Degenerate parabolic operators of Kolmogorov type with a geometric control condition.
Karine Beauchard, Bernard Helffer, Raphael Henry, Luc Robbiano

To cite this version:

HAL Id: hal-00863056
https://hal.archives-ouvertes.fr/hal-00863056
Submitted on 24 Oct 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Degenerate parabolic operators of Kolmogorov type
with a geometric control condition

Karine Beauchard, Bernard Helffer, Raphael Henry, Luc Robbiano

Abstract

We consider Kolmogorov-type equations on a rectangle domain \((x,v) \in \Omega = \mathbb{T} \times (-1,1)\), that combine diffusion in variable \(v\) and transport in variable \(x\) at speed \(v^\gamma\), \(\gamma \in \mathbb{N}^*\), with Dirichlet boundary conditions in \(v\). We study the null controllability of this equation with a distributed control as source term, localized on a subset \(\omega\) of \(\Omega\).

In dimension one, when the control acts on a horizontal strip \(\omega = \mathbb{T} \times (a,b)\) with \(0 < a < b < 1\), then the system is null controllable in any time \(T > 0\) when \(\gamma = 1\), and only in large time \(T > T_{\min} > 0\) when \(\gamma = 2\) (see [10]). In this article, we prove that, when \(\gamma > 3\), the system is not null controllable (whatever \(T\) is) in this configuration. This is due to the diffusion weakening produced by the first order term.

When the control acts on a vertical strip \(\omega = \omega_1 \times (-1,1)\) with \(\mathbb{T} \subset \mathbb{T}\), we investigate the null controllability on a toy model, where \((\partial_x, x \in \mathbb{T})\) is replaced by \(((\Delta)^{1/2}, x \in \Omega_1\)) and \(\Omega_1\) is an open subset of \(\mathbb{R}^N\). As the original system, this toy model satisfies the controllability properties listed above. We prove that, for \(\gamma = 1,2\) and for appropriate domains \((\Omega_1, \omega_1)\), null controllability does not hold (whatever \(T > 0\) is), when the control acts on a vertical strip \(\omega = \omega_1 \times (-1,1)\) with \(\mathbb{T} \subset \Omega_1\).

Thus, a geometric control condition is required for the null controllability of this toy model. This indicates that a geometric control condition may be necessary for the original model too.

1 Introduction

1.1 Origin of the problem

The goal of this article is to study the null controllability of Kolmogorov-type equations

\[
\begin{align*}
\frac{\partial_t f(t,x,v) - v^\gamma \partial_x f(t,x,v) - \partial_v^2 f(t,x,v)}{f(t,x,\pm 1) = 0,} \\
(f(0,x,v) = f_0(x,v),)
\end{align*}
\]

where \(\Omega = \mathbb{T} \times (-1,1), \gamma \in \mathbb{N}^*, T > 0\), and the control is a source term \(u(t,x,v)\) localized on a nonempty open subset \(\omega\) of \(\Omega\). This equation, with \(\gamma = 1\), is close to linearizations of Prandtl or Crocco-type equations for fluids [54, 17, 16]; this motivates the study of the controllability of (1.1). For other values of \(\gamma \in \mathbb{N}^*\), there are less physical motivations, but...
the behavior of the system with respect to null controllability is extremely interesting, from a theoretical point of view (finite speed of propagation, geometric control condition, the first order term weakens diffusion in variable v).

Definition 1.1 (Null controllability). Let $T > 0$ and $\gamma \in \mathbb{N}^*$. System (1.1) is null controllable in time T if, for any $f_0 \in L^2(\Omega)$, there exists $u \in L^2((0, T) \times \Omega)$ such that the solution of (1.1) satisfies $f(T, \cdot, \cdot) = 0$.

By duality, null controllability is equivalent to observability for the adjoint system

$$\begin{cases}
\partial_t g(t, x, v) + v^2 \partial_x g(t, x, v) - \partial_x^2 g(t, x, v) = 0, & (t, x, v) \in (0, +\infty) \times \Omega, \\
g(t, x, \pm 1) = 0, & (t, x) \in (0, T) \times \mathbb{T}, \\
g(0, x, v) = g_0(x, v), & (x, v) \in \Omega.
\end{cases} \tag{1.2}$$

Definition 1.2 (Observability). Let $T > 0$, $\gamma \in \mathbb{N}^*$ and ω be a non empty open subset of Ω. System (1.2) is observable in ω in time T if there exists $C > 0$ such that, for any $g_0 \in L^2(\Omega)$, the solution of the Cauchy problem (1.2) satisfies

$$\int_{\Omega} |g(T, x, v)|^2 \, dx dv \leq C \int_0^T \int_{\omega} |g(t, x, v)|^2 \, dx dv dt.$$

Equation (1.2) combines diffusion in variable v and transport in variable x (at speed v^2). Thanks to the interplay between these two phenomena, the equation diffuses both in variables v and x (see Proposition 6.2), contrarily to equation $(\partial_t - \partial_x^2) g(t, x, v) = 0$. But, the global diffusion is weaker than for the 2D heat equation $(\partial_t - \partial_x^2 - \partial_v^2) g(t, x, v) = 0$. Thus, natural questions are the following ones.

Question 1: Is the diffusion in variable v strong enough for observability to hold when the control acts on a horizontal strip $\omega = \mathbb{T} \times (a, b)$ with $0 < a < b < 1$, whatever $\gamma \in \mathbb{N}^*$ is? (i.e. as for equation $(\partial_t - \partial_v^2) g(t, x, v) = 0$, $(t, x, v) \in (0, T) \times \mathbb{T} \times (-1, 1)$)

Question 2: Is the diffusion in variable x sufficient for null controllability to hold when the control acts on a vertical strip $\omega = \omega_1 \times (-1, 1)$ where $\omega_1 \subset \subset \mathbb{T}$? (i.e. as for the 2D heat equation $(\partial_t - \partial_x^2 - \partial_v^2) g(t, x, v) = 0$, $(t, x, v) \in (0, T) \times \mathbb{T} \times (-1, 1)$)

The goal of this article is to answer the first question and to study the second one for a toy-model.

Null controllability of Equation (1.2) is studied in [10] when the control is localized in a horizontal strip $\omega = \mathbb{T} \times (a, b)$ with $-1 < a < b < 1$. Precisely, the following theorem is proved by the first author in [10].

Theorem 1.3.

1. If $\gamma = 1$ and $\omega = \mathbb{T} \times (a, b)$ with $-1 < a < b < 1$, then System (1.2) is observable in ω in any time $T > 0$.

2. If $\gamma = 2$ and $\omega = \mathbb{T} \times (a, b)$ with $0 < a < b < 1$ then there exists $T^* \geq a^2/2$ such that
 - System (1.2) is observable in ω in any time $T > T^*$;
 - System (1.2) is not observable in ω in time $T < T^*$.

3. If $\gamma = 2$ and $\omega = \mathbb{T} \times (a, b)$ with $-1 < a < 0 < b < 1$ then System (1.2) is observable in any time $T > 0$.

When $\gamma = 1$, Statement 1 above illustrates that there is an infinite speed of propagation in the direction v. When $\gamma = 2$, Statements 2 and 3 above illustrate a different situation: a finite speed of propagation in variable v occurs and the information needs time to reach the degeneracy $\{v = 0\}$ from the observation location ω when $\omega \cap \{v = 0\} = \emptyset$.

2
1.2 Main results

The first goal of this article is to prove that observability does not hold, when \(\gamma \geq 3 \) and the control acts on a horizontal strip: the presence of the first order term \(v^2 \partial_x f \) in the equation reduces diffusion in the variable \(v \) so strongly that observability becomes false. Thus, Theorems 1.3 and 1.4 below answer Question 1.

Theorem 1.4. If \(\gamma \geq 3 \) and \(\omega = T \times (a, b) \) with \(-1 < a < b < 1\), then System (1.2) is not observable in \(\omega \) (whatever \(T > 0 \) is).

The second goal of this article is to investigate null controllability of Equation (1.2) for \(\gamma \in \{1, 2\} \) when the control acts on a vertical strip \(\omega = \omega_1 \times (-1, 1) \) where \(\omega_1 \subset \subset \mathbb{T} \). Unfortunately, we are not able to work directly on Equation (1.2). Thus, we consider the following toy model:

\[
\begin{align*}
&\left\{ \begin{array}{ll}
\partial_t g(t, x, v) + iv^\gamma (-\Delta_D^V)^{\beta} g(t, x, v) - \partial_x^2 g(t, x, v) = 0, & (t, x, v) \in (0, T) \times \Omega, \\
g(0, x, v) = g_0(v, x), & (x, v) \in \Omega_1 \times (-1, 1),
\end{array} \right.
\end{align*}
\]

where

- \(\Omega := \Omega_1 \times (-1, 1) \), \(\Omega_1 \) is a bounded open subset of \(\mathbb{R}^N_1 \) and \(N_1 \in \mathbb{N}^* \),
- \(\Delta^D \) is the Dirichlet-Laplace operator on \(\Omega_1 \)

\[
D(\Delta_D^V) = H^2 \cap H^1_0(\Omega_1), \quad \Delta_D^V g = \Delta g,
\]

- \(\gamma \in \mathbb{N}^* \), \(\beta \in (0, 1) \).

Of course, the case \(\beta = 1/2 \) is of particular interest for System (1.2). We use the same definition for the observability of Systems (1.2) and (1.3).

We are able to deny observability with explicit counterexamples, under an appropriate assumption \(\mathcal{P}(s) \) on the open sets \((\Omega_1, \omega_1) \). In order to express this assumption, we introduce the non decreasing sequence \((\lambda_n)_{n \in \mathbb{N}^*} \) of the eigenvalues of \(-\Delta_D^V \) on \(\Omega_1 \) and a corresponding orthonormal sequence of associated eigenfunctions,

\[
\left\{ \begin{array}{ll}
-\Delta \varphi_n(x) = \lambda_n \varphi_n(x), & x \in \Omega_1, \\
\varphi_n(x) = 0, & x \in \partial \Omega_1,
\end{array} \right. \quad \|\varphi_n\|_{L^2(\Omega_1)} = 1.
\]

Definition 1.5 (Property \(\mathcal{P}(s) \)). Let \(s \in (0, 1/2) \) and \(\omega_1 \) be an open subset of \(\Omega_1 \). The pair \((\Omega_1, \omega_1) \) satisfies the property \(\mathcal{P}(s) \) if

\[
\lim_{n \to +\infty} \left[\frac{-1}{\lambda_n^s} \ln \left(\int_{\omega_1} |\varphi_n(x)|^2 \, dx \right) \right] = +\infty.
\]

This assumption is related to the classical problem of high-frequency localization of the eigenfunctions of the Laplacian. Note that \(1/2 \) is the optimal upperbound for possible values of \(s \) (see [47, Theorem 5.4 and Proposition 5.5]). Particular examples of pairs \((\Omega_1, \omega_1) \) satisfying Property \(\mathcal{P}(s) \) for any \(s \in (0, 1/2) \) are discussed in Section 4. For instance, if \(\Omega_1 \) is a conical open subset of \(\mathbb{R}^d \) \((d \geq 2) \) generated by an open subset \(U \) of \(\mathbb{S}^{d-1} \),

\[
\Omega_1 = \{ x = rx'; 0 < r < 1, x' \in U \},
\]

and \(\omega_1 \) is an open subset of \(\Omega_1 \) that does not intersect its boundary \(\partial \Omega_1 \), then the pair \((\Omega_1, \omega_1) \) satisfies Property \(\mathcal{P}(s) \) for every \(s \in (0, 1/2) \). One can indeed construct a subsequence of eigenfunctions \(\varphi_{n_k} \) localized near the boundary \(\partial \Omega_1 \), called “whispering gallery eigenmodes”.

Our first nonobservability result concerns System (1.3) for \(\gamma = 1 \).
Theorem 1.6. We assume γ = 1.

1. If β > 0 and ω = Ω × (a, b) where 0 < a < b < 1 then System (1.3) is observable in ω in any time \(T > 0 \).

2. If \(β \in (0, 3/4) \) and \((Ω, ω_1) \) satisfies Property \(P \left(\frac{2β}{3} \right) \), then System (1.3) is not observable in \(ω = ω_1 \times (-1, 1) \) (whatever \(T > 0 \) is).

In particular, when \(β = 1/2 \), the diffusion in the variable \(v \) is strong enough for System (1.3) to be observable in a horizontal strip \(ω = Ω \times (a, b) \) in any positive time \(T \). On the contrary, the diffusion in the variable \(x \) is too weak for System (1.3) to be observable in a vertical strip \(ω = ω_1 \times (-1, 1) \) in finite time \(T \), at least for appropriate pairs \((Ω, ω_1) \) that satisfy Property \(P(1/3) \) (which happens, for instance, when \(Ω \) is a bounded conical open subset of \(\mathbb{R}^d \) and \(\partial Ω \subset Ω_1 \)). Thus a Geometric Control Condition (GCC) on \((Ω, ω) \) is required for (1.3) to be observable in \(ω \). Theorem 1.6 indicates that System (1.2), with \(γ = 1 \), may require a GCC for being observable. This is a conjecture for the answer of Question 2.

Our second noncontrollability result concerns System (1.3) for \(γ = 2 \).

Theorem 1.7. We assume γ = 2.

1. If \(β > 0 \) and \(ω = Ω \times (a, b) \) where 0 < a < b < 1 then there exists \(T^* \geq a^2/2 \) such that
 - System (1.3) is observable in \(ω \) in any time \(T > T^* \),
 - System (1.3) is not observable in \(ω \) in time \(T < T^* \).

2. If \(β \in (0, 1) \) and \((Ω, ω_1) \) satisfies Property \(P \left(\frac{β}{2} \right) \), then System (1.3) is not observable in \(ω = ω_1 \times (-1, 1) \) (whatever \(T > 0 \) is).

In particular, when \(β = 1/2 \), the diffusion in the variable \(v \) is strong enough for System (1.3) to be observable in a horizontal strip \(ω = Ω \times (a, b) \), but there is a finite speed of propagation of the information from the observation location \(ω \) to the degeneracy set \(\{v = 0\} \). On the contrary, the diffusion in the variable \(x \) is too weak for (1.3) to be observable in a vertical strip \(ω = ω_1 \times (-1, 1) \) in finite time \(T \), at least for appropriate pairs \((Ω, ω_1) \). Thus a GCC on \((Ω, ω) \) is required for (1.3) to be observable in \(ω \). Theorem 1.7 encourages to conjecture that a GCC condition should be required for System (1.2), with \(γ = 2 \), to be observable.

1.3 Bibliographical comments

1.3.1 Null controllability of the heat equation

The null and approximate controllabilities of the heat equation are essentially well understood subjects for both linear and semilinear equations, for bounded or unbounded domains [3, 27, 30, 32, 33, 34, 37, 44, 46, 48, 51, 52, 62, 63] and also with discontinuous [28, 12, 13, 57] or singular [61, 29] coefficients.

In particular, the heat equation on a smooth bounded domain \(Ω \) of \(\mathbb{R}^d \) \((d \in \mathbb{N}^*) \), with a source term located on an open subset \(ω \) of \(Ω \), is null controllable in arbitrarily small time \(T \) and with an arbitrarily small control support \(ω \). This result is related to the infinite speed of propagation of information in heat equation. It is proved, for the case \(d = 1 \) by H. Fattorini and D. Russell [31, Theorem 3.3], and, for \(d \geq 2 \) by O. Imanuvilov [42, 43] (see also the book [36] by A. Fursikov and O. Imanuvilov) and G. Lebeau and L. Robbiano [46]. It is then natural to wonder whether the same result holds for degenerate parabolic equations.
1.3.2 Boundary-degenerate parabolic equations

The null controllability of parabolic equations degenerating on the boundary of the domain in one space dimension is well understood, but much less is known in higher dimension. Given $0 < a < b < 1$ and $\gamma > 0$, let us consider the 1D equation

$$\partial_t w(t, x) + \partial_x (x^\gamma \partial_x w)(t, x) = u(t, x)1_{(a, b)}(x), \quad (t, x) \in (0, +\infty) \times (0, 1),$$

with suitable boundary conditions. Then, null controllability holds if and only if $\gamma \in (0, 1)$ [22, 23], while, for $\gamma \geq 1$, the best result one can obtain is the so called “regional null controllability” [21], which consists in controlling the solution within the domain of influence of the control. Several extensions of the above results are available in one space dimension, see [2, 49] for equations in divergence form, [20, 19] for operators in nondivergence form, and [18, 35] for cascade systems. Fewer results are available for multidimensional problems, and they are mainly obtained in the case of two dimensional parabolic operators which simply degenerate in the normal direction to the boundary of the space domain, see [24].

1.3.3 Parabolic equations degenerating inside the domain

In [50], P. Martinez, J. Vancostenoble and J.-P. Raymond study linearized Crocco type equations

$$\begin{aligned}
\partial_t f(t, x, v) + \partial_x f(t, x, v) - \partial_{vv} f(t, x, v) = u(t, x, v)1_{\omega}(x, v), &\quad (t, x, v) \in (0, T) \times \mathbb{T} \times (0, 1), \\
f(t, x, 0) = f(t, x, 1) = 0, &\quad (t, x) \in (0, T) \times \mathbb{T}.
\end{aligned}$$

For a given strict open subset ω of $\mathbb{T} \times (0, 1)$, they prove that null controllability does not hold: the optimal result is regional null controllability. Note that, for Kolmogorov-type equations (1.2), the coupling between diffusion in v and transport in x (at speed v^γ) generates diffusion both in variables x and v (see Proposition 6.2). Thus, the controllability results are different.

In [11], K. Beauchard, P. Cannarsa and R. Guglielmi study Grushin-type equations

$$\begin{aligned}
\partial_t f(t, x, y) - \partial_y^2 f(t, x, y) = |x|^{2\gamma} \partial_y f(t, x, y) = u(t, x, y)1_{\omega}(x, y), &\quad (t, x, y) \in (0, T) \times \Omega, \\
f(t, x, y) = 0, &\quad (t, x, y) \in (0, T) \times \partial\Omega,
\end{aligned}$$

where $\Omega := (-1, 1) \times (0, 1)$, $\omega \subset (0, 1) \times (0, 1)$, and $\gamma > 0$. Here, the parabolic operator degenerates along the line $\{0\} \times (0, 1)$. They prove that

- null controllability holds in any time $T > 0$ when $\gamma \in (0, 1)$;
- null controllability does not hold (whatever $T > 0$) when $\gamma > 1$;
- when $\gamma = 1$ and $\omega = (a, b) \times (0, 1)$ with $0 < a < b < 1$, there exists $T_{\min} > a^2/2$ such that null controllability holds when $T > T_{\min}$ and does not hold when $T < T_{\min}$.

Note that, contrary to Grushin-type equations (1.5), in Kolmogorov-type equations (1.2), the parabolic operator degenerates everywhere on the domain.

1.3.4 Unique continuation for Kolmogorov-type equations

In this section, we focus on unique continuation for Kolmogorov-type equations (1.2), i.e. whether the property $g(t, x, v) \equiv 0$ on $(0, T) \times \omega$ does imply $g \equiv 0$ on $(0, T) \times \Omega$, for a given open subset ω of Ω.

When $\omega = \mathbb{T} \times (a, b)$ is an horizontal strip, then the unique continuation of equation (1.2) holds for every $\gamma \in \mathbb{N}^*$, as a consequence of Holmgren theorem (the coefficients of the operator are analytic and the hypersurface $\mathbb{T} \times \{a, b\}$ is noncharacteristic). In particular,
Theorem 1.4 emphasizes that, when $\gamma \geq 3$, then observability does not hold even if unique continuation holds.

To our best knowledge, when ω is a general open subset of Ω, then unique continuation for Kolmogorov-type equations (1.2) is an open problem.

J.-M. Bony proved in [14] that Hörmander’s operators of the form $P = \sum_j X_j^2$ (i.e. such that the Lie algebra generated by the X_j has maximal rank at any point) with analytic coefficients, satisfy the unique continuation, in the following sense: if, for some f with non zero gradient, $f^{-1}(a)$ is a strongly noncharacteristic surface and u is a distribution such that $Pu = 0$ and $u = 0$ on $f^{-1}([-\infty, a])$, then $u \equiv 0$ on a neighborhood of $f^{-1}(a)$. The validity of the same result for Hörmander’s operators of the form $P = X_0 + \sum_j X_j^2$ (generalizing our Kolmogorov operator $K = \partial_t + v^\gamma \partial_x - \partial_x^2$) is an open problem.

When coefficients are not analytic, but only C^∞, unique continuation may not hold. For instance, S. Alinhac and C. Zuily built in [4] a zero order C^∞-perturbation of the Kolmogorov operator $K = \partial_t + v^\gamma \partial_x - \partial_x^2$ for which unique continuation does not hold. There exist C^∞-functions $u(t, x, v)$ and $a(t, x, v)$ on a neighborhood V of 0 in \mathbb{R}^3 such that $Ku + au = 0$, $u(t, x, v) = a(t, x, v) = 0$ when $v < 0$, and $0 \in \text{Supp}(u)$. And the same result holds with any surface $\{v = \text{constant}\}$.

The result of S. Alinhac and C. Zuily leaves open the question of the unique continuation for System (1.2). Indeed, their counterexample does not satisfy the boundary conditions of (1.2) and it cannot be built with $a = 0$. However, it suggests that unique continuation for System (1.2) is a subtle issue.

1.4 Structure of the paper

The article is organized as follows.

Section 2 is devoted to the proof of Theorem 1.4.

In Section 3, we prove the negative statements of Theorems 1.6 and 1.7. These results rely on a fine semi classical analysis of the complex Airy and Davies operators.

In Section 4, we propose examples of pairs (Ω_1, ω_1) satisfying Property $P(s)$ for any $s \in (0, 1/2)$.

The proof of the positive results of Theorems 1.6 and 1.7 relies on the decomposition of the solution of (1.3) on a Hilbert basis of $L^2(\Omega_1)$, called ‘Fourier decomposition’ with a slight abuse of vocabulary. Thus, the validity of this decomposition and associated well-posedness results are treated in Section 5.

In Section 6, we prove the positive results of Theorems 1.6 and 1.7. The strategy is the same as in [10], but intermediate results have been improved. Hence we rewrite the proof completely. First, we state a Carleman estimate for the 1D-heat equation satisfied by the Fourier components. Then, we quantify the dissipation of Fourier modes; this result is stronger than in [10]. Then, we combine these two tools to prove the first statements of Theorems 1.6 and 1.7.

2 Nonobservability when $\gamma \geq 3$

The goal of this section is the proof of Theorem 1.4. The strategy is the same as in [10, Section 5.3] but intermediate results are different. Let $\gamma \in \mathbb{N}^+$, $a, b, T \in \mathbb{R}$ be fixed, in the whole section, such that

$$\gamma \geq 3, \quad T > 0 \text{ and } 0 < a < b < 1.$$

Step 1: Approximate solution.

Let $\epsilon > 0$ be such that $b < 1 - \epsilon$ and $\theta_\pm \in C^\infty(\mathbb{R})$ be such that $\text{Supp}(\theta_-) \subset (-1 - \epsilon, -1 + \epsilon)$.
Supp(θ_+) ⊂ (1 − ε, 1 + ε) and θ_±(±1) = 1. Let μ ∈ ℂ be some eigenvalue, with smallest real part, of the operator (−∂^2_y + iy^2), with domain
\[D_γ := \{ u ∈ H^2(ℝ) s. t. y^γ u ∈ L^2(ℝ) \}. \]

Note that this operator has compact resolvent (see [39]); moreover, μ is a simple eigenvalue and a real number if γ = 3. Let ξ be an associated eigenfunction
\[\begin{cases} -ξ''(y) + iy^γ ξ(y) = μ ξ(y), & y ∈ ℝ, \\ ∥ξ∥_{L^2(ℝ)} = 1. \end{cases} \]

We recall that (see [58, Chapter 10, Sections 59 and 60])
\[|ξ(y)| ≤ C e^{-c|y|^{2 γ}}, \quad ∀ y ∈ ℝ \] (2.1)
for some constants C, c > 0.

For n ∈ N^*, we define
\[\bar{g}_n(t, v) := n^{\frac{1}{2 γ + 1}} \left[ξ \left(n^{\frac{1}{2 γ + 1}} v \right) - \sum_{σ ∈ (-, +)} ξ \left(σ n^{\frac{1}{2 γ + 1}} θ_σ(v) \right) e^{-μ n^{\frac{1}{2 γ + 1}} t} \right]. \]

We have
\[\begin{cases} \partial_t \bar{g}_n(t, v) + iv^γ \bar{g}_n(t, v) - ∂^2_y \bar{g}_n(t, v) = E_n(t, v), & (t, v) ∈ (0, T) × (-1, 1), \\ \bar{g}_n(t, ±1) = 0, & t ∈ (0, T), \end{cases} \]
where
\[E_n(t, v) = n^{\frac{1}{2 γ + 1}} \sum_{σ ∈ (-, +)} (μ n^{\frac{1}{2 γ + 1}} - iv^γ) θ_σ(v) + θ''_σ(v)) ξ \left(σ n^{\frac{1}{2 γ + 1}} \right) e^{-μ n^{\frac{1}{2 γ + 1}} t}. \] (2.2)

Let g_n be the solution of
\[\begin{cases} \partial_t g_n(t, v) + iv^γ g_n(t, v) - ∂^2_y g_n(t, v) = 0, & (t, v) ∈ (0, T) × (-1, 1), \\ g_n(t, ±1) = 0, & t ∈ (0, T), \\ g_n(0, v) = \bar{g}_n(0, v), & v ∈ (-1, 1). \end{cases} \]

We have
\[\frac{1}{2} \frac{d}{dt} ∥(\bar{g}_n - g_n)(t)∥^2_{L^2(-1, 1)} = -∥\partial_v(\bar{g}_n - g_n)(t)∥^2_{L^2(-1, 1)} \hbox{Re} \left(\int_{-1}^1 E_n(t, v) (\bar{g}_n - g_n)(t, v) dv \right). \]

By Poincaré and Cauchy-Schwarz Inequalities, we deduce that, for every t ∈ [0, T],
\[\frac{d}{dt} ∥(\bar{g}_n - g_n)(t)∥^2_{L^2(-1, 1)} ≤ -\frac{π^2}{4} ∥(\bar{g}_n - g_n)(t)∥^2_{L^2(-1, 1)} + \frac{4}{π^2} ∥E_n(t)∥^2_{L^2(-1, 1)}. \]

From this inequality and (2.2), we deduce that, for every t ∈ [0, T]
\[∥(\bar{g}_n - g_n)(t)∥^2_{L^2(-1, 1)} ≤ \frac{1}{π^2} \int_0^t \left| E_n(τ) \right|^2_{L^2(-1, 1)} e^{-\frac{π^2}{4} (t - τ)} dτ \]
\[≤ C n^{2 + \frac{1}{2 γ}} \sum_{σ ∈ (-1, 1)} \left| ξ \left(σ n^{\frac{1}{2 γ + 1}} \right) \right|^2 \int_0^t e^{-2 \hbox{Re}(μ) n^{\frac{1}{2 γ + 1}} + \frac{π^2}{4} (t - τ)} dτ \]
\[≤ C n^{2 - \frac{1}{2 γ}} \sum_{σ ∈ (-1, 1)} \left| ξ \left(σ n^{\frac{1}{2 γ + 1}} \right) \right|^2. \]
where the constant C may change from line to line.

By (2.1), we deduce that
\[
\|\tilde{g}_n(t)\|_{L^2(-1,1)} \leq Cn^{\frac{2+2\epsilon}{\gamma}}e^{-c\sqrt{\gamma}}, \quad \forall t \in [0,T].
\]

(3.3)

Step 2: Conclusion.

Working by contradiction, we assume that System (1.2) is observable in ω in time T. The observability inequality applied to the solution $g(t, x, v) := g_n(t, x, v)\exp(\mu x)$ of (1.2) gives
\[
\int_{-1}^{1} |g_n(T, v)|^2 \, dv \leq C \int_{0}^{T} \int_{a}^{b} |g_n(t, v)|^2 \, dv \, dt, \quad \forall n \in \mathbb{N}^+.
\]

We deduce from the triangular inequality, the previous relation and (2.3) that
\[
\|\tilde{g}_n(T)\|_{L^2(-1,1)} \leq \left(C \int_{0}^{T} \int_{a}^{b} |\tilde{g}_n(t, v)|^2 \, dv \, dt \right)^{1/2} + \|\tilde{g}_n - g_n(T)\|_{L^2(-1,1)}
\]
\[
+ C \int_{0}^{T} \int_{a}^{b} |\tilde{g}_n - g_n(t, v)|^2 \, dv \, dt \right)^{1/2}
\]
\[
\leq \left(C \int_{0}^{T} \int_{a}^{b} |\tilde{g}_n(t, v)|^2 \, dv \, dt \right)^{1/2} + (1 + \sqrt{TC})C n^{\frac{2+2\epsilon}{\gamma}}e^{-c\sqrt{\gamma}}.
\]

However, there exists $C > 0$ such that
\[
\|\tilde{g}_n(T)\|_{L^2} \geq Ce^{-\Re(\mu) \frac{2+2\epsilon}{\gamma} T}
\]
and
\[
\left(\int_{0}^{T} \int_{a}^{b} |\tilde{g}_n(t, v)|^2 \, dv \, dt \right)^{1/2}
\]
\[
= \left(\int_{0}^{T} \int_{a}^{b} \left| \xi \left(n \frac{t}{\sqrt{T}} \right) v \right|^2 e^{-2\Re(\mu) n \frac{t}{\sqrt{T}} v} \, dv \, dt \right)^{1/2}
\]
\[
= \left(\int_{0}^{T} \int_{a}^{b} \left| \xi(y) \right|^2 \, dy \right)^{1/2} \left(\int_{0}^{T} e^{-2\Re(\mu) n \frac{t}{\sqrt{T}} v} \, dt \right)^{1/2}
\]
\[
\leq C n^{\frac{1}{\gamma}} \left(\int_{a}^{b} \frac{\xi(y)^2}{n} e^{-2c \gamma \gamma} \, dy \right)^{1/2}
\]
\[
\leq C n^{\frac{1}{\gamma}} e^{-c \gamma \frac{2+2\epsilon}{2\gamma}}.
\]

This gives a contradiction, when $n \to +\infty$, because $\frac{2}{2\gamma} < \frac{1}{2}$ when $\gamma > 2$. □

3 Nonobservability on a vertical strip

The goal of this section is the proof of the nonobservability results of Theorems 1.6 and 1.7.

3.1 Accurate spectral analysis

In this section, we are interested in the spectrum of the operators
\[
\mathcal{A}_{(-R, R)} := -\frac{d^2}{dy^2} + iy \quad \text{and} \quad \mathcal{H}_{(-R, R)} := -\frac{d^2}{dy^2} + iy^2
\]
defined on the segment $(-R, R)$, $R > 0$, with Dirichlet boundary conditions at $y = \pm R$, with domains
\[
\mathcal{D}(\mathcal{A}_{(-R, R)}) = \mathcal{D}(\mathcal{H}_{(-R, R)}) = H^2 \cap H^1_0((-R, R), \mathbb{C}).
\]

More precisely, we study the asymptotic behavior, as $R \to +\infty$, of the bottom of the spectrum of $\mathcal{A}_{(-R, R)}$ and $\mathcal{H}_{(-R, R)}$ and we prove the following two theorems, in Subsections 3.3 and 3.4 respectively.
Theorem 3.1. Let $\mu_1 < 0$ be the first zero of the Airy function. Then,

$$\lim_{R \to \infty} \left(\inf \Re \sigma(A_{(-R,R)}) \right) = \frac{\left| \mu_1 \right|}{2}, \quad (3.1)$$

where $\sigma(A_{(-R,R)})$ denotes the spectrum of $A_{(-R,R)}$. Moreover, for every $\varepsilon > 0$, there exists $R_\varepsilon > 0$ and $M_\varepsilon > 0$ such that, for every $R \geq R_\varepsilon$,

$$\sup_{\gamma \leq |\mu_1|/2 - \varepsilon} \left\| \left(A_{(-R,R)} - (\gamma + i\nu) \right)^{-1} \right\|_{L^2((-R,R))} \leq M_\varepsilon. \quad (3.2)$$

Now, let us consider the case of the Davies operator.

Theorem 3.2. We have

$$\lim_{R \to \infty} \left(\inf \Re \sigma(H_{(-R,R)}) \right) = \frac{\sqrt{2}}{2}. \quad (3.3)$$

Moreover, for every $\varepsilon > 0$, there exists $R'_\varepsilon > 0$ and $M'_\varepsilon > 0$ such that, for every $R \geq R'_\varepsilon$,

$$\sup_{\gamma \leq \sqrt{2}/2 - \varepsilon} \left\| \left(H_{(-R,R)} - (\gamma + i\nu) \right)^{-1} \right\|_{L^2((-R,R))} \leq M'_\varepsilon. \quad (3.4)$$

Analogous questions have been considered in [5, 8, 7, 9] and [6] in relation with problems occurring in superconductivity. We study these two operators using the techniques developed in these references. The study of more general cases (dimension 2) complementary to those studied in [5] and [6] will be done in [41].

3.2 Proof of the negative statements of Theorems 1.6 and 1.7

The goal of this subsection is the proof of the second statements of Theorems 1.6 and 1.7, by application of the results of the previous subsection. Thus, in the whole subsection, γ, β, Ω_1 and ω_1 are fixed such that

- either $\gamma = 1$, $\beta \in (0, 3/4)$ and (Ω_1, ω_1) satisfies Property $P(2\beta/3)$,
- or $\gamma = 2$, $\beta \in (0, 1)$ and (Ω_1, ω_1) satisfies Property $P(\beta/2)$.

For $n \in \mathbb{N}^+$, we introduce the operator $A_{n,\gamma}$ defined by

$$D(A_{n,\gamma}) := H^2 \cap H_0^1((-1,1), \mathbb{C}), \quad A_{n,\gamma} \psi := -\frac{d^2\psi}{dv^2} + i\lambda_n^2 v^\gamma \psi.$$

By rescaling $(y = \lambda_n^{-\gamma} v)$ and using Theorems 3.1 and 3.2, there exist $C_1, C_2 > 0$ and $n_* \in \mathbb{N}^+$ such that, for every $n \geq n_*$, $A_{n,\gamma}$ has an eigenvalue μ_n satisfying

$$C_1 \lambda_n^{-\frac{2\gamma}{\beta+1}} \leq \Re (\mu_n) \leq C_2 \lambda_n^{-\frac{2\gamma}{\beta+1}}. \quad (3.5)$$

We introduce a normalized eigenfunction ψ_n of $A_{n,\gamma}$ associated with the eigenvalue μ_n.

$$\begin{cases} -\psi_n''(v) + i\lambda_n^2 v^\gamma \psi_n(v) = \mu_n \psi_n(v), \quad v \in (-1,1), \\ \psi_n(\pm 1) = 0, \\ \|\psi_n\|_{L^2((-1,1))} = 1. \end{cases}$$

Then the function

$$g_n(t, x, v) := \varphi_n(x) \psi_n(v) e^{-\mu_n t}$$

is a solution of (1.3). The second statement of Theorems 1.6 and 1.7 is a consequence of the following proposition.
Proposition 3.3. For every $T > 0$, we have
\[
\lim_{n \to +\infty} \left(\int_0^T \int_\Omega |g_n(t, x, v)|^2 dx dv dt \right) = 0.
\]

Proof of Proposition 3.3:
We have
\[
\int_\Omega |g_n(T, x, v)|^2 dv = e^{-2 \text{Re} \langle \mu_n \rangle T},
\]
because ψ_n and φ_n are normalized in L^2.

By Fubini’s Theorem, we get
\[
f_0^T \int_\omega |g_n(t, x, v)|^2 dx dv dt = \left(\frac{1}{2 \text{Re} \langle \mu_n \rangle T} \right) \int_{-\infty}^{\infty} \varphi_n(x)^2 dx.
\]
Thus,
\[
\frac{\int_0^T \int_\omega |g_n(t, x, v)|^2 dx dv dt}{\int_\Omega |g_n(T, x, v)|^2 dx dv} = \frac{e^{2 \text{Re} \langle \mu_n \rangle T} - 1}{2 \text{Re} \langle \mu_n \rangle} \int_{\omega_1} \varphi_n(x)^2 dx.
\]

Let C be a positive constant such that
\[
C > 2C_2 T,
\]
where C_2 is as in (3.5).
Let $s := \frac{2d}{2+n}$. By Property $\mathcal{P}(s)$, there exists a subsequence $(n_k)_k \in \mathbb{N}$ such that
\[
- \frac{1}{\lambda_n^k} \ln \left(\int_{\omega_1} |\varphi_{n_k}(x)|^2 dx \right) \leq C, \quad \forall k \in \mathbb{N},
\]
or, equivalently
\[
\int_{\omega_1} |\varphi_{n_k}(x)|^2 dx \leq e^{-C \lambda_n^k}, \quad \forall k \in \mathbb{N}.
\]

Then,
\[
\int_0^T \int_\omega |g_{n_k}(t, x, v)|^2 dx dv dt \leq \frac{e^{2\left(2C_2 T - C\right)} \lambda_n^k}{2C_1 \lambda_n^k} \to 0, \quad k \to +\infty,
\]
by (3.6), which gives the conclusion. □

3.3 Semi classical analysis of the complex Airy operator ($\gamma = 1$)
The goal of this subsection is the proof of Theorem 3.1.

We introduce two model-operators, that have well known spectral and pseudospectral behavior. Let $A_{(-R, +\infty)}$ and $A_{(-\infty, R)}$ be the Dirichlet realizations of the operator $-\frac{d^2}{dx^2} + iy$ on the intervals $(-R, +\infty)$ and $(-\infty, R)$ respectively. We are going to approximate the resolvent of $A_{(-R, R)}$ by the one of $A_{(-R, +\infty)}$ or $A_{(-\infty, R)}$ depending on where we are, respectively close to $-R$ or close to $+R$.

Let us remark that, if
\[
T_R : u(x) \mapsto u(x + R) \quad \text{and} \quad U_R : u(x) \mapsto u(R - x)
\]
then
\[
T^{-1}_R \left(A_{(-R, +\infty)} - \lambda \right) T_R = A_{(0, +\infty)} - (\lambda + iR), \quad \text{(3.8)}
\]
\[
U^{-1}_R \left(A_{(-\infty, R)} - \lambda \right) U_R = A_{(0, +\infty)} - (\lambda - iR), \quad \text{(3.9)}
\]
\[
\text{Thus, we estimate the second term on the right hand side. In what follows, the estimates are}
\]

\[
\inf \text{Re } \sigma (A_{(-R, \infty)}) = \inf \text{Re } \sigma (A_{(-\infty, R)}) = \frac{|\mu_1|}{2}, \quad (3.10)
\]

because \(\inf \text{Re } \sigma (A_{(0, +\infty)}) = |\mu_1|/2 \), see [5].

Step 1: We prove

\[
\lim_{R \to +\infty} \left(\inf \text{Re } \sigma (A_{(-R, R)}) \right) \geq \frac{|\mu_1|}{2} \quad (3.11)
\]

and (3.2).

Let \(\varepsilon > 0 \). We search \(R_\varepsilon > 0 \) such that

\[
\forall R \geq R_\varepsilon, \quad \sigma \left(A_{(-R, R)} \right) \cap \left(-\infty, |\mu_1|/2 - \varepsilon \right] + i\mathbb{R} = \emptyset. \quad (3.12)
\]

We recall that, by [38], there exists \(C_\varepsilon > 0 \) such that

\[
\sup_{\gamma \in [0, 1/2 - \varepsilon]} \left\| (A(0, +\infty) - (\gamma + i\nu))^{-1} \right\|_{L^2(0, +\infty)} \leq C_\varepsilon, \quad (3.13)
\]

\[
\sup_{\gamma \in [-|\mu_1|/2 - \varepsilon, 0]} \left\| (A'(0, +\infty) - (\gamma + i\nu))^{-1} \right\|_{L^2(0, +\infty)} \leq C_\varepsilon. \quad (3.14)
\]

Let \(\lambda = \gamma + i\nu \in (-\infty, |\mu_1|/2 - \varepsilon] + i\mathbb{R} \) and \(h_+, h_- \in C^\infty(\mathbb{R}; [0, 1]) \) be such that

\[
\text{Supp } h_- \subset (-\infty, 1/2), \quad h_- \equiv 1 \text{ on } (-\infty, -1/2],
\]

\[
\text{Supp } h_+ \subset (-1/2, +\infty), \quad h_+ \equiv 1 \text{ on } [1/2, +\infty),
\]

\[
h_-^2 + h_+^2 \equiv 1 \text{ on } (-\infty, +\infty).
\]

For \(R > 0 \), we define

\[
\eta^R_{\pm}(x) = h_{\pm}\left(\frac{x}{R} \right) I_{(-R, R)}(x) \quad (3.15)
\]

and

\[
R_R(\lambda) = \eta_{R}^-(A_{(-R, R)} - \lambda)^{-1} \eta_{R}^+ + \eta_{R}^+(A_{(-\infty, R)} - \lambda)^{-1} \eta_{R}^- \quad (3.16)
\]

\(R_R(\lambda) \) will be used as an approximation of the resolvent of \(A_{(-R, R)} \). We have

\[
\left(A_{(-R, R)} - \lambda \right) R_R(\lambda) = I + \left[A_{(-R, R)}, \eta_{R}^- \right] \left(A_{(-R, +\infty)} - \lambda \right)^{-1} \eta_{R}^- \quad (3.17)
\]

\[
+ \left[A_{(-R, R)}, \eta_{R}^+ \right] \left(A_{(-\infty, R)} - \lambda \right)^{-1} \eta_{R}^+.
\]

as an equality between operators on \(L^2(-R, R) \).

We estimate the second term on the right hand side. In what follows, the estimates are uniform with respect to \(\nu = \text{Im } \lambda \). We have

\[
\left[A_{(-R, R)}, \eta_{R}^- \right] \left(A_{(-R, +\infty)} - \lambda \right)^{-1} \eta_{R}^- = \left(-\eta_{R}^\nu \right) \frac{d}{dy} \left(A_{(-R, +\infty)} - \lambda \right)^{-1} \eta_{R}^- \quad (3.18)
\]

Using \(\|\eta_R^\nu\|_{L^\infty(-R, R)} = O(R^{-1}) \) and \(\|\eta_R^\nu\|_{L^\infty(-R, R)} = O(R^{-2}) \), we get, by (3.8) and (3.13),

\[
\left\| \left(\eta_{R}^\nu \right)^{-1} \left(A_{(-R, +\infty)} - \lambda \right)^{-1} \eta_{R}^\nu \right\|_{L^2(-R, R)} = O\left(\frac{1}{R^2} \right). \quad (3.19)
\]

Moreover, for every \(v \in L^2(-R, +\infty) \),

\[
\left\| \frac{d}{dy} \left(A_{(-R, +\infty)} - \lambda \right)^{-1} v \right\|_{L^2(-R, +\infty)} \leq \left(\left\| \left(A_{(-R, +\infty)} - \lambda \right)^{-1} \right\|_{L^2(-R, +\infty)} \right)^{1/2} + \sqrt{\gamma} \left\| \left(A_{(-R, +\infty)} - \lambda \right)^{-1} \right\|_2 \|v\|_{L^2(-R, +\infty)}. \quad (3.20)
\]
Indeed, let \(w := (A_{(-R, +\infty)} - \lambda)^{-1} v \), i.e.

\[
\begin{aligned}
-ww''(y) + iyw(y) - \lambda w(y) &= v(y), \
\quad y \in (-R, +\infty), \\
\quad w(-R) = w(+\infty) = 0.
\end{aligned}
\]

We have

\[
\|w''\|_{L^2(-R, +\infty)}^2 = -\text{Re} \left(\int_{-R}^{+\infty} \overline{w(y)} w''(y) dy \right) \\
= \text{Re} \left(\int_{-R}^{+\infty} \overline{w} \left[iyw + \lambda w + v \right] \right) \\
= \gamma \int_{-R}^{+\infty} |w|^2 + \text{Re} \left(\int_{-R}^{+\infty} \overline{w} v \right) \\
\leq \gamma \|w\|_{L^2(-R, +\infty)}^2 + \|w\|_{L^2(-R, +\infty)} \|v\|_{L^2(-R, +\infty)}.
\]

By taking the square root of this inequality, we get

\[
\|w''\|_{L^2(-R, +\infty)} \leq \sqrt{\gamma} \|w\|_{L^2(-R, +\infty)}^{1/2} + \|w\|_{L^2(-R, +\infty)}^{1/2} \|v\|_{L^2(-R, +\infty)},
\]

which proves (3.20). By applying (3.20) to \(v = \eta_R u, \ u \in L^2(\mathbb{R}) \), we get

\[
\bigg(\eta_R \bigg) \frac{d}{dy} \left(A_{(-R, +\infty)} - \lambda \right)^{-1} \eta_R \bigg)_{L^2(-R, R)} = O \left(\frac{1}{R} \right), \quad (3.21)
\]

which gives, with (3.18) and (3.19),

\[
\bigg(\big| A_{(-R, R)} \big| \big(A_{(-R, +\infty)} - \lambda \big)^{-1} \eta_R \bigg)_{L^2(-R, R)} = O \left(\frac{1}{R} \right) \quad (3.22)
\]

In the same way, we verify that

\[
\bigg(\big| A_{(-R, R)} \big| \big(A_{(-\infty, R)} - \lambda \big)^{-1} \eta_R \bigg)_{L^2(-R, R)} = O \left(\frac{1}{R} \right). \quad (3.23)
\]

Equality (3.17) can be written

\[
(A_{(-R, R)} - \lambda) R_{R} (\lambda) = I + E_{R} (\lambda),
\]

with \(\|E_{R}(\lambda)\|_{L^2(-R, R)} = O(R^{-1}) \), uniformly with respect to \(\lambda \in]-\infty, -|\mu_1|/2 - \varepsilon] + i\mathbb{R} \). We deduce the existence of \(R_{e} > 0 \) such that, for every \(R \geq R_{e} \), \((A_{(-R, R)} - \lambda) \) is invertible, with inverse

\[
\left(A_{(-R, R)} - \lambda \right)^{-1} = R_{R}(\lambda) \left(I + E_{R}(\lambda) \right)^{-1}.
\]

We have proved (3.12). Moreover, according to the definition (3.16) of \(R_{R}(\lambda) \), (3.8), (3.9), (3.13) and (3.14) yield the estimate (3.2).

Step 2: We prove that

\[
\lim_{R \to +\infty} \left(\inf \text{Re} \sigma \left(A_{(-R, R)} \right) \right) \leq \frac{|\mu_1|}{2}. \quad (3.24)
\]

First, we reduce the study to the complex Airy operator \(A_{(0, R)} \) on the interval \((0, R)\).

Indeed, applying the translation \(T_{R} : u(x) \mapsto u(x + R) \), we get

\[
T_{R}^{-1} (A_{(-R, R)} - \lambda) T_{R} = A_{(0, 2R)} - (\lambda + iR),
\]

12
thus $\text{Re}\sigma(A_{(-R,R)}) = \text{Re}\sigma(A_{(0,2R)})$. Therefore, in order to prove (3.24), we are going to prove that
\[
\lim_{R \to +\infty} \left(\inf \text{Re} \sigma(A_{(0,R)}) \right) \leq \frac{|\mu_1|}{2}.
\] (3.25)

Let $\theta_1, \theta_2 \in \mathcal{C}^\infty(\mathbb{R}; [0,1])$ be such that

$\text{Supp} (\theta_1) \subset (-\infty, 2/3)$, $\theta_1 \equiv 1$ on $(-\infty, 1/2)$,
$\text{Supp} (\theta_2) \subset (1/2, +\infty)$, $\theta_2 \equiv 1$ on $(2/3, +\infty)$,
$\theta_1^2 + \theta_2^2 \equiv 1$ on \mathbb{R}.

For $j = 1, 2$ and $R > 0$, we define
\[
\chi_R^j(x) = \theta_j \left(\frac{x}{R} \right) 1_{(0,R)}(x).
\] (3.26)

We want to prove that
\[
1_{(0,R)} \left(A_{(0,R)} + 1 \right)^{-1} 1_{(0,R)} \xrightarrow{R \to +\infty} \left(A_{(0,+\infty)} + 1 \right)^{-1} \text{ in } \mathcal{L}(L^2(\mathbb{R}^+)).
\] (3.27)

Let us remark that
\[
\sigma \left(1_{(0,R)} \left(A_{(0,R)} + 1 \right)^{-1} 1_{(0,R)} \right) = \sigma \left((A_{(0,R)} + 1)^{-1} \right)
\]
with non vanishing eigenvalues that have the same multiplicity for both operators.

Step 2.a: We prove that
\[
1_{(0,R)} \left(A_{(0,R)} + 1 \right)^{-1} 1_{(0,R)} - \chi_R \left(A_{(0,+\infty)} + 1 \right)^{-1} \chi_R \xrightarrow{R \to +\infty} 0 \text{ in } \mathcal{L}(L^2(\mathbb{R}^+)).
\]

For this, we use the following approximations of the resolvent of $(A_{(0,R)} + 1)$,
\[
\tilde{R}_R = \chi_R \left(A_{(0,+\infty)} + 1 \right)^{-1} \chi_R + \chi_R^2 \left(A_{(0,R)} + 1 \right)^{-1} \chi_R^2.
\]

Then, we have
\[
(A_{(0,R)} + 1)\tilde{R}_R = I + [A_{(0,R)} + 1, \chi_R^1] \left(A_{(0,+\infty)} + 1 \right)^{-1} \chi_R^1
+ [A_{(0,R)} + 1, \chi_R^2] \left(A_{(0,2R)} + 1 \right)^{-1} \chi_R^2,
\]
thus, by composing on the left by $1_{(0,R)} \left(A_{(0,R)} + 1 \right)^{-1} 1_{(0,R)}$, we get
\[
1_{(0,R)} \left(A_{(0,R)} + 1 \right)^{-1} 1_{(0,R)} - \chi_R \left(A_{(0,+\infty)} + 1 \right)^{-1} \chi_R = \chi_R^2 \left(A_{(0,R)} + 1 \right)^{-1} \chi_R^2
- \chi_R \left(A_{(0,R)} + 1 \right)^{-1} \chi_R \left(A_{(0,R)} + 1 \right)^{-1} \chi_R^1
- \chi_R \left(A_{(0,R)} + 1 \right)^{-1} \chi_R \left(A_{(0,R)} + 1 \right)^{-1} \chi_R^2.
\] (3.28)

Now, we control the different terms on the right hand side. The terms involving commutators can be estimated as in Step 1, thanks to (3.2), and we get
\[
\left\| 1_{(0,R)} \left(A_{(0,R)} + 1 \right)^{-1} 1_{(0,R)} \left[A_{(0,R)} + 1, \chi_R^1 \right] \left(A_{(0,+\infty)} + 1 \right)^{-1} \chi_R \right\|_{\mathcal{L}(L^2(\mathbb{R}^+))} = \mathcal{O} \left(\frac{1}{R} \right),
\] (3.29)
\[\left\| \mathbf{1}_{(0,R)} \left(\mathcal{A}_{(0,R)} + 1 \right)^{-1} \mathbf{1}_{(0,R)} [\mathcal{A}_{(0,R)} + 1, \chi_R^2] \left(\mathcal{A}_{(0,R)} + 1 \right)^{-1} \chi_R^2 \right\|_{\mathcal{L}(L^2(\mathbb{R}^n))} = O \left(\frac{1}{R} \right). \quad (3.30) \]

Moreover, for \(u \in L^2((0, R), \mathbb{C}) \), we have
\[\text{Im} \langle (\mathcal{A}_{(0,R)} + 1)u, u \rangle = \langle yu, u \rangle \quad (3.31) \]
where \(\langle .., .. \rangle \) denotes the \(L^2((0, R), \mathbb{C}) \)-hermitian product.

This relation, applied to \(u = \chi_R^2 \left(\mathcal{A}_{(0,R)} + 1 \right)^{-1} \chi_R^2 f, f \in L^2((0, +\infty), \mathbb{R}) \), gives
\[\text{Im} \langle (\mathcal{A}_{(0,R)} + 1)u, u \rangle \geq \frac{R}{2} \|u\|^2. \]

Moreover,
\[(\mathcal{A}_{(0,R)} + 1)u = (\chi_R^2)^2 f + [\mathcal{A}_{(0,R)} + 1, \chi_R^2] \left(\mathcal{A}_{(0,R)} + 1 \right)^{-1} \chi_R^2 f. \]

Thus, estimating the commutator as in Step 1, we get
\[\|\text{Im} \langle (\mathcal{A}_{(0,R)} + 1)u, u \rangle \| \leq C \left(1 + \frac{1}{R} \right) \|f\| \|u\|. \]

Therefore,
\[\frac{R}{2} \|u\|^2 \leq C \left(1 + \frac{1}{R} \right) \|f\| \|u\|. \]

We have proved that
\[\left\| \chi_R^2 \left(\mathcal{A}_{(0,R)} + 1 \right)^{-1} \chi_R^2 \right\|_{\mathcal{L}(L^2(\mathbb{R}^n))} = O \left(\frac{1}{R} \right). \quad (3.32) \]

By (3.28), (3.29), (3.30) and (3.32), we have
\[\left\| \mathbf{1}_{(0,R)} \left(\mathcal{A}_{(0,R)} + 1 \right)^{-1} \mathbf{1}_{(0,R)} - \chi_R^4 \left(\mathcal{A}_{(0,+\infty)} + 1 \right)^{-1} \chi_R^4 \right\|_{\mathcal{L}(L^2(\mathbb{R}^n))} = O \left(\frac{1}{R} \right) \quad (3.33) \]
which ends Step 2.a.

Step 2.b: We verify that
\[\chi_R^4 \left(\mathcal{A}_{(0,+\infty)} + 1 \right)^{-1} \chi_R^4 \xrightarrow{R \to +\infty} \left(\mathcal{A}_{(0,+\infty)} + 1 \right)^{-1} \text{ in } \mathcal{L}(L^2(\mathbb{R}^n)), \quad (3.34) \]
which ends the proof of (3.27).

To simplify notation, let us introduce
\[\mathcal{A}_+ = \mathcal{A}_{(0,+\infty)} + 1. \]

First, we write
\[\chi_R \left(\mathcal{A}_+ + 1 \right)^{-1} \chi_R \mathcal{A}_+ = (\chi_R^4)^2 - \chi_R^4 \mathcal{A}_+^{-1} [\mathcal{A}_+, \chi_R^4], \]
then, composing on the right by \(\mathcal{A}_+^{-1} \) and using that \((\chi_R^4)^2 = 1 - (\chi_R^2)^2 \),
\[\mathcal{A}_+^{-1} - \chi_R^4 \mathcal{A}_+^{-1} \chi_R^4 = (\chi_R^2)^2 \mathcal{A}_+^{-1} + \chi_R^4 \mathcal{A}_+^{-1} [\mathcal{A}_+, \chi_R^4] \mathcal{A}_+^{-1}. \quad (3.35) \]

The term involving a commutator can be estimated as in Step 1,
\[\left\| \chi_R \mathcal{A}_+^{-1} [\mathcal{A}_+, \chi_R^4] \mathcal{A}_+^{-1} \right\|_{\mathcal{L}(L^2(\mathbb{R}^n))} = O \left(\frac{1}{R} \right). \quad (3.36) \]
For \(f \in L^2(0, +\infty) \), we have
\[
\frac{R}{2} \| (\chi_R^2)^2 A_+^{-1} f \|^2 \leq \| y^{1/2} (\chi_R^2)^2 A_+^{-1} f \|^2 \quad \text{(because \(\operatorname{Supp} (\chi_R^2) \subset (R/2, R) \))}
\]
\[
= \operatorname{Im} \langle A_+ (\chi_R^2)^2 A_+^{-1} f, (\chi_R^2)^2 A_+^{-1} f \rangle \\
\leq \| A_+ (\chi_R^2)^2 A_+^{-1} f \| \| (\chi_R^2)^2 A_+^{-1} f \| \\
\leq \left(\| (\chi_R^2)^2 f \|^2 + \| [A_+,(\chi_R^2)^2] A_+^{-1} f \| \| (\chi_R^2)^2 A_+^{-1} f \| \right).
\]
where \(\langle ., . \rangle \) denotes the \(L^2((0, +\infty), \mathbb{C}) \)-hermitian product and \(\| . \| \) is the associated norm. Estimating the term with a commutator as in Step 1, we get
\[
R \| (\chi_R^2)^2 A_+^{-1} f \|_{L^2(0, +\infty)} \leq C \left(1 + \frac{1}{R} \right) \| f \|_{L^2(0, +\infty)}.
\]
Thus
\[
\| (\chi_R^2)^2 A_+^{-1} \|_{L(L^2(0, +\infty))} = \mathcal{O} \left(\frac{1}{R} \right).
\]
(3.37)
Finally, (3.35), (3.36) and (3.37) imply (3.34).

Step 2.c: Conclusion.
Step 2.a and Step 2.b prove (3.27). The eigenvalues of \(A_+^{-1} \) are isolated, thus we can apply [45, Section IV, §3.5]. For any subsequence \(R_j \to +\infty \) and any eigenvalue \(\lambda \in \sigma(A_+^{-1}) \setminus \{0\} \), there exists a sequence \((\lambda_j) \) such that, for every \(j \) large enough
\[
\lambda_j \in \sigma \left(1_{(0, R_j)} (A_{(0, R_j)} + 1)^{-1} 1_{(0, R_j)} \right) \setminus \{0\} = \sigma \left((A_{(0, R_j)} + 1)^{-1} \right) \setminus \{0\}
\]
and \(\lambda_j \to \lambda \) when \(j \to +\infty \).
In particular, with \(\lambda = 1/(\bar{\lambda} + 1) \), where \(\bar{\lambda} = e^{i\pi/3}|\mu_1| \in \sigma(A_{(0, +\infty)}) \) is the eigenvalue of \(A_{(0, +\infty)} \) with smallest real part (see [5]), we get a sequence \(\bar{\lambda}_j = 1/\lambda_j - 1 \in \sigma(A_{(0, R_j)}) \) such that \(\Re \bar{\lambda}_j \to \Re \bar{\lambda} = |\mu_1|/2 \), from which we deduce (3.24).

3.4 Semi classical analysis of the Davies operator \((\gamma = 2) \)

The goal of this section is the proof of Theorem 3.2, which is similar to the one of Theorem 3.1.

Step 1: Let \(\varepsilon > 0 \). We search \(R_\varepsilon > 0 \) such that
\[
\forall R \geq R_\varepsilon, \quad \sigma \left(\mathcal{H}(-R, R) \right) \cap \left((-\infty, \sqrt{2}/2 - \varepsilon) + i\mathbb{R} \right) = \emptyset
\]
(3.38)
and we prove (3.4).

Let \(\alpha \in (0, 1/3) \) and \(\zeta_R^1, \zeta_R^2, \zeta_R^3 \in C^\infty(\mathbb{R}; [0, 1]) \) be such that
\[
\begin{align*}
\operatorname{Supp} \zeta_R^1 & \subset (-\infty, -R + R^\alpha), \quad \zeta_R^1 \equiv 1 \text{ on } (-\infty, -R + R^\alpha/2), \\
\operatorname{Supp} \zeta_R^2 & \subset (-R + R^\alpha/2, R - R^\alpha/2), \quad \zeta_R^2 \equiv 1 \text{ on } (-R + R^\alpha, R - R^\alpha), \\
\operatorname{Supp} \zeta_R^3 & \subset (R - R^\alpha, +\infty), \quad \zeta_R^3 \equiv 1 \text{ on } (R - R^\alpha/2, +\infty), \\
(\zeta_R^1)^2 + (\zeta_R^2)^2 + (\zeta_R^3)^2 & \equiv 1 \text{ on } \mathbb{R},
\end{align*}
\]
\[
\| (\zeta_R^1)' \|_{L^\infty(\mathbb{R})} = \mathcal{O}_{R \to +\infty} (R^{-\alpha}), \quad \| (\zeta_R^1)'' \|_{L^\infty(\mathbb{R})} = \mathcal{O}_{R \to +\infty} (R^{-2\alpha}).
\]
(3.39)

Close to \(y = -R \), we have
\[
y^2 = -2R(y + R) + R^2 + o(|y + R|).
\]

15
Thus, we are going to approximate $\mathcal{H}(-R, R)$, close to $y = -R$, by the complex Airy type operator on $(-R, +\infty)$

$$A_R^- := -\frac{d^2}{dy^2} - 2iR(y + R) + iR^2.$$

In the same way, we will approximate $\mathcal{H}(-R, R)$ close to $y = +R$ by the complex Airy type operator on $(-\infty, +R)$

$$A_R^+ := -\frac{d^2}{dy^2} - 2iR(R - y) + iR^2.$$

Then, we remark that, if T_R and U_R are defined by (3.7), then we have

$$A_R^- = T_R\tilde{A}_R^*T_R^{-1} + iR^2 \quad \text{and} \quad A_R^+ = U_R\tilde{A}_R^*U_R^{-1} + iR^2,$$

where \tilde{A}_R is the Dirichlet realization of the complex Airy operator $-\frac{d^2}{dy^2} + iRy$ on $(-\infty, +\infty)$.

Following [38], we deduce that

$$\inf \text{Re} \sigma (A_R^+) = \inf \text{Re} \sigma (A_R^-) = (2R)^{2/3} \frac{|\mu_1|}{2}, \quad (3.40)$$

and, for every $\varepsilon > 0$, there exists $C_\varepsilon > 0$ such that

$$\sup_{\gamma \in [0, R^{1/3}|\mu_1|/2 - \varepsilon]} \left\| \left(A_R^+ - (\gamma + i\nu) \right)^{-1} \right\| \leq C_\varepsilon \frac{1}{R^{2/3}}. \quad (3.41)$$

We call \mathcal{H}_0 the complex harmonic oscillator $-\frac{d^2}{dy^2} + iy^2$ on \mathbb{R}, that will serve to approximate $\mathcal{H}(-R, R)$ on the support of ζ_R^2. We recall that inf $\text{Re} \sigma (\mathcal{H}_0) = \cos \pi/4 = \sqrt{2}/2$ (see [25]) and

$$\sup_{\gamma \in [-2\sqrt{2}/\varepsilon, \varepsilon]} \left\| \left(\mathcal{H}_0 - (\gamma + i\nu) \right)^{-1} \right\| \leq C'_\varepsilon, \quad (3.42)$$

for some $C'_\varepsilon > 0$, see for instance [56].

Now, we take $\lambda = \gamma + i\nu \in (0, \sqrt{2}/2 - \varepsilon) + i\mathbb{R}$ and we set

$$\mathcal{Q}_R(\lambda) = \zeta_R^2 \left(A_R^- - \lambda \right)^{-1} \zeta_R^2 + \zeta_R^2 \left(\mathcal{H}_0 - \lambda \right)^{-1} \zeta_R^2 + \zeta_R^2 \left(A_R^+ - \lambda \right)^{-1} \zeta_R^2. \quad (3.43)$$

Then, we have

$$\left(\mathcal{H}(-R, R) - \lambda \right) \mathcal{Q}_R(\lambda) = I + [\mathcal{H}(-R, R), \zeta_R^2] \left(A_R^- - \lambda \right)^{-1} \zeta_R^2 + [\mathcal{H}(-R, R), \zeta_R^2] \left(A_R^+ - \lambda \right)^{-1} \zeta_R^2 + \zeta_R^2 \left(\mathcal{H}(-R, R) - A_R^- \right) \left(A_R^- - \lambda \right)^{-1} \zeta_R^2 + \zeta_R^2 \left(\mathcal{H}(-R, R) - A_R^+ \right) \left(A_R^+ - \lambda \right)^{-1} \zeta_R^2,$$

as equality between operators on $L^2(-R, R)$. The terms involving commutators can be estimated as in Step 1 of the previous section, by using (3.39), (3.41), (3.42) and we get

$$\left\| [\mathcal{H}(-R, R), \zeta_R^2] \left(A_R^- - \lambda \right)^{-1} \zeta_R^2 \right\|_{L(L^2(-R, R))} + \left\| [\mathcal{H}(-R, R), \zeta_R^2] \left(\mathcal{H}_0 - \lambda \right)^{-1} \zeta_R^2 \right\|_{L(L^2(-R, R))} + \left\| [\mathcal{H}(-R, R), \zeta_R^2] \left(\mathcal{H}(-R, R) - A_R^- \right) \left(A_R^- - \lambda \right)^{-1} \zeta_R^2 \right\|_{L(L^2(-R, R))} = O(R^{-\alpha}).$$

Moreover, we have, by definition of A_R^-,

$$\left(\mathcal{H}(-R, R) - A_R^- \right) u(y) = i(y + R)^2 u(y).$$
and on the support of ζ_R, we have $y + R \leq R^\alpha$. Therefore, by (3.41)
\[
\left\| \zeta_R^1 (H_{(-R,R)} - A_R^-) (A_R^- - \lambda)^{-1} \zeta_R^1 \right\|_{L^2(L^2(R,R))} \leq R^{2\alpha} \left\| (A_R^- - \lambda)^{-1} \right\|_{L^2(L^2(-R^\infty))} \leq C_\varepsilon R^{2(\alpha-1/3)}.
\]
In the same way, we verify
\[
\left\| \zeta_R^1 (H_{(-R,R)} - A_R^+) (A_R^+ - \lambda)^{-1} \zeta_R^1 \right\|_{L^2(L^2(-R,R))} \leq C_\varepsilon R^{2(\alpha-1/3)}.
\]
Thus, we have proved that
\[
(H_{(-R,R)} - \lambda) Q_R(\lambda) = I + \tilde{E}_R(\lambda),
\]
with $\|\tilde{E}_R(\lambda)\| \to 0$ as $R \to +\infty$, uniformly with respect to λ in the interval $(0, \sqrt{2}/2-\varepsilon)+i\mathbb{R}$.
Thus, there exists $R_\varepsilon > 0$ such that, for every $R \geq R_\varepsilon$, $(H_{(-R,R)} - \lambda)$ is invertible, with
\[
(H_{(-R,R)} - \lambda)^{-1} = Q_R(\lambda) \left(I + \tilde{E}_R(\lambda) \right)^{-1}.
\]
This proves the existence of $R_\varepsilon > 0$ such that (3.38) holds. The resolvent estimate (3.4) follows from (3.41), (3.42) and (3.43).

Step 2: We prove
\[
\lim_{R \to +\infty} \inf \text{Re} \sigma(H_{(-R,R)}) \leq \frac{\sqrt{2}}{2}.
\]

Let $\varphi_R^1, \varphi_R^2 \in C^\infty(\mathbb{R}, [0,1])$ be such that
\[
\text{Supp} (\varphi_R^1) \subset (-\infty, -R/2) \cup (R/2, +\infty), \quad \varphi_R^1 \equiv 1 \text{ on } (-\infty, -2R/3) \cup (2R/3, +\infty),
\]
\[
\text{Supp} (\varphi_R^2) \subset (-2R/3, 2R/3), \quad \varphi_R^2 \equiv 1 \text{ on } (-R/2, R/2),
\]
\[
(\varphi_R^1)^2 + (\varphi_R^2)^2 \equiv 1 \text{ on } \mathbb{R},
\]
\[
\| (\varphi_R^1)' \|_{L^\infty(\mathbb{R})} = O(R^{-1}), \quad \| (\varphi_R^2)' \|_{L^\infty(\mathbb{R})} = O(R^{-2}).
\]
We recall that H_0 denotes the operator $-\frac{d^2}{dx^2} + ix^2$ defined on \mathbb{R}, and we set
\[
\tilde{Q}_R = \varphi_R^2 \left(H_0 + 1 \right)^{-1} \varphi_R^2 + \varphi_R^1 \left(H_{(-R,R)} + 1 \right)^{-1} \varphi_R^1.
\]
Thus, we have
\[
(H_{(-R,R)} + 1) \tilde{Q}_R = I + P_R,
\]
where
\[
P_R = [H_{(-R,R)}, \varphi_R^2] \left(H_0 + 1 \right)^{-1} \varphi_R^2 + [H_{(-R,R)}, \varphi_R^1] \left(H_{(-R,R)} + 1 \right)^{-1} \varphi_R^1,
\]
and
\[
\| P_R \|_{L^2(L^2(-R,R))} = O(R^{-1}).
\]
By composing on the left with $(H_{(-R,R)} + 1)^{-1}$, we get
\[
\left(H_{(-R,R)} + 1 \right)^{-1} - \varphi_R^2 \left(H_0 + 1 \right)^{-1} \varphi_R^2 = \varphi_R^1 \left(H_{(-R,R)} + 1 \right)^{-1} \varphi_R^1 - \left(H_{(-R,R)} + 1 \right)^{-1} P_R.
\]
By going back over the proof of (3.32) and replacing (3.31) by
\[
\text{Im} \langle H_{(-R,R)} u, u \rangle = \langle x^2 u, u \rangle,
\]
we get
\[\left\| \varphi_R \left(\mathcal{H}_{(-R,R)} + 1 \right)^{-1} \varphi_R \right\|_{L^2((-R,R))} = O \left(\frac{1}{R} \right). \]

By (3.47), the previous relation, together with (3.46) and (3.4) imply
\[\left\| \left(\mathcal{H}_{(-R,R)} + 1 \right)^{-1} \varphi_R \right\|_{L^2((-R,R))} = O \left(\frac{1}{R} \right). \quad (3.49) \]

Then, we prove that the operator \(\varphi_R^2(\mathcal{H}_0 + 1)^{-1}\varphi_R \) converges to \((\mathcal{H}_0 + 1)^{-1} \) in \(L^2(\mathbb{R}) \), when \(R \to +\infty \), with the same arguments as in Step 2.b of the previous section. Thus, (3.45) is proved, with the same arguments as in Step 2.c of the previous section, and this ends the proof of Theorem 3.2.

4 Examples of \((\Omega_1, \omega_1)\) satisfying Property \(\mathcal{P}(s) \)

The goal of this section is to give examples of pairs \((\Omega_1, \omega_1)\) that satisfy Property \(\mathcal{P}(s) \) for any \(s \in (0,1/2) \). Precisely, we prove that it is the case if \(\Omega_1 \) is a conical bounded subset of \(\mathbb{R}^d \) and \(\omega_1 \) is any open subset of \(\Omega_1 \) that does not intersect the boundary \(\partial \Omega_1 \). Note that the result covers the situation where \(\Omega_1 \) is a disk or a circular sector in 2D, a ball in any space dimension.

Proposition 4.1. Let \(d \in \mathbb{N}, d \geq 2 \) and \(U \) be an open subset of \(\mathbb{S}^{d-1} \). Let \(\Omega_1 \) be the conical open subset of \(\mathbb{R}^d \) defined by
\[\Omega_1 := \{ x = rx' : 0 < r < 1, x' \in U \}. \]

Let \(\omega_1 \) be an open subset compactly embedded in \(\Omega_1 \). There exist constants \(C, K > 0 \), a sequence \((\lambda_k)_{k \in \mathbb{N}}\) of eigenvalues of the operator \((-\Delta_{\Omega_1}^0)\) (with domain \(H^2 \cap H^1_0(\Omega_1) \)) and associated normalized eigenvectors \((\tilde{\varphi}_k)_{k \in \mathbb{N}}\) such that
\[\int_{\omega_1} |\tilde{\varphi}_k(x)|^2 dx \leq Ke^{-C\sqrt{\lambda_k}}, \quad \forall k \in \mathbb{N}^*. \]

In particular \((\Omega_1, \omega_1)\) satisfies Property \(\mathcal{P}(s) \) for any \(s \in (0,1/2) \).

We refer to [53] for other similar results. Our proof of Proposition 4.1 relies on properties of Bessel functions, recalled in the next statement.

Proposition 4.2. The Bessel functions of the first kind \(J_\nu \) satisfy
\[0 < J_\nu(x) \leq e^{\nu g(x)}, \quad \forall \nu \in (0, +\infty), x \in (0, 1), \quad (4.1) \]
\[|J'_\nu(x)| \leq \frac{(1 + x^2)^{1/4} e^{\nu g(x)}}{x \sqrt{2\pi \nu}}, \quad \forall \nu \in (0, +\infty), x \in (0, 1), \quad (4.2) \]
\[J_\nu(x) \sim \frac{a}{x^{1/3}}, \quad \nu \to +\infty, \quad (4.3) \]
where
\[g(x) := \ln(x) + \sqrt{1 - x^2} - \ln[1 + \sqrt{1 - x^2}] \quad \text{and} \quad a := \frac{2^{1/3}}{3^{2/3} \Gamma(2/3)} > 0. \]

Inequalities (4.1) and (4.2) are proved in [59]; inequality (4.3) is in [1, Formula 9.3.31, Page 368]. Note that \(g \) is negative and increasing on \((0, 1)\) and that \(g(1) = 0 \).
Proof of Proposition 4.1: We recall that, in coordinates \((r, x')\), the Dirichlet-Laplacian writes

\[
(-\Delta_D^\rho) \varphi = -\frac{\partial^2 \varphi}{\partial r^2} - \frac{d-1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} (-\Delta_D^\rho) \varphi.
\]

Let \((\lambda_k')_{k \in \mathbb{N}^*}\) be the increasing sequence of eigenvalues of \((-\Delta_D^\rho)\) and \((X_k)_{k \in \mathbb{N}^*}\) be associated eigenfunctions

\[
\begin{align*}
(-\Delta_D^\rho) X_k(x') &= \lambda_k X_k(x'), \\
X_k(x') &= 0, \\
\|X_k\|_{L^2(U)} &= 1.
\end{align*}
\]

For \(k \in \mathbb{N}^*\), we define

\[\nu_k := \sqrt{\lambda_k + \left(\frac{d}{2} - 1\right)^2}\]

and \(j_\nu\) the first positive zero of the Bessel function of first kind \(J_{\nu_k}\). Note that

\[\nu_k < j_\nu < \nu_k + \delta \nu_k^{1/3}, \quad \forall k \in \mathbb{N}^*,\]

for some constant \(\delta > 0\) (see [1, Formula 9.5.14, Page 371]). Let

\[C_k := \left(\int_0^1 \left| r^{-\frac{d}{2}+1} J_{\nu_k}(j_\nu r) \right|^2 r^{d-1} dr \right)^{1/2}, \quad \forall k \in \mathbb{N}^*.
\]

Then, for every \(k \in \mathbb{N}^*\), the function

\[
\tilde{\varphi}_k(r, x') := \frac{1}{C_k} r^{-\frac{d}{2}+1} J_{\nu_k}(j_\nu r) X_k(x'), \forall r \in (0, 1), x' \in U,
\]

is a normalized eigenfunction of \((-\Delta_D^\rho)\) associated to the eigenvalue

\[\tilde{\lambda}_k := j_\nu^2.
\]

Step 1: We prove the existence of \(C_1 > 0\) such that, for \(k\) large enough

\[C_k \geq \frac{C_1}{\nu_k^{3/4}}.\]

Let \(\epsilon \in (0, 5/6)\). Performing changes of variables, we get, for \(k\) large enough

\[
\begin{align*}
C_k &= \left(\int_0^1 |J_{\nu_k}(j_\nu r)|^2 r dr \right)^{1/2} \\
&= \frac{1}{\nu_k} \left(\int_0^{\nu_k} |J_{\nu_k}(\rho)|^2 \rho d\rho \right)^{1/2} \\
&\geq \frac{1}{\nu_k} \left(\int_0^{\nu_k} |J_{\nu_k}(\rho)|^2 \rho d\rho \right)^{1/2} \quad \text{by (4.4)} \\
&\geq \frac{\omega_k}{\nu_k} \left(\int_0^1 |J_{\nu_k}(\nu_k r)|^2 r dr \right)^{1/2} \\
&\geq C \left(\int_{1-\nu_k^{-2}}^{1} |J_{\nu_k}(\nu_k r)|^2 \frac{dr}{r} \right)^{1/2} \quad \text{by (4.4)}.
\end{align*}
\]

For \(r \in (1 - \nu^{-2}, 1)\) and \(\nu\) large enough, we have

\[
|J_{\nu}(\nu r)| \geq |J_{\nu}(\nu)| - \nu(1-r) \sup \{|J_{\nu}(\nu \sigma)|; \sigma \in (r, 1)\} \\
\geq \frac{2}{nu^{-2}r} - \nu^2 r^{-2} \frac{C}{\nu^2} \quad \text{by (4.2) and (4.3)} \\
\geq \frac{2}{nu^{-2}r} \left(\frac{2}{nu^2} - \frac{C}{\nu^2} r^{-2} \right) \quad \text{by (4.8)}.
\]

19
We deduce from (4.7) and (4.8) that (4.6) holds for some constant $C_1 > 0$.

Step 2: Conclusion.
Let ω_1 be an open subset of \mathbb{R}^d such that $\omega_1 \subset \Omega_1$. There exists $a \in (0, 1)$ such that
$$\omega_1 \subset \{x = rx'; 0 < r < a, x' \in U\}.$$ Thus, for every $k \in \mathbb{N}^*$,
$$\int_{\omega_1} |\tilde{\varphi}_k(x)|^2 dx \leq \int_0^a \left| \frac{1}{C_k} r^{-\frac{d}{2} + 1} J_{\nu_k}(jkr) \right|^2 r^{d-1} dr \leq \frac{a^2}{2C^2_k} \sup \{J_{\nu_k}(jkr); 0 < r < a\}.$$

Let $b \in (a, 1)$. By (4.4), we have $\frac{jkr}{\nu_k} < b < 1$ for k large enough. Then, by (4.1) for every $r \in (0, a)$,
$$0 < J_{\nu_k}(jkr) = J_{\nu_k} \left(\frac{jkr}{\nu_k} \right) \leq \nu_k g \left(\frac{jkr}{\nu_k} \right).$$

Explicit computations show that $g'(x) > 0$, for every $x \in (0, 1)$, thus
$$g \left(\frac{jkr}{\nu_k} \right) < g (b) < 0, \ \forall r \in (0, a).$$ Therefore,
$$\int_{\omega_1} |\tilde{\varphi}_k(x)|^2 dx \leq \frac{a^2}{2C^2_k} e^{-|g(b)|\nu_k}.$$

By (4.6), (4.4) and (4.5), we get the conclusion. □

Finally, let us quote, without proof, other examples of pairs (Ω_1, ω_1) satisfying Property $\mathcal{P}(s)$ for appropriate values of s.

If Ω_1 is a filled ellipse and ω_1 is an open subset of Ω_1 that does not intersect $\partial \Omega_1$, then the pair (Ω_1, ω_1) satisfies property $\mathcal{P}(s)$ for any $s \in (0, 1/2)$. This can be proved by working in separate variables as in [53] and constructing "whispery gallery" solutions. The same result holds if ω_1 intersects $\partial \Omega_1$ but does not intersect the small axis of Ω_1 (see [53, Theorem 3.1, page 786]). This time this corresponds to "focusing solutions".

All these results can be proved with semi-classical analysis (see, for instance [60] and [26]).

5 Well posedness and Fourier decomposition

In this section $\gamma \in \mathbb{N}^*$ and $\beta \in (0, 1)$ are fixed. For $f \in C^\infty_c(\Omega, \mathbb{C})$, we define
$$|f|_V := \left(\int_\Omega |\partial_v f(x, v)|^2 dx dv \right)^{1/2}$$
and
$$V := \text{Adh}_{|V |} [C^\infty_c(\Omega, \mathbb{C})].$$

Observe that $H^1_0(\Omega) \subset V \subset L^2(\Omega)$, thus V is dense in $L^2(\Omega)$. We define the operator $A_{\gamma, \beta}$ by
$$D(A_{\gamma, \beta}) := \{f \in V; -\partial^2_v f + iv^\gamma (-\Delta_x)^\beta f \in L^2(\Omega)\},$$
$$A_{\gamma, \beta} f := -\partial^2_v f + iv^\gamma (-\Delta_x)^\beta f.$$
Then $D(A_{\gamma,\beta})$ is dense in $L^2(\Omega)$, $(A_{\gamma,\beta}, D(A_{\gamma,\beta}))$ is a closed operator and both $A_{\gamma,\beta}$ and $A^*_{\gamma,\beta}$ are dissipative, thus $(A_{\gamma,\beta}, D(A_{\gamma,\beta}))$ generates a strongly continuous semigroup of contractions of $L^2(\Omega)$ (see the Lumer-Phillips Theorem [55, Corollary 4.4, Chapter 1, page 15], or the Hille-Yosida Theorem [15, Theorem VII.4, page 105]).

We consider a solution $g \in C^0([0,T]\times L^2(\Omega))$ of (1.3). Then, the function $x \mapsto g(t,x,v)$ belongs to $L^2(\Omega_1)$ for almost every $(t,v) \in [0,\infty) \times (-1,1)$, thus, it can be developed on the Hilbert basis $(\varphi_n)_{n \in \mathbb{N}^*}$ (see (1.4)) as follows

$$g(t,x,v) = \sum_{n \in \mathbb{N}^*} g_n(t,v) \varphi_n(x) \quad \text{where} \quad g_n(t,v) := \int_\Omega g(t,x,v) \varphi_n(x) \, dx, \quad \forall n \in \mathbb{N}^*. \tag{5.1}$$

In what follows, with a slight abuse of vocabulary, this decomposition is called 'Fourier decomposition' and the functions $g_n(t,v)$ are called 'Fourier components'.

Proposition 5.1. For every $n \in \mathbb{N}^*$, g_n is the unique solution of

$$\begin{cases}
\partial_t g_n(t,v) + i\lambda_n^2 \varphi_n g_n(t,v) - \partial^2_x g_n(t,v) = 0, & (t,v) \in (0,\infty) \times (-1,1), \\
g_n(t,\pm 1) = 0, & t \in (0,\infty), \\
g_n(0,v) = g_{0,n}(v), & v \in (-1,1),
\end{cases} \tag{5.2}$$

where $g_{0,n} \in L^2((-1,1))$ is given by

$$g_{0,n}(v) := \int_{\Omega_1} g_0(x,v) \varphi_n(x) \, dx, \quad v \in (-1,1).$$

This result can be proved by following the same steps as in [11, Section 2.2].

6 Observability on a horizontal strip

The goal of this section is the proof of the statements 1 of Theorems 1.6 and 1.7. Note that the negative part of the first statement of Theorem 1.7 (i.e. no null controllability, when $\gamma = 2$ and $T < T^*$) can be done exactly as in [10].

6.1 Global Carleman estimate

The goal of this subsection is the statement of a global Carleman estimate, proved in [10, Appendix] and useful for the proof of the statements 1 of Theorems 1.6 and 1.7. For $\lambda \in \mathbb{R}$ and $\gamma \in \{1,2\}$, we introduce the operator

$$P_{\lambda,\gamma} g := \partial_t g + i\lambda \varphi^\gamma g - \partial^2_x g.$$

Proposition 6.1. Let a,b be such that $-1 < a < b < 1$. There exist a weight function $\beta \in C^1([-1,1], \mathbb{R}_+)$, positive constants C_1, C_2 such that, for every $\lambda \in \mathbb{R}$, $\gamma \in \{1,2\}$, $T > 0$ and $g \in C^0([0,T], \mathbb{L}^2(\Omega_1)) \cap L^2(0,T; H^1_0(-1,1))$ the following inequality holds

$$C_1 \int_0^T \int_{-1}^1 \left(\frac{M}{(T-t)^2} |\varphi_n(t,v)|^2 + \frac{M^2}{(t(T-t))} |g(t,v)|^2 \right) e^{-\frac{M^2}{T-t}} \, dv \, dt \leq \int_0^T \int_{-1}^1 |P_{\lambda,\gamma} g(t,v)|^2 e^{-\frac{M^2}{T-t}} \, dv \, dt + \int_0^T \int_{-1}^1 |g(t,v)|^2 e^{-\frac{M^2}{T-t}} \, dv \, dt, \tag{6.1}$$

where $M := C_2 \max\{T + T^2; \sqrt{\lambda T^2}\}$.

In this proposition, the weight β is the usual one for Carleman estimates for 1D heat equations; since its explicit expression will not be used in this article, we do not specify its properties. Note that we have sharp dependency of M on λ and T. In particular, if we treat the term $i\lambda \varphi^\gamma g$ as a lower-order term, to apply the Carleman estimate for the operator $(\partial_t - \partial^2_x)$, then, we can obtain a less sharp dependency $M = O(\lambda^{2/3})$, which is not sufficient in this article. The proof of this Carleman estimate is done in [10, Appendix], by revisiting the usual proof.
6.2 Dissipation of Fourier components

The Dirichlet realization of the operator $-\partial^2_x + i\lambda_n^\gamma$ on $(-1, 1)$ is not a normal operator. Thus it is not obvious that the exponential decay of the solutions of (5.2) is given by the smallest real part of the eigenvalues of this operator. This question is answered in the following statement.

Proposition 6.2. Let $\gamma \in \{1, 2\}$ and

$$d := \frac{2\gamma}{2 + \gamma}. $$

There exist $K, \delta > 0$ such that, for every $n \in \mathbb{N}^*$ and $g_{0,n} \in L^2(-1, 1)$, the solution of (5.2) satisfies

$$\|g_n(t)\|_{L^2(-1, 1)} \leq Ke^{-\delta N t}\|g_{0,n}\|_{L^2(-1, 1)}, \quad \forall t > 0. \quad (6.2)$$

Moreover, for every $\epsilon > 0$, there exists $n_\epsilon > 0$ such that, for every $n > n_\epsilon$, (6.2) holds with $K = K_\epsilon$ and

$$\delta = \left\{ \begin{array}{ll}
|\mu_1|/2 - \epsilon & \text{if } \gamma = 1, \\
\sqrt{2}/2 - \epsilon & \text{if } \gamma = 2,
\end{array} \right. \quad (6.3)$$

where μ_1 is the first zero (from the right) of the Airy function.

Finally, the exponent d of λ_n in (6.2) is optimal, and the critical value of δ in (6.3) is also optimal.

This result is stronger than [10, Propositions 10 and 17] because in (6.2), we have L^2-norms on both sides, whereas in [10] there was an H^1-norm on the right hand side. We study this problem in semi-classical formulation (take $h_n = \lambda_n^{-\beta/2}$ and $s = h_n t$).

Let $h_0 > 0$. For $h \in (0, h_0)$ and $\psi_{0,h} \in L^2(-1, 1)$, we consider the equation

$$h\partial_t \psi_h(t,v) - h^2\partial^2_x \psi_h(t,v) + iv^\gamma \psi_h(t,v) = 0, \quad (t,v) \in (0, +\infty) \times (-1, 1),
\psi_h(t, \pm 1) = 0, \quad t \in (0, +\infty), \quad \psi_h(0,v) = \psi_{0,h}(v), \quad v \in (-1, 1). \quad (6.4)$$

Proposition 6.3. Let $\epsilon = 2\gamma/(\gamma + 2)$. There exist $K, \delta > 0$ such that, for every $h \in (0, h_0)$ and $\psi_{0,h} \in L^2(-1, 1)$, the unique solution of (6.4) satisfies

$$\|\psi_h(t)\|_{L^2(-1, 1)} \leq Ke^{-\delta h^\epsilon t}\|\psi_{0,h}\|_{L^2(-1, 1)}, \quad \forall t > 0. \quad (6.5)$$

Moreover, for every $\epsilon > 0$, there exists $h^* \in (0, h_0)$ such that, for every $h \in (0, h^*)$, (6.5) holds with $K = K_\epsilon$ and (6.3) where μ_1 is the first zero (from the right) of the Airy function.

Finally, the exponent d of h in (6.5) is optimal, and the critical value of δ in (6.3) is also optimal.

Proof of Proposition 6.3:

Let A_h be the operator defined by

$$A_h = -h^2\frac{d^2}{dx^2} + iv^\gamma, \quad \mathcal{D}(A_h) = H^2(-1, 1) \cap H^1_0(-1, 1).$$

By rescaling ($R = R(h) = h^{-\epsilon/\gamma}$ and $y = Rv$) and using Theorems 3.1 and 3.2, we have

$$\lim_{h \to 0} h^{-\epsilon} \inf_{A_h} \text{Re} \sigma(A_h) = \left\{ \begin{array}{ll}
|\mu_1|/2 & \text{if } \gamma = 1, \\
\sqrt{2}/2 & \text{if } \gamma = 2.
\end{array} \right. \quad (6.6)$$

Thus, we can consider

$$\delta^* := \min_{h \in (0, h_0)} h^{-\epsilon} \inf_{A_h} \text{Re} \sigma(A_h) > 0.$$
Let $\delta \in (0, \delta^*)$. By Theorems 3.1 and 3.2, there exists C_δ such that
\[
\sup_{\nu \in \mathbb{R}} \left\| \left(A_h - \delta h^\epsilon - i\nu \right)^{-1} \right\| \leq \frac{C_\delta}{h^\epsilon}.
\]
Thus,
\[
\sup_{\nu \in \mathbb{R}} \left\| \left(\frac{A_h}{h} - \delta h^{\epsilon-1} - i\nu \right)^{-1} \right\| \leq C_\delta h^{1-\epsilon}.
\numbered{6.7}

Moreover, the operator $h^{-1}A_h$ is maximally accretive, thus it generates a semigroup of contractions:
\[
\|\psi_h(t)\|_{L^2(-1,1)} \leq \|\psi_{0,h}\|_{L^2(-1,1)}, \quad \forall t > 0.
\numbered{6.8}

We can apply [40, Theorem 3.5], with $\omega = -\delta h^{\epsilon-1} < 0$, $r(\omega)^{-1} \leq C_\delta h^{1-\epsilon}$, $m(t) \equiv 1$ and $a = \tilde{a} = t/2$. Note that
\[
\|1\|^2_{L^2([0,t/2);e^{\omega t}dt)} = \frac{1-e^{\omega t/2}}{-\omega}.
\numbered{6.9}

Thus, we obtain
\[
\|\psi_h(t,\cdot)\|_{L^2(-1,1)} \leq \frac{\delta C_\delta}{1-e^{-\delta h^{\epsilon-1}t}} e^{-\delta h^{\epsilon-1}t} \|\psi_{0,h}\|_{L^2(-1,1)}, \quad \forall t > 0.
\numbered{6.10}

Let $\epsilon_0 > 0$ and $t_h = 2\epsilon_0 h^{1-\epsilon}/\delta$. Then, by (6.9),
\[
\|\psi_h(t,\cdot)\|_{L^2(-1,1)} \leq K_1 e^{-\delta h^{\epsilon-1}t} \|\psi_{0,h}\|_{L^2(-1,1)}, \quad \forall t \geq t_h
\]
with
\[
K_1 = \frac{\delta C_\delta}{1-e^{-\epsilon_0}}.
\]
Moreover, by (6.8),
\[
\|\psi_h(t)\|_{L^2(-1,1)} \leq K_2 e^{-\delta h^{\epsilon-1}t} \|\psi_{0,h}\|_{L^2(-1,1)}, \quad \forall t \leq t_h
\]
with $K_2 = e^{2\epsilon_0}$. Thus,
\[
\|\psi_h(t)\|_{L^2(-1,1)} \leq K e^{-\delta h^{\epsilon-1}t} \|\psi_{0,h}\|_{L^2(-1,1)}, \quad \forall t > 0
\numbered{6.10}

with $K = \max(K_1, K_2)$.

Finally, if $\epsilon > 0$ is fixed, by (6.6) there exists $h^* \in (0, h_0)$ such that all the previous estimates hold for $h \in (0, h^*)$ and δ as in (6.3). Indeed, we have
\[
\delta < \tilde{\delta}^* := \min_{h \in (0, h^*)} h^\epsilon \inf \Re \sigma(A_h).
\]

To prove the optimality of exponent $(\epsilon - 1)$ of h in (6.5), we just consider
\[
\psi_{0,h} \in \ker(A_h - \lambda_{0,h} h^\epsilon),
\]
where $\lambda_{0,h}$ satisfies $h^\epsilon \lambda_{0,h} \in \sigma(A_h)$ and $h^\epsilon \Re \lambda_{0,h} = \inf \Re \sigma(A_h)$. Then, we have
\[
\psi_h(t, v) = e^{-\lambda_{0,h} h^{\epsilon-1}t} \psi_{0,h}(v).
\]

Thus, by (6.6), for every $t > 0$ and $\epsilon > 0$, there exists $h^* > 0$ such that, for every $h \in (0, h^*)$,
\[
\|\psi_h(t,\cdot)\|_{L^2(-1,1)} = e^{-\lambda_{0,h} h^{\epsilon-1}t} \|g_{0,n}\|_{L^2(-1,1)}
\]
with $\nu = |\mu_1|/2$ if $\gamma = 1$ and $\nu = \sqrt{2}/2$ if $\gamma = 2$. □
6.3 Proof of the positive statements of Theorems 1.6 and 1.7

The positive statements in Theorems 1.6 and 1.7 are consequences of the following proposition and of the Bessel-Parseval equality.

Proposition 6.4. Let $\beta \in (0, 1)$ and $0 < a < b < 1$.

- If $\gamma = 1$, then, for every $T > 0$, there exists $C > 0$ such that for every $n \in \mathbb{N}^*$ and $g_{0,n} \in L^2(-1,1)$, the solution of (5.2) satisfies

$$\int_{-1}^{1} |g_n(T,v)|^2 dv \leq C \int_{0}^{T} \int_{a}^{b} |g_n(t,v)|^2 dvdt.$$ \hfill (6.11)

- If $\gamma = 2$, then, there exists $T_1 > 0$ such that, for every $T > T_1$, there exists $C > 0$ such that for every $n \in \mathbb{N}^*$ and $g_{0,n} \in L^2(-1,1)$, the solution of (5.2) satisfies (6.11).

Proof of Proposition 6.4:

We deduce from Proposition 6.1 that

$$C_3 \lambda_n^{3/2} e^{-c \lambda_n^{3/2}} \int_{T/3}^{2T/3} \int_{-1}^{1} |g_n(t,v)|^2 dv dt \leq C_4 \int_{0}^{T} \int_{a}^{b} |g_n(t,v)|^2 dv dt,$$ \hfill (6.12)

for n large enough, where $C_3 := C_2 \max\{4C_1; (4C_1)^3\}$, $c := \frac{3}{2} C_2 \max\{\beta(v); v \in [-1,1]\}$, $C_4 := \max\{x^3 e^{-\beta x}; x \geq 0\}$ and $\beta := \min\{\beta(v); v \in (a,b)\}$.

Moreover, thanks to Proposition 6.2, we have

$$\int_{-1}^{1} |g_n(T,v)|^2 dv \leq \frac{4K^2}{\lambda_n^{2/3}} e^{-24\lambda_n^{2/3}} \int_{T/3}^{2T/3} \int_{-1}^{1} |g_n(t,v)|^2 dv dt \leq \frac{C_5}{\lambda_n^{2/3}} e^{-\lambda_n^{2/3}} \int_{0}^{T} \int_{a}^{b} |g_n(t,v)|^2 dv dt,$$ \hfill (6.13)

where $C_5 := K^2 C_4 / C_3$.

Case 1: $\gamma = 1$. Then $d = \frac{24\lambda_n^{2/3}}{\lambda_n^{2/3}} > \frac{\lambda_n^{2/3}}{2}$, thus the observability constant above converges to zero as $n \to +\infty$. This proves the existence of a uniform observability constant for high frequencies: there exists $C_H > 0$ and $n_0 \in \mathbb{N}^*$ such that

$$\int_{-1}^{1} |g_n(T,v)|^2 dv \leq C_H \int_{0}^{T} \int_{a}^{b} |g_n(t,v)|^2 dv dt, \quad \forall g_{0,n} \in L^2(-1,1), n > n_0.$$

Moreover, for every $n \in \{1, \ldots, n_0\}$, there exists a constant $C_n > 0$ such that

$$\int_{-1}^{1} |g_n(T,v)|^2 dv \leq C_n \int_{0}^{T} \int_{a}^{b} |g_n(t,v)|^2 dv dt, \quad \forall g_{0,n} \in L^2(-1,1),$$

(usual observability inequality for 1D heat equations). Thus, the uniform observability constant $C := \max\{C_H, C_n; 1 \leq n \leq n_0\}$ gives the conclusion.

Case 2: $\gamma = 2$. Then $d = \frac{\beta}{2}$, thus, when $T > T_1 := \frac{3\lambda_n}{2\beta}$, the observability constant in (6.13) converges to zero as $n \to +\infty$ and the proof can be ended as in the previous case. □

References

