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Abstract. More and more, users store their data in the cloud. While
the content is then retrieved, the retrieval has to respect quality of ser-
vice (QoS) constraints. In order to reduce transfer latency, data is repli-
cated. The idea is make data close to users and to take advantage of
providers home storage. However to minimize the cost of their platform,
cloud providers need to limit the amount of storage usage. This is still
more crucial for big contents.
This problem is hard, the distribution of the popularity among the stored
pieces of data is highly non-uniform: several pieces of data will never be
accessed while others may be retrieved thousands of times. Thus, the
trade-off between storage usage and QoS of data retrieval has to take
into account the data popularity.
This paper presents our architecture gathering several storage domains
composed of small-sized datacenters and edge devices; and it shows the
importance of adapting the replication degree to data popularity.
Our simulations, using realistic workloads, show that a simple cache mech-
anism provides a eight-fold decrease in the number of SLA violations, re-
quires up to 10 times less of storage capacity for replicas, and reduces
aggregate bandwidth and number of flows by half.

1 Introduction

Content distribution over the internet has increased dramatically in the recent
years. A recent study published by Cisco System, Inc [2] revealed that the global
internet video traffic has surpassed peer-to-peer traffic since 2010, becoming the
largest internet traffic type. Cisco Systems also forecasts that internet video traffic
will reach 62% of the consumer internet traffic by 2015. The vast majority of this
traffic consists of big popular content transport, including high-quality videos.
Nowadays, a large amount of data is stored “in the network”. This allows users to
ease data sharing and retrieval, anywhere in the world. In the cloud, customers and
providers come with storage service guarantees, such as QoS metrics, drawn up in
Service Level Agreement (SLA) contracts. The provider is therefore responsible
to ensure data durability and availability. To enforce SLAs, providers rely on
content replication. Yet, they need to do this carefully, it can have a huge impact
on storage and bandwidth consumptions, even more for big contents. As data



popularity is highly non-uniform, it is important to avoid replicating unpopular
data, that will never be accessed, and also to ensure enough number of replicas
for a popular content which may be retrieved concurrently by hundreds of users.
This work introduces and evaluates Caju, a content distribution system for edge
networks. We analyse the performance of Caju as infrastructure for offering elastic
storage cloud to users. We assume that cloud users may be eager to watch high-
quality videos on-demand, on which strict SLA contracts have to be enforced. We
study the impact of adding strict data transfer rates, as the main QoS metric,
for SLA contracts in the cloud. We evaluate through simulations two replication
schemes with synthetic traces that fairly reproduces big data requests, including
popularity growth.
This work makes two main contributions:

– We describe the design, model, and implementation of Caju, a content distri-
bution system for edge networks, that provides simple replication mechanisms,
and allow us to manage edge resources properly.

– We evaluate the impact of big popular content on replication schemes in order
to provide elastic storage to cloud users with regard to strict SLA contracts.

The rest of this work is organized as follows. Section 2 covers some background
of the today’s content distribution systems and related work. Section 3 presents
our approach to tackle elastic storage provision on the edge of the network, and
provides an in-depth description of Caju, our system for CDNs at edge-networks.
Section 4 analyses and explains our evaluation scenario and performance results.
Finally, Section 5 shows future work and concludes the paper.

2 Background and State of the art

We first describe the current scenario of content distribution networks and the
role of edge networks in the content distribution. Then, we focus on replication
systems used by cloud and P2P storage systems.
Content distribution networks and edge networks: Content distributions
networks (CDN) are distributed systems that maintain content servers in many
different locations in order to improve content dissemination efficiency, enhance
QoS metrics for end-users, and reduce network load. There are two types of servers
in CDN compositions: origin and replica servers (so-called surrogate servers) [6].
We can therefore differentiate CDNs on the basis of their surrogate servers place-
ment, and classify them into core and edge architectures. Core CDN architectures
rely on the deployment of private datacenters close to ISP points of presence
(PoP), and it has been a successful approach used by most of the big DCN in-
frastructure providers, including Akamai [5]. Since this approach uses private re-
sources deployment, and are not designed for cooperating with other CDNs, they
require huge amounts of money for deployment and maintenance. Yet as core
architectures are connected to PoPs, they do not have control of traffic through-
out ISP until the end-customer that undermines QoS guarantees enforcement.
Interoperable CDNs in edge network have emerged to tackle directly these issues.
Network service providers look forward to (i) take advantage of their infrastruc-
ture, (ii) deploy their own datacenters, and (iii) deliver content as close as possible



to end-customer. The aim is to be able to offer differentiated QoS guarantees to
regular customers [8]. In this work, we focus on challenges risen by edge CDN ar-
chitectures. In particular, we have studied how to organize consumer-edge devices
to cooperate with small-sized datacenters, and how to enforce different classes of
strict SLA contracts at the edge of the network.
Replication schemes: Network providers can rely on replication schemes for en-
hancing disseminating content efficiency. Considering resource allocation strate-
gies, we are mostly interested in two categories of replication schemes: uniform,
and adaptive replication schemes. The Google File System (GFS) [4] and Ceph
[9] adopt a pragmatic approach where the number of replicas is uniform, that
mean a fixed number of replicas per stored object. This trivial and primitive ap-
proach has had a considerable success in the industry, particularly for datacenters
deployment, because it is easy to adopt. However it relies on over-provision to
provide resource allocation for popular content, and despite of using commodity
servers, it is inefficient and quite expensive. Overall, these issues are addresses
by adaptive replication schemes. For instance, the use of non-collaborative LRU
caching allows us to easily adapt the replication degree of an content according to
its demand. More sophisticated adaptive schemes, such as EAD [7] and Skute [1]
tackle content replication by using a cost-benefit approach over decentralized and
structured P2P systems. EAD creates and deletes replicas throughout the query
path with regards to object hit rate using an exponential moving average tech-
nique. Skute provides a replication management scheme that evaluates replicas
price and revenue across different geographic locations. Its evaluation technique
relies on equilibrium analysis of data placement. Despite being highly scalable
and providing an efficient framework for replication in distributed systems, these
approaches result in inaccurate transfer rate allocations, hence they are inappro-
priate for high-quality content delivery.

3 Approach

3.1 Caju’s design

We introduce a simple content distribution system, called Caju to study adaptive
replication schemes at the edge of the network. Its design is depicted in Figure 1.
We assume that the service provider infrastructure is organized in federated stor-
age domains. A storage domain is a logical entity that aggregates a set of storage
elements that are located close to each other, e.g. connected to a digital sub-
scriber line access multiplexer (DSLAM). The storage elements are partitioned
in two different classes: (i) operator-edge elements, furnished by storage oper-
ators, e.g. small-sized datacenters, and (ii) consumer-edge entities provided by
consumers, such as set-top boxes. Consumer-edge devices contribute to storage
and network resources according to their availability and load. Operator-edge
nodes run a distributed storage system for local-area network over commodity
servers. They provide cheap and high available resources dedicated to the storage
service.
On top of each Storage Domain runs a couple of services that deals with serving
clients’ requests, and performs appropriate object data placement and replication.



The main functional blocks are depicted in Figure 2. Remote storage clients con-
tact the coordinator when they need perform any request over an object (PUTs
and GETS). The coordinator maintains a catalogue of all clients and available re-
sources, it is also responsible for scheduling the requests. On behalf of the clients,
it selects proper resources for fulfilling their SLA contracts based on replications
schemes.

Operator-edge device
(small-sized datacenter)

Consumer-edge device

Storage Domain

Fig. 1. Storage Elements (SEs) and Storage
Domains (SDs)
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3.2 System model

Here, we formally describe the target storage systems’ main components, inter-
actions, and constraints. We also provide guidelines on our performance goals for
the evaluation Section 4.

Object store service and client satisfaction Our target system provides a
distributed object store service for clients. We denote the set of all possible client’s
objects as O. We consider that objects comprise a set of data blocks of fixed size,
KC , called chunks. So that, an object o ∈ O of size zo has zo

KC
chunks.

We consider that M clients are able to do any number of requests RM to the
system. There are three types of client request: get any object, put new objects
it into the system, and delete their own objects. The storage system provides a
fourth system request type in order to replicate an object. It also might perform
deletions, a fifth request type, for maintenance or control purposes.
We assume that clients are eager for quality of storage service, and their wills are
formally defined by SLA contracts. SLAs allow a client m to choose a suitable
rate of chunks per request λs and minimum acceptable percentage of successful
requests Ps. Assuming a period of request analysis T, we consider that a client m
who did r′m requests is satisfied with the store service if at least r′mxPs requests
were accomplished with λs rate. The object store service places and replicates
objects throughout the system with regard to the client satisfaction.



Storage at the edge of network providers We consider a distributed storage
system deployed at the edge of network providers, that is organized in storage
domains. We assume that there exists I storage domains. A storage domain i,
i ∈ {1, 2, . . . , I} has storage capacity of Si and throughput Ti. Each storage
domain has a set Ji of J storage elements, j ∈ {1, 2, . . . , J}, partitioned in two
distinct classes: Co for operator-edge class, and Cc for consumer-edge class, where
|Cc| ≫ |Co|. The storage capacity of storage element j is denoted by:

sij =

{

Do if j ∈ Co;
Dc if j ∈ Cc.

(1)

where Do and Dc are maximum storage capacity parameters. Hence,

Si =

J
∑

j=1

sij i ∈ {1, 2, . . . , I} (2)

The storage element bandwidth capacity is denoted by:

bij =

{

Wo if j ∈ Co;
Wc if j ∈ Cc.

(3)

where Wo and Wc are maximum bandwidth capacity parameters. We assume that
any storage element has a full-duplex, symmetric connection links. Moreover, buij
denotes the instantaneous bandwidth consumption of storage element j of i. In a
same storage domain i, if j and j′ are two storage element from different classes,
and there is not active transfer between them, their respective buij do not interfere
with each other. Despite that, we consider that network infrastructure imposes
the following condition (4) on the maximum throughput of a set of consumer-end
storage elements of i:

∑

j∈Cc

buij ≤ Wl (4)

where Wl is a the maximum aggregated bandwidth consumption for a set of
consumer-edge devices that the network provider infrastructure permits. Consid-
ering inequality (4), the maximum throughput of a storage domain i is denoted
as follows:

Ti =
1

KC

(
∑

j

bij) ≤
1

Kc

(Wl + |Co|Wo) (5)

where KC is the chunk size parameter.

System interactions and performance goals Each client m is connected,
through its own consumer-edge storage element j, with a single domain i, called
home storage domain. Any m belongs to a SLA class. The system might have
one or many SLA classes, such that different levels of quality of service might



be provided. As described here above, SLA’s constraints allow clients to choose
a suitable rate of chunks per request λs and minimum acceptable percentage of
successful requests Ps, and that the client satisfaction depends on these parame-
ters.
The system allows clients to do storage requests towards their own homes only.
However, all requests might be served by storage elements from any federated
storage domain, except for objects’ insertions, that must be served by client’s
home storage domain. For mapping and monitoring resources, and interactions in
our storage system, we assume that there exists logically centralized coordinator.
The performance and design issues of coordinator are beyond the scope of our
current work.
We denote the set of all R possible requests by R. Requests are grouped in two
distinct manners: by requester or by type of request. In terms of requester, there
are two disjoint subsets:RM for client’s requests, andRS for own storage system’s
requests. When our system receives a request r that requires to move objects
between any node and storage element of i, it serves this request by creating data
transfers from a source to a destination. As described above, a requester might be
either a client or the own system. If r ∈ RS the transfer is always made between
two storage elements. For all r ∈ R, let:

pj,r =

{

1, if j serves r;
0, otherwise.

(6)

be a 0-1 variable indicating if the storage element j ∈ Ji provides resources to serve
request r. We assume there is a function Ai

j(t) that yields the current available
rate of chunks by j in t for serving a system incoming request. Therefore, if client
m requests rm over a storage domain i in time t, asking for a λs

m rate, the storage
system fulfil m’s expectations if and only if:

Constraint 1:
∑

j∈Ji

pmj,r ·A
i
j(t) ≥ λs (7)

Therefore our system performance goals for our replication scheme are twofold.
Firstly, we aim to maximize the number of satisfied clients as a metric for eval-
uating the quality of provided service. And secondly, we tend to minimizing the
amount of system’s bandwidth and storage usage, by adjusting properly the re-
source allocation over storage elements in order to serve R.

4 Evaluation

Our evaluation has two main goals: (i) to evaluate the performance of Caju
in providing storage for cloud users on top of edge devices, including operator-
edge devices, so-called small-sized datacenters; (ii) to compare and evaluate chal-
lenges of two replication schemes: uniform with fixed number of replicas and
non-collaborative caching.
The evaluation scenario (Figure 3) includes 2002 (numbered) nodes arranged
across two Storage Domains (SD). There are one operator-edge device (nodes



1 and 1001) and 1000 consumer-edge devices per Storage Domain. Storage and
network capacities differ accordingly to the class of device. Each operator-edge
device has 10TB of storage capacity and 4Gbps as network capacity. Consumer-
edge devices contribute with a smaller storage capacity per device, 100GB, and
are equipped with a full-duplex access link of 100Mbps per consumer device. We
consider that consumer-edge devices that belong to the same Storage Domain are
geographically close to each other, and that a maximum bandwidth limit of 80%
is enforced to aggregated traffic of consumer-edge devices on edge network level.
The workload was carefully set-up to match to multimedia popular content dis-
tribution, as described in recent studies [3]. Tables 1 and 2 list default values for
evaluation scenario and workload parameters respectively. SLA contracts differ to
each other by transfer rate λs. Thus, we consider three SLA classes, in chunks
per second: (a) 41, (b) 21, and (c) 14 chunks/s. To each customer is assigned a
SLA that regards the following distribution: 40% class (a), 40% to (b), and the
remaining 20% to (c). We assume that a SLA violation occurs when any transfer
of a consumer does not observe her minimum contracted transfer rate.
We use happiness or number of customers without SLA violations as a key perfor-
mance metric. This means Ps is equal to 100% in our model. Along with happiness.
We also focus on number of SLA violations, number of flows, storage and network
capacity usage.
The rest of this section is structured as follows. Subsection 4.1 describes the
two replication schemes evaluated in this work. Then, we show our performance
analysis for these two schemes in Subsection 4.2.
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Fig. 3. Evaluation scenario

4.1 Evaluated replication schemes

We have evaluated the performance of two replication schemes with Caju:
Uniform replication scheme with fixed number of replicas This is the
simplest approach to replicate objects into a system, that is broadly used in cur-
rent datacenter deployments. Given a fixed number of replicas n as a parameter,
we simulate a chain of object-replication of n stages just after the initial insertion
(PUT). Requests are scheduled in order to balance load throughout nodes. Each
request might be served by at most R nodes with equal load. The actual number
of sources is r = min(n,R).
Non-collaborative LRU caching Simple adaptive replication schemes based
on non-collaborative caching, such as those that implements Least Recent Used



Table 1. Default parameter values for
the evaluation system

Evaluation scenario

Number of Storage Do-
mains (SD)

2

Number of Operator-edge
devices (OE) per SD

1

Number of Consumer-edge
device (CE) (with a home
client) per SD

1000

OE storage capacity 10TB
CE storage capacity 100GB
OE network capacity 4Gbps
CE network capacity 100Mbps
Aggregate bandwidth limit
for a set of CEs

80%

Chunk size 2MB
Number replicas 2
Maximum parallel flows per
request

5

Table 2. Default values for workload pa-
rameters

Workload

Requests per client uniform
Experiment dura-
tion

1h 12min

Object size shape=5
(follows Pareto) lower

bound=70MB
upper bound=1GB
(mean 93MB)

Mean requests 50
per second
Requests division 5% for PUTs

95% for GETs
Popularity growth shape=2
(follows Weibull) scale ∝ duration
Content popularity shape=0.8
(Zipf-Mandelbrot) cutoff=# of objects
PUTs (Poisson) λ=PUTs/s

algorithm, are straightforward and easy to implement and deploy. In our imple-
mentation, a new replica is created whenever a client, connected to a operator-edge
device, performs a GET to any object. LRU replacement is enforced regarding a
static percentage of the local storage capacity γ for caching. Request scheduling
is quite similar to that of uniform approach. However the number of available
sources n changes according to LRU algorithm.

4.2 Performing storage for cloud users at the edge of the network

We analyse the efficiency of delivering popular content with strict SLA definitions
using two replication schemes approaches: uniform replication with a fixed number
of replicas, and non-collaborative LRU caching.
First, we have evaluated the required number of replicas of uniform replication
for different request rates in order to prevent SLA violations. Figure 4 shows
happiness metric for mean request rates of 50, 100, 150, and 200 requests per sec-
ond. We have observed that uniform replication schemes require high replication
degree in order to cope with strict SLA definitions and popular content. At least
20 replicas are required to prevent violations if the request rate is as high as 150
requests per second. For the highest request rates, uniform replica is not suitable.
When we simulated 200 requests per second, there were 799 violations. Despite
having being widely used in datacenters and storage clusters, uniform replication
scheme relies on over-provision in order to distribute popular content with strict
SLA definitions, hence it is not fit for edge network deployments.
To avoid over-provision, we have analysed the storage usage uniform replication
with a non-collaborative LRU caching. We simulate different LRU caching sizes



percentages: 1%, 5%, and 10% of the storage capacity. Figure 5 plots storage
storage usage and happiness metric for 200 requests per second. Even with the
smallest cache storage percentage of 1%, a non-collaborative LRU caching ap-
proach performs much better than uniform replication. We observed 89 violations
with 1% of non-collaborative LRU caching that required a storage usage, 7.82TB,
similar to uniform scheme with 2 replicas, 8.92TB.
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In order to gather more information about the advantages of using non-
collaborative caching for distributing popular content instead of uniform repli-
cation, we have evaluated and plotted in Figure 6 the throughput, flows, and
violations results sampled per second. We selected results from LRU caching with



local cache size of 1% of the node storage capacity, and uniform replication with
20 replicas. By using a non-collaborative LRU caching, we have seen that the
number of flows and aggregate bandwidth was reduced by half. We have also
verified that the number of violation slashed from 799 to only 98.

5 Conclusions and perspectives

Online storage of big data becomes very popular. Storage providers need to find
good trade-offs between replication and storage usage. In this paper, we show
that it is important to take content popularity into account: using a fixed repli-
cation would lead either to waste storage space or to increase the number of
unsatisfied customers. We propose and evaluate Caju, a content distribution sys-
tem for edge networks. Caju provides the ability to manage storage and network
resources from both consumer and operators in a collaborative manner. Our eval-
uations show that non-collaborative caching consistently outperforms the fixed
replication scheme. It provides a eight-fold decrease in the number of SLA vio-
lations, requires up to 10 times less of storage capacity for replicas, and reduces
aggregate bandwidth and number of flows by half. We are working on the design
of new adaptive placement and replication algorithms. Our goal is to enhance
non-collaborative caching for popular content delivery.

References

1. Nicolas Bonvin, Thanasis G. Papaioannou, and Karl Aberer. A self-organized, fault-
tolerant and scalable replication scheme for cloud storage. In ACM, editor, ACM
Symposium on Cloud Computing 2010 (SOCC2010), Indianapolis, USA, June 2010.

2. Cisco visual networking index: Forecast and methodology, 2010-2015.
http://www.cisco.com, June 2011.
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