Counting Primes in Residue Classes

Abstract : We explain how the Meissel-Lehmer-Lagarias-Miller-Odlyzko method for computing π(x), the number of primes up to x, can be used for computing efficiently π(x,k,l), the number of primes congruent to l modulo k up to x. As an application, we computed the number of prime numbers of the form 4n±1 less than x for several values of x up to 10^20 and found a new region where π(x,4,3) is less than π(x,4,1) near x=10^18.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [9 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00863138
Contributor : Xavier-François Roblot <>
Submitted on : Thursday, September 19, 2013 - 10:18:25 AM
Last modification on : Monday, April 15, 2019 - 3:52:06 PM
Document(s) archivé(s) le : Friday, December 20, 2013 - 2:55:24 PM

File

pikl.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00863138, version 1

Citation

Marc Deléglise, Pierre Dusart, Xavier-François Roblot. Counting Primes in Residue Classes. Mathematics of Computation, American Mathematical Society, 2004, 73 (247), pp.1565-1575. ⟨hal-00863138⟩

Share

Metrics

Record views

377

Files downloads

136