Numerical Verification of the Brumer-Stark Conjecture

Abstract : We study the Brumer-Stark conjecture computationally in the simplest situation in which it is unproven: an extension K/k with k quadratic, Gal(K/k) isomorphic to ℤ/4ℤ, the class group of K non trivial, K/ℚ non Galois. We verify the conjecture in 379 such cases and study the problem of whether the power of 2 dividing the Brumer element can be replaced by a lower 2-power so that the result remains true.
Document type :
Conference papers
Liste complète des métadonnées

Cited literature [17 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00863022
Contributor : Xavier-François Roblot <>
Submitted on : Thursday, September 19, 2013 - 10:48:28 AM
Last modification on : Monday, April 15, 2019 - 3:52:06 PM
Document(s) archivé(s) le : Thursday, April 6, 2017 - 9:52:57 PM

File

rota.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00863022, version 1

Collections

Citation

Xavier-François Roblot, Brett Tangedal. Numerical Verification of the Brumer-Stark Conjecture. Algorithmic Number Theory (ANTS-IV), 2000, Leiden, Netherlands. pp.491-504. ⟨hal-00863022⟩

Share

Metrics

Record views

151

Files downloads

105