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ABSTRACT: Natural mortality rate is a key parameter in ecology and fisheries, but it may be
difficult to estimate for methodological reasons and because it is highly variable and often
confounded with other factors such as fishing mortality and migration. This is especially true for
crustaceans in general, because age determination is problematic, and for snow crab
(Chionoecetes opilio) in particular because density-dependent processes may lead to highly
variable mortality rates across life history stages. In this context, we developed an original
method to estimate the natural mortality rate of adult (i.e. terminally molted) female snow crab,
and its consequences on egg production. This new method relies on shell condition, carapace
width and abundance of adult females and was applied to a time series (1991-2012) of annual
trawl survey data for a snow crab population in the Gulf of St. Lawrence, eastern Canada. Two
natural mortality estimates were provided by the method depending on two distinct assumptions
about the survey. Both estimates (0.66 and 0.78 year ') were high compared to previous
estimates for snow crab. These values imply that female life expectancy after terminal molt was
short and that primiparous females (first-time spawners) contributed a large share (at least 81%)

of the total number of eggs produced by the case-study population over the period 1992-2010.

KEY WORDS: Chionoecetes opilio, natural mortality, terminal molt, body size, egg production

INTRODUCTION
Knowledge of natural mortality is of paramount importance in ecological and fishery sciences
(e.g. Defeo & Cardoso 2002, Lipcius & Stockhausen 2002). Natural mortality is a key
determinant of the potential productivity of a population, and consequently of a species’ potential

to resist environmental stressors or to sustain exploitation. Natural mortality rates are especially
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difficult to estimate because they are generally highly variable across life history stages and
because in exploited species they may be confounded with direct or indirect fishing mortality.
This is especially true for several harvested crabs (Zheng 2005) in which density-dependent
processes, such as cannibalism (Sainte-Marie & Lafrance 2002), may cause mortality rates to
vary through ontogeny.

Estimation of natural mortality rates usually depends on knowledge of individual age, which
has never been determined directly for crabs and other crustaceans because no bodypart
recording annual age marks was known (e.g. Vogt 2012). Consequently, various other methods
have been proposed or used to estimate crab natural mortality rates. Tagging experiments have
been widely employed (e.g. Siddeek et al. 2002, Lambert et al. 2006) but this technique is more
difficult to apply to crabs than to fishes, because of molting, and is generally expensive. Indirect
methods such as length-based models have also been used to provide estimates of natural
mortality rates (Siddeek et al. 2002, Zheng et al. 1995a, 1995b), but these models generally
require a large amount of data to provide reliable estimates. In the last few decades, methods
have been developed and applied to assess age via the neural pigment lipofuscin — while these
methods do not allow precise individual age determination, they do assign a probable age to
individuals based on the average rate of lipofuscin accumulation (Puckett et al. 2008, Sheehy &
Prior 2008).

In the many crab species with a terminal molt, such as those belonging to the genera
Chionoecetes and Maja, natural tags (epibionts) and shell condition (Dick et al. 1998), carapace
radiometry (Le Foll et al. 1989, Ernst et al. 2005) and dactyl wear (Fonseca et al. 2008, Fahy &
Carroll 2009) have also been proposed as methods for determining relative age (since terminal

molt) and mortality rates for the ultimate, reproductive life history phase, called adult. However,
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each of these last methods has its drawbacks including uncertainty and/or cost. For example,
time of epibiont settlement and subsequent growth rate are generally unknown, carapace
radiometry is costly and assumes that shell composition is static from time of molt (no minerals
added), and dactyls may wear differently among individuals. Recently, Kilada et al. (2012)
proposed that age may be recorded in the eyestalk of some decapod crustaceans, including snow
crab, but the method must be further validated especially with regard to its application to
terminally molted individuals (C. Vanier, Univ. Québec a Rimouski, pers. comm.).

This study examines survival of adult (i.e. terminally-molted and sexually mature) female
snow crab (Chionoecetes opilio; Oregoniidae, Majoidea) and its consequences for egg
production using a new approach for determining mortality. The case-study population is located
in the northwestern Gulf of St. Lawrence, eastern Canada. Fishery regulations impose a strict ban
on the landing of female snow crab in eastern Canada, so female survival after terminal molt
should largely reflect natural mortality. Snow crab terminal molt can occur at variable instars,
with females becoming adult on average at a smaller size (instar) and a younger age than males.
In the Gulf of St. Lawrence, most females become adult in either of instars IX to XI which
corresponds to a post-hatching age of about 6—8 years and most males in instars IX to XIV at
about 6—11 years (Sainte-Marie et al. 1995, Alunno-Bruscia & Sainte-Marie 1998, Comeau et al.
1998). The female terminal molt to maturity occurs sometime between late December and April
(Alunno-Bruscia & Sainte-Marie 1998). Females can be inseminated by males shortly after this
molt and thereafter transition through three reproductive stages: (1) ‘nulliparous’ from time of
terminal molt until they extrude their first egg clutch, which happens usually hours or days after
molting/mating; (2) ‘primiparous’ after extruding their first egg clutch; and (3) ‘multiparous’

after extruding their second or an ulterior clutch (Sainte-Marie et al. 2008, 2010). Primiparous
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and multiparous females have different reproductive outputs, the former extruding eggs that are
about 20% fewer per clutch but about 2% bigger in diameter than those of similarly-sized
multipara (Sainte-Marie 1993). Eggs are brooded beneath the female’s abdomen and develop and
hatch out as larvae in about one year in “warm” (> 0.75°C) conditions so females reproduce
annually, or in about two years in “cold” (< 0.75°C) conditions so females reproduce biennially
(Moriyasu & Lanteigne 1998, Comeau et al. 1999, Sainte-Marie et al. 2008, Kuhn & Choi 2011).

Classification of adult female snow crab into reproductive stages relies on shell condition: the
exoskeleton is clean, iridescent and still soft in nullipara; clean, iridescent but hardening in early
primipara (<3—6 mo since terminal molt), and with additional time it progressively becomes
fouled, dull and scarred. Shell fouling and scarring is more or less apparent in late primipara
(about 6 mo to up to 2 yr since terminal molt in cold environments), depending on year and site,
but it is usually obvious in multipara (Sainte-Marie 1993). Adult females have been assumed to
survive mostly for 3 to 5 years after terminal molt (Alunno-Bruscia & Sainte-Marie 1998,
Comeau et al. 1998), but maximum longevities of 6-9 years after terminal molt are reported
(Emst et al. 2005, Gosselin 2009, Kon et al. 2010).

Adult females recruited to the snow crab population in a given year form a pseudo-cohort
(term coined by Ernst et al. 2005) with often very distinct characteristics of abundance and mean
size relative to other pseudo-cohorts. Variation in pseudo-cohort strength can be extreme (orders
of magnitude) and recruitment of adult females occurs in multiyear waves or pulses (Sainte-
Marie et al. 1996, 2008, Ernst et al. 2012). Waves (and intervening troughs) are thought to reflect
episodic or quasi-cyclic oscillations in settlement intensity or early juvenile survival (Conan et
al. 1996, Sainte-Marie et al. 1996, Ernst et al. 2102). Variation in mean body size of adult

females in pseudo-cohorts may be inversely related to pseudo-cohort density and so also



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Author-proauced version of the article published In Aquatic bBiology, 2013, 16(3), 201-2/0
The original publication is available at http://www.int-res.com/abstracts/ab/v18/n3/
doi : 10.3354/ab00513

oscillates over time (Sainte-Marie et al. 1996, 2008, Orensanz et al. 2007, Ernst et al. 2012).
These features are well illustrated by the time series of adult female abundance and body size in
our case-study population (Fig. 1), where the primipara abundance index has fluctuated inter-
annually by several orders of magnitude, through one very strong (1995-1999) and one weak
(2008-2010) recruitment wave, and was negatively correlated with primipara mean body size
(r=-0.618, p=0.003).

The objective of this study is to explore the combined use of shell condition (or reproductive
stage), abundance index and body size during the maturation of two successive recruitment
waves for determining the natural mortality rate of adult female snow crab. We entertain this
possibility because newly-recruited adult females can under some circumstances be confidently
recognized and the pseudo-cohort they form has distinct characteristics of abundance and mean
size that could serve as tracers. Additionally, we estimate population and per capita egg
production, and primipara and multipara shares of population egg production, using the

estimated mortality rate under a scenario of annual or biennial female reproduction.

MATERIALS AND METHODS
Data. Every year (denoted y) from 1991 (denoted y;) to 2012 (denoted Y), a beam trawl
survey was carried out in Baie Sainte-Marguerite. This small (~ 400 km?) bay is located in the
northwest Gulf of St. Lawrence, eastern Canada. A description of the survey is provided in
Lovrich et al. (1995) and Sainte-Marie et al. (1996). Briefly, the survey was conducted between
late-April and late-May, just after the end of the annual period for terminal molting of females.
The survey design allocated at least 3 randomly positioned trawlsets in each of 3 depth strata:

4-20 m, 20—80 m, and 80—140 m. This depth range covers essential female snow crab habitat
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during the spring. All sampled crabs were sexed, rated for shell condition (Sainte-Marie 1993),
and females were measured in carapace width (CW, £ 0.1 mm) and assigned a maturity status
(pre-adult or adult) based on the relative size of their abdomen (Alunno-Bruscia & Sainte-Marie
1998).

Classification of adult females was further refined into two groups: newly-recruited females
(with a clean and soft, brittle or hard shell) denoted AO; or previous years’ recruits (with a more
or less fouled and scarred shell, corresponding to intermediate, dirty-hard or dirty-soft shell
conditions) denoted A1+. The distinction between new recruits and previous years’ recruits is
easy at the time of the survey and is confirmed post hoc each year by examination of the
spermathecal content of a sample of adult females (n = 60-90) during routine monitoring of
female reproductive success (Sainte-Marie et al. 2008). Stored ejaculates are all white in AO
females, indicating females have experienced only one recent mating period, whereas some or all
of the ejaculates are much darker (yellow-ocre to brown) in A1+ females due to storage for a
year or more (Duluc et al. 2005). At the time of the survey, group A0 is composed exclusively of
primiparous females that molted and oviposited sometime in the previous 4—5 months, while
group Al+ is composed of all the multiparous females and may also include late primipara in
their second year of egg incubation under cold conditions or late primipara close to hatching
their clutch under warm conditions. Group A1+ may conceptually be subdivided into pseudo-
cohorts: Al, A2, A3, etc represent females that underwent terminal molt and became adult
respectively 1, 2, 3,etc years before the current survey year.

An index of abundance by 0.02 log,, classes of CW was calculated for each group of adult

females based on swept area by trawlset and area of each depth stratum. Thus, the survey

provides annual abundance indices for A0 and A1+ groups (denoted respectively U ,, (y) and
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U . (y)) and estimates of mean CW (denoted respectively cw (y) and cw 41+ (y ) from

year yi to Y. Standard errors for mean CW are calculated and denoted SE O(y) and SE3,, (y)

The size distribution of adult females in a given year may be approximated by a normal
(Gaussian) distribution because they are mainly concentrated in two successive instars with
largely overlapping sizes (Alunno-Bruscia & Sainte-Marie 1998, Burmeister & Sainte-Marie

2010).

Dynamic equations. If x ,, (y) and N ,, ( y ) respectively denote group A0 mean CW and

abundance in the population in year y, while x ,,, (y) and N ., (y) respectively denote group

Al+ mean CW and abundance in year ), group Al+ mean CW and abundance in the following
year can easily be calculated:

1) ﬂA1+(V)_ NAO(y A )'uAO(y A ) +NA]+ 1)'NA1+(Y—1)'6_M

NAO(Y A ) +NA1+ 1)'9_M

(expectation

of the mixture of two Gaussian distributions),

2) NA1+(Y): NAO(y_Ap)e_M.Ap +NA1+(V_1)'6_M

with M the natural mortality rate that we want to estimate, and 4, the offset in years between A0Q
and A1+ data. This offset will be set to either one or two years.

Given equations 1 and 2, if

Yi0 O o ttao € =A IN 0 )s N @ = A gt 0+, )N, Gy +A, 1) M Jare

known, A1+ mean CW and abundance can be estimated for years y,+ / to Y.
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Parameter estimations. The set of parameters
0= {\]Ao(yl)""NAO(Y_Ap) /uAO(yl )""/uAO(Y_Ap)NAH(yl +A, _1)ﬂA1+(yl +A, _1)q,M}iS

estimated (with ¢ the survey catchability, i.e. the ratio between abundance index and abundance)
by maximising a likelihood function. Two types of data were included in the likelihood function
for both AO and A1+ groups: (i) mean CW and (ii) abundance index.

Assuming that the number of sampled crabs was sufficient, the law of large numbers implies
that observed mean CW of A0 and A1+ groups follow a normal distribution of means y4(y) and

ta1+(v), and of standard errors SE ,,(y) and SE . (v). Thus, the log-likelihood for CW is:

max(SE ,,()2.38) max(SE ,;, ()2.38)

3) lochw(G)—2 : YZA { cwo () IL‘AO(y):| o {CWAH - 10, () T

=y y=n+4,-1
In equation 3, 2.38 corresponds to average CW class width (converted from log values to mm):
we considered that mean standard errors could not be inferior to this width.

We assumed that the abundance indices of A0 and A1+ groups provided by the survey
followed a lognormal distribution of means g No(y) and ¢ N4;+:(y). Thus, from Deriso et al.
(2007), the log-likelihood for abundance indices is:

4 loglcO)=——n- 10{ S (oslg- Vo O)-ogl 0 + 3 Goela- N 010 ) |

=y y=y+4,-1
with n the number of observations in the dataset. Consequently, parameters are estimated by
maximising:
5y logL(O)=logL.(0)+logL,,(0)
The model was also fitted assuming distinct natural mortality for AO and A1+ groups.

The Bayesian Information Criterion (BIC; see Schwarz 1978, Burnham & Anderson 2002)

was used to determine whether a two-year offset was more appropriate for estimating natural
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10

mortality than a one-year offset. The model with the smallest BIC was expected to be the best.
The same approach was also used to test whether distinct natural mortality rates for AO and A1+

groups are more appropriate than a common natural mortality rate.

Egg production. Analytical results were combined with fecundity estimates derived from
equations in Sainte-Marie (1993) to calculate (i) theoretical contributions of A0 and A1+ groups
to total population egg production assuming that all females reproduced annually or biennially
(estimated numbers of A0 females and A1+ females multiplied by estimated fecundity at mean
CW for the two female reproductive groups) and (ii) the expected lifetime production of eggs by
a female (number of eggs per clutch multiplied by the survival probability) at one of two sizes
and in warm or cold conditions (i.e. annual vs biennial reproduction). The two selected sizes,
45.6 and 57.3 mm CW, correspond to the range of observed mean CW for primipara in Baie
Sainte-Marguerite over the period 1991-2012. The number of eggs per clutch for a given body
size is assumed to be independent of temperature regime, and there is no allowance in our
calculations for a likely reduction in egg number per clutch among senescent multipara (e.g. Kon

et al. 2010).

RESULTS
Strong positive correlations (p < 0.001) between A1+ and A0 adult female groups existed for
mean CW and abundance index with one-year or two-year offsets, although for both variables
the correlation was slightly weaker at an offset of one year compared to two years (Fig. 2). The
intensity of correlation in mean CW and abundance index between the two female groups

progressively decreases at offsets greater than two years and becomes non-significant at an offset
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of 4 to 5 years. The stronger correlation in abundance index between A0 and Al+ females at a
two-year offset, which is particularly apparent during the period 1995-1999 when A0 abundance
increased sharply (Fig. 1), can raise a question about the trawl’s efficiency at sampling A1l
females (i.e. females that became adult in the year preceding the survey). This concern motivated
the use of one or two-year offsets between the two female groups when modelling mortality rate:
if Al females are not sampled, AO females suffer two years of mortality before being detected in
the A1+ group as A2 females.

Our simple model was able to fit the variation in mean CW and abundance during the passing
of the two successive recruitment waves (Fig. 3). The variations in abundance were especially
well described by the model when assuming a one-year offset between AQ and A1+ females;
however, the model described variations in mean CW equally as well with either offset.

Estimates of natural mortality rate derived from the model were quite high: 0.78 year ' (s.c.
0.07 year ') for a one-year offset and 0.66 year ' (s.e. 0.05 year ') when assuming a two-year
offset. These high values imply that only 45.8% (one-year offset) or 51.7% (two-year offset) of
females survived more than one year after their terminal molt and that only 21.0% or 26.7%
respectively survived at least two years, i.e. the time required for eggs to develop and hatch in
cold conditions. The model was also applied assuming A0 and A1+ females have distinct
mortality rates, but confidence intervals were huge and the model became over-parameterized;
consequently, it was not possible to conclude whether natural mortality was different between the
two female groups. We, therefore, focused on a model assuming a common mortality rate for
both A0 and A1+ females. The BIC value of the model was lower (i.e. preferred) with a two-year
offset (BIC = 3880.5) than with a one-year offset (BIC = 4244.5) between the A0 and A1+

females. This suggests, as above, that there could be a catchability issue with A1 females. Thus,
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the following analyses of egg production are based on natural mortality rate estimated with a
two-year offset.

Estimates of egg production at the individual or population level suggest strongly that
primipara play a key role in snow crab reproduction and population dynamics. The first clutch
represents nearly half (43.9%) of the expected lifetime egg production of an adult female in
warm conditions and >69.7% in cold conditions (Fig. 4), even though primipara are about 20%
less fecund at size than multipara (Sainte-Marie 1993). Estimated total annual population egg
production was variable over time due to pulsed recruitment (Fig. 5), but on average would have
been 1.75 times higher under annual compared to biennial reproduction. Figure 5 shows that the
relative contribution of AO and A1+ females to estimated population egg production changed
over the years in relation to the passing of the strong recruitment wave of 1995-1999. A0
females produced a greater share of eggs than A1+ females at the beginning of the period of high
adult female abundance, and the reverse was true at the end of that period and during the
subsequent recruitment trough. The inversion of relative contribution to total egg production
toward the end of a recruitment wave reflects the accumulation of older females (multipara) with
greater per capita fecundity in conjunction with much reduced primipara abundance. This pattern
of shifting relative shares of egg production between the two female reproductive stages was
more striking when assuming biennial reproduction than when assuming annual reproduction.
Under the scenario of biennial reproduction, which may best describe Gulf of St. Lawrence snow
crab (Sainte-Marie 1993, Moriyasu & Lanteigne 1998, Comeau et al. 1999), A0 females were
responsible for more than 90% of population egg production in 1995-1998 as well as in 2008—

2010 (Fig. 5) and for an estimated 81% over all of the period 1992-2010.
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DISCUSSION

This paper presents an original approach for estimating natural mortality of snow crab adult
females. The method innovates in combining classic accounting of crab numbers with the
autocorrelated interannual variability of body size of recruiting adult females as a tracer for
resolving mortality rates in a natural population. This approach is rather generic and may
probably be applied to other crustacean populations with a terminal molt, insofar as they are
seasonally-breeding, univoltine (or perhaps even bivoltine), and exhibit interannual variability of
adult body size and numbers. The natural mortality estimate we obtained (0.66 year ') is high but
similar to estimates of 0.53—1.02 year ' for sublegal (< 95 mm CW) snow crab adult males in the
southern Gulf of St. Lawrence (Wade et al. 2003) and less than estimates reported for adult
females of other crab species with a terminal molt (Miller et al. 2005, Hewitt et al. 2007, Zheng
2005). For snow crab specifically, natural mortality of adult females was estimated at 0.56 year '
in two distinct studies: one performed in a small (13.7 km?) marine reserve in the Sea of Japan
using tag-recapture methods (Yamasaki et al. 2001) and the other at the scale of the eastern
Bering Sea using numerical accounting (Zheng 2003).

The simultaneous use of two different variables, mean CW and abundance index, for
calculating snow crab natural mortality may provide more robust and reliable estimates than any
single variable. However, we estimated natural mortality using each variable separately
(assuming a two-year offset): the value was 0.63 year ' (s.e. 0.06 year ') when fitting the model
on abundance indices and was 0.68 year ' when only carapace widths were used. It was not
possible to estimate confidence intervals in this last case because the model was
overparameterized. Our best estimate using the mean CW and abundance index (0.66 year ') is

thus a compromise between those two values.
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The method proposed herein for estimating natural mortality depends on several important
assumptions. The first is that classification of A0 and A1+ females is faultless. While there is
good reason to believe that the accuracy of classification is very high (see methods),
misclassification of A1+ females as AO females would lead to an overestimation of natural
mortality while the reverse would lead to an underestimation. The second assumption is that
adult females in all pseudo-cohorts are equally catchable. However, visual examination of trends
in mean CW and abundance index and correlation analysis suggest that catchability of A1
females may have been low relative to females in other pseudo-cohorts. This possibility was
taken into account by fitting the model with two different offsets between A0 and A1+ females:
the one-year offset assumes that Al female catchability is similar to that of other adult females,
while the two-year offset assumes that A1 females are not catchable at all. The better
performance of the model with a two-year offset is consistent with the idea that catchability of
Al females is low. A possible reason for this is the ontogenetic migration after terminal molt
from shallow molting grounds to deep multiparous female habitat (Sainte-Marie & Hazel 1992,
Lovrich et al. 1995, Ernst et al. 2005). In Baie Sainte-Marguerite, this migration may occur over
a period of a year or so on relatively steep slopes where our small beam trawl may not perform
well. Alternatively or complementarily, A1 females might behave differently, perhaps burying
more, than other adult females. Additionally, we assume that there is no net immigration or
emigration of AO or A1+ females into, or away from, the relatively small study area. Finally, we
posit that snow crab adult females are not subject to direct or indirect fishing mortality (F = 0)
and that natural mortality is independent of their body size.

Hewitt & Hoening (2005) proposed the equation 4.22 divided by maximum longevity as a

rule of thumb for estimating natural mortality in various marine animal taxa. Applying this rule
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to snow crab adult females, with mean age at terminal molt to adulthood set at 7 years and
subsequent maximum life expectancy ranging from 3 to 9 years (see introduction) produces
natural mortality estimates of 0.42 to 0.26 year ' (4.22/10 or 4.22/16). These estimates represent
average natural mortality over the lifetime of a female and are lower than ours, which represent
natural mortality of a female after terminal molt only. Prominent causes of natural mortality for
pre-adult and adult females include fish predators such as skates and cod (Robichaud et al. 1991,
Chabot et al. 2008) and in some areas (but not the northern Gulf of St. Lawrence) bitter crab
disease (Shields et al. 2007, Mullowney et al. 2011). However, natural mortality rates of adult
females may be higher on average than those of pre-adult females because of density-dependent
sexual conflicts arising during the female’s first mating period, which is intimately associated
with terminal molt (Sainte-Marie et al. 2008; see Adler & Bonduriansky 2011 for more general
considerations on sex ratio, density and the rate of ageing). When the snow crab adult sex ratio is
strongly biased towards males, dominant males may forcefully take over females from other
males or coerce females into mating, sometimes inflicting immediate death or severe injuries
(e.g. multiple limb loss) that will curtail female life expectancy; when the adult sex ratio is
strongly biased towards females, dominant males reduce guard time and the vulnerable, newly-
molted females may be subject to harassment by subordinate males and exposed to predators
(Sainte-Marie & Hazel 1992, Sainte-Marie et al. 2008 and references therein). Adult female
mortality rates may be less at more balanced sex ratios: it will probably be possible to include
density-dependence in the model to account for this source of variability in natural mortality
when the times-series becomes longer.

We have not yet attempted to estimate natural mortality for adult male snow crab. Males also

undergo a terminal molt and their abundance index and mean CW change over the years (Sainte-
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Marie et al. 2008), but large adult males are targeted by the fishery and consequently it is more
difficult to distinguish between natural and fishing mortality. It may, however, be possible to
estimate natural mortality for sublegal (< 95 mm CW) adult males using our method. Our
method certainly cannot be used for determining natural mortality of pre-adult snow crab, so
additional studies by tagging or other methods (e.g. Kilada et al. 2012) will be needed to improve
natural mortality estimates for snow crab in general.

Our high estimate of natural mortality for adult females has important implications for the
perception of relative contributions of primipara and multipara to population egg production.
Although multipara are more fecund at size than primipara (Sainte-Marie 1993), primipara are
expected to contribute a large share of population egg production in both cold and warm
conditions. Note that the primipara share of population egg production may be underestimated,
as we did not take into account a possible reduction in fecundity at size in senescing multipara
(see Kon et al. 2010). Assuming no brood mortality, Sainte-Marie (1993) inferred that snow crab
primipara would produce > 40% of total larvae produced by biennially-reproducing females,
which is comparable to our estimate of the primipara average share of egg production in warm
conditions (43.9% over the study period) but smaller than our estimate of primipara average
share in cold conditions (69.7%). However, it is clear from our study that decadal oscillations
occur in the relative contributions of primipara and multipara to annual egg production. Due to
differences in size (quality) of primipara and multipara eggs (Sainte-Marie 1993) and
unaccounted brood mortality, which might differ between the two female reproductive stages, we
cannot currently determine the respective contributions of primipara and multipara to
recruitment. Nevertheless, this and other studies (e.g Ernst et al. 2012) can suggest that snow

crab should be managed to ensure high reproductive success of primiparous females.
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Fig. 1. Variation of mean carapace width (left) and abundance index (right) of snow crab females
recruited to the Baie Sainte-Marguerite population in the survey year (A0, solid lines and circles)
or in previous years (Al+, dashed lines and triangles) during the passing of two successive
recruitment waves (1995-1999 and 2008-2010). Abundance index is standardized to A0
abundance in 1993. A1+ abundance in 2000 is not shown because it is unrealistically high

(abundance = 2,831).
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survey year (A0) and those recruited in previous years (Al+), over the period 1991-2012, with a

one-year (left) or two-year (right) offset.
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Fig. 3. Observed (open circles) and estimated (lines) mean carapace width (top) and abundance
index (bottom) for snow crab adult females recruited to the Baie Sainte-Marguerite population in
the survey year (A0) and those recruited in previous years (Al+) when assuming a one-year
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Fig. 4. Probabilistic lifetime egg production of snow crab adult females under warm (annual
reproduction) and cold (biennial reproduction) conditions. Females of 57.3 and 45.6 mm
carapace width (black and gray bars, respectively) are considered. Egg production in each
successive reproductive stage is weighted by survival probability, calculated from the estimated
mortality rate of 0.66 year . The full black line represents proportional contribution of each

reproductive stage to lifetime reproductive output (P=primiparous oviposition, M1=multiparous
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Fig. 5. Contribution of A0 (black) and A1+ (grey) to yearly egg production of the snow crab
population in Baie Sainte-Marguerite assuming that females reproduce annually (i.e. warm
conditions, top) or bienially (i.e. cold conditions, bottom), based on estimated abundance indices

and mean carapace widths.



