on 25 image/second. The 

speaker was seated in front of a microphone and a camera 

connected to a Betacam recorder. Landmarks were placed 

between eyebrows and at the extremity of the fingers to further 

extraction of the coordinates used as Cued Speech hand 

parameters. In addition, a square paper was recorded for pixel-

to-centimeter conversion.  

The video recording has been done with the PAL format, thus 

saved as numerical Bitmap RGB images made of the 

interlaced half-frames of the video (respectively even and odd 

lines). Each image was de-interlaced into two half-frames and 

the missing lines of the each half-frame were filled by linear 

interpolation, as to obtain two de-interlaced full frames 

corresponding to two recordings separated with 20 ms.  

2.2. Extraction of lip and hand visual features  

These frames constitute the set of images at the rate of 50 Hz 

that we will refer to in the following. For its part, the audio of 

the recording was digitalized at 44100 Hz and re-sampled at 

16000 Hz. For each word, the coordinates of the inner contour 

of the lips have been manually selected on the corresponding 

images and converted into centimeters with the use of the 

pixel-to-centimeter conversion equation. Finally, the 

following geometric lip features were derived (following 

[18]): the lip width (A), the lip aperture (B) and the lip area 

(S) respectively. The work presented in this paper focuses on 

vowels. The database has thus been made by the vowels 

extracted from this set of material. The audio signal was used 

as to first locate the vowels inside the isolated words, then to 

derive the corresponding video frames. Thereafter the t0 

instants in which the lips were at the corresponding target 

were precisely defined from the analysis of the subset of video 

frames. 16 LSP coefficients were derived from the audio on 

the basis of a 20 ms Hamming window centered on t0 together 

with 16 MFCC coefficients calculated on the basis of a 32 ms 

Hamming window. In addition 4 formants were derived from 

the spectral envelop (obtained with the LSP coefficients). 

Since the Cued Speech hand position target are often not 

synchronous with variation of lips or speech, the t1 instants for 

Cued Speech hand target are selected separately by analysis of 

the subset of video frames. Then the hand features defined as 

the relative (x,y) coordinates of the fingertip of the middle 

finger (or index finger if middle finger is missing) in reference 

to the landmark between eyebrows were extracted. The whole 

of these processing thus made it possible to constitute a 

database made of 1371occurrences of the 10 French vowels 

(table 1). In the next, the accuracy of the mapping methods 

will be measured using a 1/5 cross-validation test. For that, 

the 1371 occurrences were divided into 5 partitions made of 

approximate 275 elements for each partition.  Finally, 4 

principal components (derived from a PCA Analysis) of the 4 

formants, 16 principal components of the LSPs, 16 principal 

components of the MFCCs, the totally 32 principal 

components of the set of the LSP and MFCC coefficients, the 

(x, y) coordinates of the hand and the (A, B, S) lip parameters 

were derived for each element of each of the 5 partitions. 

 

Table 1. List of the ten French vowels with their occurrence 

 

 Vowels [i] [e] [] [a] [y] [] [] [] [o] [u] 

 Occurrence 236 255 231 168 37 80 137 83 40 104 

3. The Multiple-linear regression based 

mapping modeling  

In this section, the objective is to predict the (A, B, S) lip 

parameters and the (x,y) hand coordinates with the 

corresponding spectral parameters (their principal components  

) using the multiple-linear modeling.  

3.1. The used method 

The set of  was ordered in function of their “prediction 

power” using their  correlation coefficient with the parameter 

to be predicted. The  predictors were then sorted following 

the decreasing values of their  as to obtain the 

sorted , ( ). In the following, 

the method is illustrated with the lip parameter B defined as 

the target, after being centered. B was submitted to a linear 

regression with the first predictor . The linear coefficient  

was obtained as to minimize the residual error between the 

real values of the target and the predicted ones in the sense of 

least square error. The residual error was then submitted to a 

linear regression with the second predictor  and so on until 

the  order. Finally, the estimation equation at the order  is 

the following: 

 

               (1) 

  



                      (2) 

 

Where, . As mentioned before, the 5 

partitions of the database was used to evaluate the accuracy of 

the mapping. One of the partitions was reserved for testing by 

turns, while the other 4 partitions were used for the training by 

applying the estimation equation (1). The residual variance as 

the complement of the explained variance of the considered 

lip parameter was calculated. Finally, the average residual 

variance was calculated over the 5 combinations of the 

training and testing partitions for evaluating the model. 

3.2. Results for the lip parameters 

In the following, the average residual variance calculated over 

the 5 combinations of the training partitions is considered. 

Figure 2 plots the average residual variance of lip parameter B 

in function of the number of predictors. From the figure, it can 

be first observed that the residual variance decreases in 

function of the number of used predictors. One can then notice 

that the residual variance remains high with the use of 

formants (around 39 % of the initial variance). This is 

probably due to a lack of dimensions. Indeed the 16 MFCC 

and LSP coefficients improve very significantly the 

performances of the prediction (the residual variances are 25% 

and 18% respectively). The MFCCs allow a quicker decrease 

while the LSP coefficients attain a lower residual variance. 

Finally, the prediction based on the mixture of the MFCC and 

LSP has the advantage of the quick decrease property of the 

MFCCs and the low residual of the LSP. This mixture of 

MFCCs and LSP is thus considered as the best parameters for 

this prediction even if the final error is still relatively high 

(around 14 % on the training database). The prediction 

performance of the other two lip parameters A and S are 

similar to situation of the B. These results will be used as a 

reference for the following, in particular for the choice of the 

set of pertinent predictors. Finally, we obtained very similar 

results with the test data. 

 
Figure 2: The average residual variance of the lip parameters 

B over the 5 combinations of the training partitions, in 

function of the number of predictors (based on 2 formants (P-

fmt2), 4 formants (P-fmt4), MFCC, LSP and the mixture of 

MFCC-LSP). 

3.3. Results for the hand parameters  

The same method of analysis was applied for predicting the 

(x,y) coordinates of the hand. The final value of the residual 

variance reaches 39 % for x and 29 % for y, even in the case 

of the best predictors made up of the whole of the LSP 

parameters and MFCCs (see Figure 3). This high value of the 

final residual variance is explained by the low values of the 

correlations coefficient between the predictors and the target 

(0.43 and 0.42 respectively with x and y). This weak linear 

correlation between the spectral parameters and the (x, y) 

coordinates of the hand positions probably gives rise to the 

limit of the linear method. 

 
Figure 3: The average residual variance of the hand 

coordinates on the 5 combinations of the training partitions 

with the first best predictors of the whole set of MFCC-LSP in 

function of the number of predictors. 

 

In order to check this assumption, the Cued Speech (x, y) 

coordinates have been re-organized in a coherent way with the 

French vocalic triangle defined by the formant space consisted 

of the first two formants, given the strong linear correlation 

between formants and the spectral parameters LSP (The 

maximum linear correlation coefficients between the spectral 

parameters LSP and the first two formants are 0.96 and 0.87 

respectively). Therefore a great fall of the residual variances 

could be obtained which finally reach 7.85% and 7.08% 

respectively for the redistributed x and y coordinates. 

4. The GMM based mapping model 

4.1. The Method 

In this section, the principal components of the set of 16 LSP 

and 16 MFCC coefficients constitute the source vector  with 

dimension  ( ) and the lip or hand parameters are 

the target vector . In reference to the equation (3) (see also 

[19], [20]), the estimator (in the sense of MMSE) of the 

parameter    has a linear regression form of observation  

weighted by the a posteriori conditional probability of 

component :  

              (3) 

 

Where,  is the a posteriori conditional probability that 

observation  is generated by the  component/Gaussian with 

the mean vector   and covariance matrix ,  and   

being the transform and the bias matrices respectively 

associated to component .  

 

                   (4) 

 

                  (5) 

 

                  (6)  

 

Where,  is the weighting coefficient of the Gaussian model, 

the sum of all the coefficients is 1; is the matrix of 

covariance between  and  and calculated on the component  



 ( ) subset of data and is the mean vector of the 

target vector on this same subset. Note that when the number 

of the Gaussian equals to one, namely =1, the GMM based 

mapping model in the sense of the MMSE regression criteria 

corresponds exactly to the multiple-linear regression model 

presented in the previous section. Finally, the spectral 

principal components are sorted following the decreasing 

order of their explanation variance of the estimated parameter. 

Then the first  principal components of the spectral 

parameters as source vectors are according to this order. The 

parameters of GMM such as mean vectors , and the 

covariance matrices  and are determined during the 

GMM training processing. Two different training methods for 

GMM are discussed in our work. EM is the most used 

unsupervised training methods for GMM training, which trains 

the model without any label information of the elements and 

the data cluster automatically given the initialization 

parameters by the iterative procedure until the condition of 

convergence is satisfied [21]. In contrast with the unsupervised 

training method, a supervised training method is introduced to 

train the GMM based on the a priori information: the visemes 

of vowels (see Table 2) which is a speech presentation in the 

visual domain for the lips or the different Cued Speech five 

hand positions (see Figure 1) for hand respectively. Thus 3 

Gaussian components of GMM corresponding to the three 

vowel visemes are trained for lips and 5 Gaussian components 

corresponding to the five hand positions defined in CS are 

trained for hand.  

 

Table 2. Visemes of French vowels 

 

Visemes Phonemes of vowels 

V1 [a],[i],[e],[] 

V2 [y],[o],[u],[] 

V3 [],[] 

 

We use the joint source and target vectors defined in equation 

(7) rather than the source vectors only to train the GMM both 

in the EM and supervised training methods, which is more 

robust for small amounts spcifically since the joint density 

should lead to a more judicious clustering for the regression 

problem ([20]).  

                               (7) 

 

Where,  is the dimension of the joint vector . Once the 

GMM is trained, the parameters of GMM are fixed. 

4.2. Results 

The residual variances of the estimated lip and hand 

parameters obtained by the supervised training GMM decrease 

significantly compared to the multiple-linear model (see 

Figure 4). The residual variances decreased with the increment 

of the dimension of the source vector, i.e. the number of 

predictors. Finally, the residual variance reaches to around 7% 

for lip parameters (A, B and S) and 3% for hand coordinates 

(x, y) respectively by using 16-dimensions source vector.  

 
Figure 4: The average residual variance of the lip parameters 

and the hand coordinates on the training data in function of 

the dimension of the source vector. On the left column, the 

number of the Gaussians m=3 for the lips parameters and on 

the right column, m=5 for the hand parameters. 

 

  
Figure 5: The average residual variance of the lip parameters 

B (on left) and the hand coordinates x (on right) on training 

data in function of the number of Gaussians in GMM. The red 

line with crosses corresponds to the EM training GMM, the 

black line with squares corresponds to the supervised training 

GMM, the blue line with triangles corresponds to the multiple-

linear regression model.   

Figure 5 compares the residual variance obtained by the 

multiple-linear regression model, the supervised training 

GMM mapping model and the EM trained GMM mapping 

model. The results show that the residual variance tends 

asymptotically to a limit value when the number of the 

Gaussians increases for both lip and hand parameters 

estimation in the case of EM trained GMM. And the residual 

variances obtained by the multiple-linear model (denoted by 

the blue triangle) are completely equal to the ones obtained by 

the uni-Gaussian GMM model. The supervised training GMM 

mapping model shows the competitive performance compared 

to the EM trained GMM model in terms of number of 

Gaussians. That is to say the supervised training GMM 

mapping model is more efficient than the one trained by EM 

method. In addition, the supervised training GMM model also 

shows good robustness in the evaluation procedure (i.e. test 

procedure) where it also retains the superior performance (see 

Table 3).   

 

Table 3. Evaluation results of the lip and hand parameter 

mapping in terms of the 3 different models. 

(%)    MLR GMM (supervised) GMM (EM)* 

A 17% 9% 7% (38 comp.) 

B 12% 9% 9% (40 comp.) 

S 14% 8% 8% (40 comp.) 

 

(%)    MLR GMM (supervised) GMM (EM) * 

X 43% 8% 8% (60 comp.) 

Y 31% 4% 5% (54 comp.) 

* GMM (EM) shows the minimum residual variance and the number 
of the Gaussians with which the best results were obtained.   



5. Discussion 

These successive maps processing of the acoustic spectrum to 

the lips parameters and the hand position showed that it is 

much more difficult to estimate the hand position than lips 

parameters. Several different approaches, from the direct 

multi-linear method to the sophisticate GMM-based regression 

method, have been employed to this problem. Actually the 

source of the difficulty is that there is no relation between the 

hand position and the spectral parameters unlike the case of 

the lips as a vocal articulator with corresponding acoustic 

consequences. More specifically, there are two key points of 

the meaning of “no relation”: (1) there is no structural 

topological relation between the acoustic space and the hand 

position space. That is to say, the two closed vowels in the 

acoustic space may be very far in the hand position space, 

such as the vowel [e] and [i]. On the contrary, two far vowels 

in the acoustic space may be corresponding to the same hand 

position, such as vowel [a] and [o]. It indicates that the two 

spaces have totally different topology structure since the hand 

position is determined by the rules of CS but not the acoustic 

parameters. This is the real reason why a large residual 

variance was obtained with the multi-linear approach; (2) there 

is no relation of the variance within group between the 

acoustic space and the hand position space. That is to say, the 

tiny variation of the sound will not consequently change the 

hand position of the speaker. Indeed the hand position around 

the center within group is random from person to person. Thus 

it is impossible to establish a global linear relation by the 

multi-linear model or even a local linear relation by the GMM 

to predict the movement of the hand around the center within 

group from the acoustic spectrum. 

 

Figure 6. The linear interpolation in the acoustic 

space between vowels [a] and [i].  

In order to have a further understanding and comparison of the 

different mapping approaches, a continuous transition has 

been achieved by a linear interpolation in the acoustic spectral 

parameter (i.e. MFCC+LSP) between the vowels [a] and [i]. 

The 16-dimension acoustic spectral parameters were projected 

onto their first two PCA components to verify the continuous 

linear transition in the acoustic space (see Figure 6). In fact 

there are many ways to go to vowel [i] from vowel [a] in the 

acoustic space in function of the choice on different starts and 

ends, but here only one of them is presented as an example to 

show the corresponding transition obtained by the different 

mapping models. The corresponding transitions of the 

estimated lip parameters and hand positions are shown in 

Figure 7 and Figure 8. For the multi-linear method, the figures 

present a reasonable linear relation between the linear 

interpolation spectral parameters and the estimated hand 

position or lip parameter. For the GMM based mapping 

method (in the MMSE regression criterion, with 5 components 

corresponding to the five hand position in CS for hand 

position estimation and 10 components corresponding to the 

ten vowels for lip parameter estimation), the four stable phases 

during the transition both for the hand position and lips are 

corresponding to the passing vowels ([a],[],[e],[i]) during the 

spectral parameters changing linearly from vowel [a] to [i]  in 

the acoustic space. With the four stable phases, the GMM-

based mapping method shows classification-like property 

which helps the model to decrease significantly the residual 

variance in comparing with the multi-linear model. However, 

unlike the GMM-based classification method which cannot 

project the variance of the source data at all, the GMM-based 

mapping method can still reflect the linear relation locally in 

the region of the phase as shown in the figures. Due to the 

strong linear correlation between the acoustic spectrum and 

the lips parameter, the transition of lips shown in Figure 7 is 

different as the case of the hand. The order of the phases 

change in coherence with the lip parameter B and the multi-

linear model performs well passing close to the centers of 

phases corresponding to the different vowels. The local linear 

regression of GMM-based mapping method is effective and 

varies in the right direction, however in the case of the hand 

position estimation the local regression is weak and even in 

the wrong direction (such as the local regression on the phase 

of vowel [a] in Figure 6) due to there is “no relation” between 

the hand position and the acoustic spectral parameters. With 

the effective local regression, the GMM-based mapping 

method can improve the estimation performance in 

comparison with the multi-linear model. 

 

Figure 7: The dynamic transition of X coordinates of 

hand position by interpolation between the vowel [a] 

and [i]. Results with the multi-linear mapping (X-

linear), the GMM mapping (X-gmm), and the gaussian 

classifier applied to the spectral space (X-class). 

 

Figure 8: The transition of lip parameter B by 

interpolation between the vowel [a] and [i]. Results 

with the multi-linear mapping (B-linear), the GMM 

mapping (B-gmm), and the gaussian classifier applied 

to the spectral space (B-class).  

In the case of the hand positions estimation, the residual 

variance of the GMM-based mapping approach decreases 
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significantly comparing to the linear approach by the class-like 

property but results in the phase changing rapidly. In the case 

of lip parameters estimation, the local regression of the GMM-

based mapping approach is more effective and the phase 

changing is more gradual meanwhile the multi-linear approach 

also performs well due to the strong linear correlation between 

the acoustic spectral parameters and lips parameters.        

With both the properties of the classifier and the regression 

estimator, the GMM-based mapping method decreases the 

residual variance of the estimated value significantly 

comparing with the multi-linear model. These properties are 

well presented in the case of the lip parameters estimation in 

which the local regression and classification methods perform 

well. However, when the relation is weak or even no relation 

between the source and target data, the local regression will 

degenerate or even meaningless such as the case of the hand 

position estimation. At this time, the GMM-based mapping 

method more tends to the classification method, thus the 

residual variance may be no longer appropriate for evaluating 

the model since the errors probably cannot be understood at all 

even if the model has a small residual variance. The cognitive 

effect of the human being in a perception task may be an 

alternative evaluation criterion. But note that in the GMM-

based mapping method, there is one point essentially different 

with the classification method that is the contributions of all 

the components are always considered and weighted to 

produce the final results. From this aspect, GMM-based 

mapping method will effect better than the binary 

classification method in the mapping problem. 

6. Conclusion 

This paper discusses the relations between the speech spectral 

space and the visual space of speech and Cued Speech. This 

program started with the case of oral French vowels. The 

multiple-linear regression model as a simple case of the GMM 

modeling has been first used to convert the spectral parameters 

towards the lip parameters as well as the hand parameters of 

the Cued Speech. The results show that the best predictors are 

16 principal components derived from the 16 LSP and 16 

MFCC coefficients. The linear approach showed its limit in 

the case of the manual setting hand component of the Cued 

Speech. Two types of GMM based model have been 

introduced to solve the mapping problem. Since the GMM 

based model explore the regression relationship between the 

source and target vectors based on the Gaussians locally and 

precisely rather than the rough regression based on the global 

set as in the multiple-linear model, the results obtained by the 

GMM based model were improved significantly with an 

explanation of 93% for lip and 96% for hand components of 

the original variance for the best results. In addition, the 

supervised training GMM shows a high efficiency and good 

robustness benefiting from the a priori phonetic information in 

comparison with the EM training GMM which may be 

affected more by the outliers due to the important dependence 

on the data itself. For the future, these results have to be 

evaluated in perception with deaf persons using supplemented 

visual speech synthesizers. 
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