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Some spinel ferrites can be oxidized or transformed at moderate temperatures. Such modifications were
carried out on thin films of mixed cobalt copper ferrites and maghemite, by heating small regions with a
low­power laser spot applied for about 100 ns. The very simple laser heating process, which can be done
directly with a conventional photolithographic machine, made it possible to generate two­dimensional
magnetization heterogeneities in ferrimagnetic films. Such periodic structures could display the specific
properties of magneto­photonic or magnonic crystals.

1. Introduction

From the pioneering works of Yablonovitchh [1] and John [2]
optical periodic structures, called photonic crystals, have attracted
much attention, not only because of their fundamental interest,
but also because of their potential technological applications due
to their original collective properties [3]. Making such periodic
structures with ferro or ferrimagnetic materials, is also very attrac­
tive for several reasons. Firstly, optical indices can be tailored by
an external magnetic field in such structures, due to the mag­
netic birefringence and dichroic properties of the core material.
Tunable optical devices, which can be called “magneto­photonic
crystals”, can thus be imagined [4,5]. The second reason is that
two­dimensional magnetization heterogeneities in a ferro or ferri­
magnetic material, can lead to a structure able to manage spin wave
propagation. These magnetic counterparts of photonic crystals are
generally called “magnonic crystals”[6–8]. The two­dimensional
magnetization heterogeneities can be holes or a second material,
having different magnetic properties than the matrix inside which
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it is inserted. Such magnonic devices could find technological appli­
cations in narrow­band optical or microwave filters or high speed
switches [9].

2D periodic structuration of magnetic films, has already been
performed to make magnonic crystals. However, the materials
used were single garnet films or magnetic alloys and the method
carried out resorted to quite heavy optical or electron lithogra­
phy processing [9–12]. This paper proposes a very simple laser
processing of spinel ferrite films, with the aim to fabricate new mag­
netic devices, for instance magneto­photonic or magnonic crystals.
Laser beams or spots have already been used to anneal [13–16],
sinter [17] or pattern [18–24] a lot of oxides, notably spinel oxides
[25,26]. Of course, spinel ferrites were chosen for this work, because
of their ferrimagnetic properties, which can be easily adjusted by
proper cationic substitutions. But the other reason, which is the
key to successful patterning with low­power laser spots, is that
spinel ferrite thin films can often display a real “thermal reactivity”
at moderate temperatures. “Thermal reactivity” means reactivity
towards oxygen for spinel containing cations capable of higher
valence states [27], or metastability for strongly non­stoichiometric
ferrites [28,29] or quite low sintering temperatures, mainly for
copper substituted ferrites [30,31]. Such thermal sensitivities are
already used for optical data storage [32–34].

This paper will mainly focus on thin films of mixed cobalt copper
ferrites, because of their high sensitivity to laser irradiation. It will
also give another example with laser patterned g­Fe2O3 thin films.

http://dx.doi.org/10.1016/j.apsusc.2013.05.160



2. Experimental

2.1. Sample preparation

Thin films of spinel ferrites were prepared by radio­frequency
sputtering of 10 cm diameter oxide targets. For mixed cobalt copper
ferrites, an oxide target having Co:Cu:Fe cations in the proportions
0.15:0.85:2 was used. The second target was made of magnetite
Fe3O4. The sputtering machine was an Alcatel A450 equipped
with a radio­frequency­generator (13.56 MHz) device as well as a
pumping system (a mechanical pump coupled with a turbo molec­
ular pump) which reaches residual pressures down to 10−5 Pa, a gas
flow controller, a water cooled target holder and two water cooled
sample holders. The films were deposited on glass substrates with
an average arithmetic roughness lower than 0.5 nm.

Conventionally, a residual vacuum of 5×10−5 Pa was reached
in the sputtering chamber before introducing the argon depo­
sition gas. In order to obtain various microstructures for
Co0.15Cu0.85Fe2O4, target­substrate distances of 5 and 8 cm and
argon pressures of 0.5 and 2 Pa, were used. Moreover, for each
experimental condition, the targets were sputtered for 20 min
before starting film deposition on the glass substrate. The sput­
tering power was maintained at about 3 W cm−2 for each of the
sputtering conditions used.

Below, the mixed cobalt copper ferrite samples are named
“Pxdy” with x the value of argon pressure in Pascal, and y the sample
target distance in centimetres.

Magnetite films were obtained by magnetite target sputtering
P0.5d5 conditions. These samples were oxidized at 300 ◦C for 2 h in
order to form g­Fe2O3 metastable phase.

2.2. Laser patterning

Most of the patterning experiments were done using a DWL 200
machine from Heidelberg Instruments MikroTechnik. This machine
is generally dedicated to mask manufacture for optical lithogra­
phy. It is a high precision tool using pixel generation technology
by He–Cd laser scanning (� = 442 nm, maximal power 125 mW).
The writing speed was about 1 mm2/s or 10 M pixels/s. The aver­
age duration of laser insolation for each pixel, is close to 100 ns and
the maximal light energy is 7.8 J/cm2. The optical system is made of
an Autofocus, which has a pneumatic servo­control to correct the
flatness defects. The tuning range of the Autofocus is 70 mm and its
z resolution is 100 nm. The working distance between the sample
and the objective lens was 100 mm.

Other experiments were carried out with a machine designed
for the production of masters for optical disc manufacturing. The
476 nm wavelength of an Ar laser was focused by an objective lens
with a numerical aperture of 0.8, flying over the sample at a dis­
tance close to 1 mm. The writing time for each pixel was close to
100 ns and the maximal light power at the sample surface was
about 20 mW.

2.3. Characterization techniques

2.3.1. X­ray diffraction

Structural characterizations of films were performed by grazing
angle X­ray diffraction (˛ = 1◦) on a Siemens D 5000 diffrac­
tometer equipped with a Brucker sol­X detector. The X­ray
wavelength was that of the copper Ka ray (Ka1 = 0.15405 nm and
Ka2 = 0.15443 nm).

2.3.2. Raman spectroscopy

Raman spectra were collected under ambient conditions using a
Horiba Scientific Raman microscope fitted with a laser wavelength
of 532 nm and a 100× objective lens. During the measurement, the

resulting laser power at the surface of the sample was adjusted to
1.1 mW. The final spectrum is the average of three 300 s accumula­
tions. Examination of multiple spots showed that the samples were
homogeneous.

2.3.3. Magnetic measurement

The magnetic properties were measured in the plane of the
films, with a SQUID magnetometer MPMSXL 7 from Quantum
design. The maximal applied field for the measurements was
70 k Oe. The magnetizations of the samples were corrected for sub­
strate contribution.

2.3.4. Thickness measurement and microscopy

Film thicknesses were measured using a Dektak 3030ST pro­
filometer. Atomic force microscopy (AFM) was carried out with a
Veeco Dimension 3000 atomic force microscope, equipped with
a super sharp TESP­SS AppNano© tip (nominal resonance fre­
quency 320 kHz, nominal radius of curvature 2 nm). Magnetic Force
Microscopy (MFM) observations were also performed with the
same apparatus using magnetized tips (Co/Cr coating, nominal res­
onance frequency 70 kHz). AFM was used to reveal the heated areas
of the films, where changes in volume occurred due to stress relax­
ation, oxidation or crystallization. MFM is not really appropriated to
study such strong topographic deformations in ferrimagnetic films.
Indeed, the magnetic contrast is generally low and the topographic
signal due to a high bump or a deep hollow, is difficult to remove
totally from the magnetic signal. However, MFM is very powerful to
reveal changes in local magnetic properties when there is no topo­
graphical modification. MFM was then used only to reveal local
maghemite–hematite transformations, which can occur without
topographical change and which involve the formation of antifer­
romagnetic zones in ferrimagnetic ferrite films.

The microstructure of the samples was also investigated by
scanning electron microscopy with a JEOL JSM 6700F appara­
tus. The proportion of cations was determined by EDX (Princeton
Gamma Tech). Some patterns were also observed with a Keyence
VHX­600 digital optical microscope using a VH­Z100R or VH­Z500R
objective system, having both a high resolution and a large depth
of field.

3. Results and discussion

3.1. Mixed cobalt copper spinel ferrites

The ferrite thin films prepared were poorly crystallized but they
displayed the main X­ray diffraction (Fig. 1) and Raman peaks
(Fig. 2) of the spinel structure. Moreover they were ferromagnetic
at room temperature as revealed by their M = f(H) hysteresis curves
(Fig. 3). EDX analyses also showed that the metal chemical compo­
sition was 0.15Co:0.85Cu:2Fe, the same as that of the target. The
thin films were then made of a Co0.15Cu0.85Fe2 O4 spinel ferrite. The
samples prepared at 0.5 Pa argon pressure and 5 cm from the target
(samples P0.5d5), had X­ray diffraction peaks shifted towards the
small angles compared to the peak positions for a powder having
the same composition. An in­plane compressive stress, making the
reticular distances larger in a direction close to the perpendicular
of the film surface, was assumed to be responsible for this shift.
By contrast, the P2d8 samples were submitted to a slight tensile
stress (Fig. 1 and Table 1). Atomic force microscopy clearly shows
the polycrystalline structure of the films (Fig. 4), which were made
of small crystallites of about 25 nm and 40 nm for 100 nm and 1 mm
thick samples respectively. The samples prepared at a high argon
pressure (P2d8) displayed crystallites aggregated in larger grains
separated by porosity. This porosity clearly appeared for P2d8,
mainly for 1 mm thick films (Fig. 4).
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Fig. 1. X­ray diffraction patterns of as­deposited CuCo thin films (1 mm thick) for
two experimental conditions: argon pressure 2 Pa and target­substrate distance
8 cm (P2d8); argon pressure 0.5 Pa and target­substrate distance 5 cm (P05d5).

Fig. 2. Raman spectra of as­deposited CuCo thin films (thickness: 1 mm) for exper­
imental conditions P2d8 and P05d5.

Fig. 3. M = f(H) hysteresis curve at room temperature for 1 mm thick samples
of mixed cobalt copper ferrite films, prepared in different conditions: (a) argon
pressure: 2 Pa, target­substrate distance: 8 cm, (b) argon pressure: 0.5 Pa, target­
substrate distance: 5 cm.

Preliminary experiments of laser irradiation were carried out on
as­deposited films, having a thickness of 70 nm. The laser spot of the
mastering machine (� = 476 nm) was used for these experiments.
Two different behaviours were observed. For the films prepared at
low argon pressure, the laser irradiation created bumps, whereas
crater­like shaped holes appeared for films obtained at high pres­
sure (Fig. 5). The patterns written were very regular in size and
shape for all samples. Their size, however, increased a little bit with
the laser power due to the Gaussian profile of the energy of the
spot. For instance, the bumps displayed an overall diameter close
to 0.3 mm and a height of 10 nm for 5 mW, but these values became
0.6 mm and 30 nm, for a power of 15 mW.

Some experiments were carried out to try to understand the
phenomena related to pattern formation. At first, thin films were
heated at 450 ◦C in air (AA samples) or in pure nitrogen (NA sam­
ples). It was observed that for AA ferrite layers, it was not possible
to get a pattern with a moderate laser power (5–15 mW). For NA
samples, films can be written on, using a slightly higher laser power
than for as­deposited ferrites. Pattern formation could then be
related to an oxidation phenomenon induced by laser heating.

Table 1

Modifications of the out­of­plane reticular distances due to internal stress in ferrite
films.

Sample (3 1 1) Reticular distance (nm)

Co0.15Cu0.85Fe2O4 powder 0.25274
P0.5d5 thin film 0.25539
P2d8 thin film 0.25267



Fig. 4. AFM image (1×1 micrometers) of the surface of 100 nm and 1 mm thick films,
prepared in different conditions: (a) argon pressure: 2 Pa, target­substrate distance:
8 cm, (b) argon pressure: 0.5 Pa, target­substrate distance: 5 cm.

Some spinel oxides, mainly ferrites containing copper, have a
low excess of cations (i.e. metallic cations/oxygen anions >3/4).
They can be described by a general formula such as: MxFe3−xO4−ı

(ı > 0, M: metallic cations). For such ferrites, non­stoichiometry
occurs due to excess of low valence state cations, which are located
in oxygen interstices, normally free of cations in the spinel struc­
ture. “Interstitial” cuprous ions were already revealed in copper
[35,36] or mixed cobalt copper ferrites [37]. The films studied prob­
ably display such non­stoichiometry, making cuprous cations the
only oxidizable ions, due to the high stability of the other Cu2+, Co2+

and Fe3+ cationic species. The oxidation could then be written:

Co0,15Cu0,85Fe2O4−ı+ ı/2 O2→ Co0.15Cu0,85Fe2O4 (1)

Reaction (1), which is induced by the heating effect of the laser
irradiation, can occur more or less readily according to the film crys­
tallite size. For as­deposited films, reactivity towards oxygen was
high because of low valence state copper ions and small crystal­
lite size. Patterns could then be formed at low laser power. When
annealed at 450 ◦C in inert gas, cuprous ions remained but their
oxidation was more difficult because of larger crystallite size, i.e.
because of the lower area of material in contact with the air. Pat­
terns formation required higher laser power. Of course, sample

Fig. 6. AFM image (phase mode) showing the increase in crystallite size in the
laser heated zones (cobalt copper ferrite film, thickness 70 nm, P0.5d5). Image size
600 nm×600 nm.

annealing in air at 450 ◦C, was responsible for cuprous ions oxi­
dation, making it impossible to write patterns with moderate laser
power.

Although oxidation seems to play a fundamental role in the for­
mation of the patterns, it cannot explain why ferrite films react
to the laser irradiation, to give either bumps or holes. Maybe,
however, the heat brought by the laser, added to a small heating
effect due to the exothermic oxidation, brings enough energy to
modify the local microstructure leading to the growth and the sin­
tering of the crystallites. This effect can be especially pronounced
for copper ferrites, which can be sintered at quite low tempera­
tures [30,31]. The change in crystallite size was revealed by AFM
imaging, for the bumps formed in P0.5d5 samples (Fig. 6). The
microstructural change goes also with topographical modification
due to the mechanical stress developed during the growth of the
films. For films P0.5d5 submitted to a compressive stress in their
plane, the microstructural change goes with the formation of a
bump. By contrast, tensile stress leads to “holes” with crater­like
shapes in P2d8 layers.

Fig. 5. Patterning of films prepared in different conditions: (a) argon pressure: 0.5 Pa, target­substrate distance: 5 cm (AFM Image 10 mm×10 mm); (b) argon pressure: 2 Pa,
target­substrate distance: 8 cm (AFM Image 7 mm×7 mm).



Fig. 7. AFM images showing the raised (bright) and hollow (dark) zones for P0.5d5 (a) and P2d8, respectively. The thickness of the films is 1 mm. The image size is
10 mm×10 mm.

Fig. 8. (a) SEM image of laser patterned P2d8 film (thickness: 1 mm); (b–d) details of as­deposited and patterned zones.

Very similar results were obtained for thicker samples irradi­
ated by the 442 nm laser spot of the conventional photolithography
machine. For 1 mm thick samples, hollow zones can be observed for
P2d8 films and raised zones for P0.5d5 films (Fig. 7). As previously
shown, the laser spot involves crystallite growth and sintering. In
the P2d8 hollow zones, the crystallites were a little bit larger than
those in the as­deposited regions (Fig. 8). Moreover, the rough­
ness was decreased and the porosity deleted in these laser treated
zones. In the P0.5d5 raised zones, the crystallite sizes were also
increased. Unlike the P2d8 samples, which were submitted to
different internal stresses, laser heating did lead however to an
increase in roughness. The roughness was mainly due to grooves
resulting from the scan of the laser spot, as clearly revealed by AFM
images (Fig. 7a).

Spinel ferrites with periodic patterns engraved inside, can then
be obtained by direct laser processing. Because of the versatility
of this process, periodic structures very similar to those used for
magnonic crystals made of garnets [9], can be directly patterned
in P2d8 spinel ferrites. It will be interesting to study the potential
magneto­photonic or magnonic effects of such structured ferrimag­
netic spinel oxides in the near future.

It is also important to show that with the conventional pho­
tolithography machine used, it is possible to write very small

Fig. 9. Submicronic patterns in P2d8 film (thickness of the film: 1 mm)
(10 mm×10 mm AFM image).



Fig. 10. AFM image (a) and the corresponding MFM image (b) of a g­Fe2O3 film locally transformed into a­Fe2O3 by laser heating (size of the images: 8 mm×8 mm).

patterns in films of cobalt copper spinel ferrites. For instance, sub­
micronic patterns were obtained in P2d8 films (Fig. 9). That makes
the preparation of miniaturized structures possible.

3.2. Maghemite films

The maghemite (g­Fe2O3) is a metastable spinel phase obtained
by oxidation of magnetite (Fe3O4). It can be transformed into the
thermodynamically stable a­Fe2O3, which has the corundum struc­
ture. This transformation, which occurs at a moderate temperature
(#300–600 ◦C) varying mainly with crystallite size and mechanical
stress [29], can be achieved not only for fine powders but also for
thin films of maghemite.

Some writing experiments were done with the 476 nm laser
spot on 25 nm thick maghemite films obtained by oxidation at
300 ◦C of magnetite samples. For laser power in between 7.5 and
10 mW, no topographical modifications were revealed. Careful
MFM observations showed, however, magnetic contrasts repro­
ducing the patterns programmed on the laser machine (Fig. 10).
The magnetic contrasts came from the local transformations of the
ferrimagnetic g­Fe2O3 film, which interacted with the magnetized
tip of the microscope, into antiferromagnetic a­Fe2O3 zones, for
which the magnetic interactions with the tip were lower.

The metastability of some spinel ferrite thin films, thus offers
another possibility to create periodic structures by a very sim­
ple and direct laser irradiation process. The periodic “magnetic
heterogeneities” created inside the ferromagnetic film could,
also generate the specific properties of a magneto­photonic or
magnonic crystal.

4. Conclusion

Thin films of mixed cobalt copper spinel ferrites and maghemite
displayed thermal reactivity, which makes their patterning pos­
sible by a low­power laser spot. By controlling the elaboration
parameters or the ferrite composition, holes, bumps or local
phase changes can be created inside spinel ferrite films, by
this very simple laser­based process. Ferrimagnetic films with
two­dimensional periodic heterogeneities of magnetization, can
then be prepared. Such films meet the basic requirements of
magnonic or magneto­photonic crystals. Moreover, due to the
huge possibilities of composition and non­stoichiometry, offered
by the spinel ferrite family, patterned periodic structures could
be made using a simple process, with ferrites having the relevant
properties to make effective magneto­photonic or magnonic crys­
tals.
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