
HAL Id: hal-00862981
https://hal.science/hal-00862981

Submitted on 18 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian rules and stochastic models for high accuracy
prediction of solar radiation

Cyril Voyant, C. Darras, Marc Muselli, Christophe Paoli, Marie Laure Nivet,
Philippe Poggi

To cite this version:
Cyril Voyant, C. Darras, Marc Muselli, Christophe Paoli, Marie Laure Nivet, et al.. Bayesian rules and
stochastic models for high accuracy prediction of solar radiation. Applied Energy, 2013. �hal-00862981�

https://hal.science/hal-00862981
https://hal.archives-ouvertes.fr


1 
 

Bayesian rules and stochastic models for high accuracy prediction of solar 

radiation  

 

Cyril Voyant
1*

, Christophe Darras
2
, Marc Muselli

2
, Christophe Paoli

2
, Marie-Laure Nivet

2
 and 

Philippe Poggi
2 

  1-CHD Castelluccio, radiophysics unit, B.P85 20177 Ajaccio- France 

  2-University of Corsica/CNRS UMR SPE 6134, Campus Grimaldi, 20250 Corte – France 

*corresponding author; tel +33495293666, fax +33495293797, cyril.voyant@ch-castelluccio.fr 

 

Abstract: 

 It is essential to find solar predictive methods to massively insert renewable energies on 

the electrical distribution grid. The goal of this study is to find the best methodology allowing 

predicting with high accuracy the hourly global radiation. The knowledge of this quantity is 

essential for the grid manager or the private PV producer in order to anticipate fluctuations 

related to clouds occurrences and to stabilize the injected PV power. In this paper, we test 

both methodologies: single and hybrid predictors. In the first class, we include the multi-layer 

perceptron (MLP), auto-regressive and moving average (ARMA), and persistence models. In 

the second class, we mix these predictors with Bayesian rules to obtain ad-hoc models 

selections, and Bayesian averages of outputs related to single models. If MLP and ARMA are 

equivalent (nRMSE close to 40.5% for the both), this hybridization allows a nRMSE gain 

upper than 14 percentage points compared to the persistence estimation (nRMSE=37% versus 

51%). 

 

 

Keywords: mutual information, pressure, Artifical Neural Network, Autoregressive and 

Moving Average model, hybrid, Bayes, prediction 
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1. Introduction 

 

 For 60 years, energy needs are multiplying exponentially to support economic 

developments, comfort and electricity consumption per capita. The gross inland energy 

consumption was multiplied by a factor 2 according to the world energy assessment report 

[1]. Currently, we are at one critical moment of the energy exploitation [2]: we carry out the 

brittleness and the inconsistency of our way. Indeed, the resources of planet in fossil sediment 

become exhausted, in addition to the economic consequences; so, it is necessary to find 

alternatives to the current energy sources [3]. In addition, the use of fossil fuels poses another 

problem: environmental impacts are massive. Even if it has long been ignored, the 

preservation of the environment is a global issue, with still significant economic challenges. 

Enhancing the use of renewable energy is one of the solutions but poses a number of 

challenges in terms of integration. 

 Because of their random and intermittent trend, the renewable energies must be 

integrated on a restricted basis in the electrical distribution grid. This parsimonious insertion 

is in order to protect it and to warrant quality of supply. In France, this limit was set to 30 % 

of the instantaneous power by the ministerial order of April 23rd, 2008 [4]. To be able to 

increase the insertion rate of the renewable energies on the electrical distribution grid, 

solutions are studied and applied. In France for example, the CRE (French Energy Regulation 

Commission) studies the means to control the fluctuations in these intermittent energies [3]. 

The CRE is a French independent authority (created on March 24th, 2000) managing 

industrials tenders related to grid integration of “fatal” energy sources. The solutions proposed 

by the authority are stipulated in the call for tender of the PV energy and the WT energy [3]. 

These solutions consist globally in coupling the renewable energies with a storage method 

(hydrogen, batteries, etc.). However, this coupling is not sufficient if the management of the 

storage is not mastered. So it is essential to be able to anticipate the renewable energies 

production. The issue of this paper is the global radiation prediction in order to effectively 

manage the storage. The association of storage and solar predictive methods allow to 

guarantee an available energy for the electrical distribution grid [5]. The storage absorbs the 

strong fluctuations and the surpluses of power and it shall fill the defect of power (we have a 

PV output power fluctuations smoothing). The manager of the electrical grid could thus 

estimate the available production of the next day of this power plant [6]; he could so, better 
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manage the supply and demand adequacy. The most interesting prediction horizon for the grid 

manager is noted h+24 representing 24 predictions computed before 18:00 and covering hour-

by-hour, the global solar radiation profile of the next day [7]. The goals of this work could be 

to integrate these predictions tools to a project like the MYRTE platform [3]. So we will know 

if an energy production system coupling a PV array and storage (electrolyzer, H2 and O2 

tanks and fuel cell in our case) associated with a prediction tool, allows to be seen by the 

electrical distribution grid manager as a reliable energy supply. In this case, load profiles 

would be created from forecasted meteorological data, and so the storage/destocking would be 

also created one day ahead. More the state of tank is wrong and more the daily power supply 

failures are important. In this kind of platform, the storage doesn’t support the PV but the grid 

by controlling the injected energy into the electrical network. 

The global radiation forecasting is the name given to the process used to predict the 

amount of solar energy available. A lot of predictive methods have been developed by experts 

around the world. One of the most popular is certainly the numerical weather prediction using 

mathematical model of the atmosphere to predict the weather based on current weather 

condition (nRMSE close to 35%) [8]. The second family of models, often called stochastic 

models, is based on the use of the times series (TS) mathematical formalism [7,9,10]. A TS is 

described by sets of numbers that measures the status of some activity over time. It is a 

collection of time ordered observations xt, each one being recorded at a specific time t 

(period) [11]. A TS model ( x̂ t) assumes that past patterns will occur in the future. TS 

prediction or TS forecasting takes an existing series of data xt-k, .. , xt-2, xt-1 and forecasts the xt 

data values. The goal is to observe or model the existing data series to enable future unknown 

data values to be forecasted accurately. Thus a prediction x̂ t can be expressed as a function of 

the recent history of the time series, x̂ t = f (xt-1, xt-2, …xt-k) [12-15]. In preliminary studies 

[16,17], we have demonstrated that an optimized multi-layer perceptron (MLP) with 

endogenous inputs made stationary and exogenous inputs (meteorological data) can forecast 

the global solar radiation time series with acceptable errors (10-20%) [15]. This prediction 

model has been compared to other prediction methods [16,17] (AutoRegressive and Moving 

Average called ARMA, k Nearest Neighbor called k-NN, Markov Chains, etc.) and the 

conclusion was that MLP and ARMA were the best predictors (nRMSE gain close to 2 points) 

and were similar for the horizon h+1 (prediction one hour ahead, nRMSE close to 15% [16]) 

and j+1 (prediction one day ahead, nRMSE close to 20% [17]). Moreover, we have shown in 

previous study [7] that MLP modeling of the global solar irradiation TS can be applied to the 
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h+24 time horizon prediction (nRMSE lower than 30%). The results demonstrate a higher 

accuracy with MLP models than with the persistence method. Indeed, the use of MLP to 

predict the h+24 global radiation horizon is interesting but the chosen architectures, 

stationarization modes, and the choice of a multivariate analyze, modify greatly the results. 

Different levels of complexity can be considered, namely: multi-output MLP (with or without 

exogenous data), MLP committee (with or without exogenous data) or ARMA model.  

Considering these findings we propose in this paper new methodology of TS stochastic 

modeling and of data preprocessing for the prediction of the PV energy (section 2). Then we 

will present the results of the models mentioned above and expose the performance of 

prediction in order to cross compare models, and explain the use of Bayesian selection rules 

(section 3) and then, finally discuss the use of this predictive approach in the case of a real 

coupling between a PV array and storage. 

 

2. Methodologies  

 

Most available global radiation measurements are global horizontal radiation, but it is 

very rare/uncommon to develop PV stations with no tilted PV modules. To use these historic 

measures while modeling the global radiation, it is therefore important to be able to tilt 

horizontal data. The next section will describe the adopted tilt methodology. 

2.1. The horizontal data problem 

 

Whatever the selected predictive tool, it is necessary in order to develop the majority of 

the stochastic models to use historical data of global radiation. Depending on the inclination 

of the PV panels, this type of measures does not often exist on important time intervals. 

However it is possible to determine the global solar irradiation on tilted plane (Hgfrom 

horizontal ones. To achieve this, we consider the components of the horizontal global 

radiation ( ; available on the French Meteorological Organization database), that is to say 

the direct component called beam (Hbh), and the diffuse component (Hdh). According to a past 

study made on the Mediterranean region [7,14] we decided to use the CLIMED 2 

methodology in order to calculate the horizontal diffuse radiation, and the Klucher [18] 

approach to compute Hg (Equation 1). 
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       Equation 1 

Where  is related to the geometric projection (Equation 2, where  is the incident 

angle of the surface,  is the latitude,  is the declination,  is the hour angle,  is the tilt 

angle and  is the solar azimuth angle),  related to the ground scattering (Equation 3 where  

is the ground albedo) and  is related to the Klucher methodology (Equation 4, where  is 

the zenith angle). 

         Equation 2 

 

       Equation 3

  

  

where   Equation 4 

The various parameters involved in these equations are classical and are related to the 

celestial mechanics. The CLIMED2/Klutcher methodology give us Equation 5 with clearness 

index defined by , and scattered ratio by ). 

  

  Equation 5 
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(Equation 5, clearness index defined by , and scattered ratio by ). 

On the Mediterranean region, the CLIMED2/Klucher methodology [18], which is 

described by the Equation 5 gives very good result (clearness index defined by , and 

scattered ratio by ). 

The next section details the dedicated estimator to model the global radiation time 

series. 

 

2.2. Major predictive models 

 

Most models used in time series prediction as artificial neural networks (ANN) or 

ARMA are stationary models, the operating condition is therefore dependent on the 

stationarity of the data to predict [19]. Global radiation as almost all of the meteorological 

phenomena has not a stationary nature. It is therefore appropriate to transform the input solar 

radiation data into acceptable input from a modeling point of view, namely in stationary form. 

There are many methodologies to make these input stationary such as the clearness index 

( , or Clear Sky Index (CSI). Following previous work we decided to use the Clear Sky 

Index [14]. The global radiation clear sky model (CS) selected to construct the CSI is the 

SOLIS model of Mueller [20] described by Equation 6 (h is the solar elevation,  is the 

global optical depths and  the modified extraterrestrial irradiance). 

       Equation 6 

CSI is defined by the ratio between measured global radiation and computed clear sky 

radiation like it is shows in Equation 7 (  is the tilted global radiation, and is a tilted 

version of CS computed with the Klucher methodology). 
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        Equation 7 

Note that all hours of the day are not interesting for the PV production, thus we have 

selected the hours where the radiation is potentially the most important (8:00-16:00, nine 

hours in true solar time). The errors estimation doesn’t take into account the data outside this 

interval (errors values would be lower but without physical meaning). The data used during 

this study are the hourly horizontal global radiation (Wh.m
-2

) from 1998 to 2011 on the site of 

Ajaccio (Corsica, France, 42°09'N and 9°05'E, 38 meters), providing by Météo-France (the 

French national meteorological organization; pyranometer CM 11 Kipp & Zonen with a 

sensibility of 6V/W.m
-2

). Less than 3% of missing data was replaced by the average of 

global radiation for the concerned hours and days. Next are described the MLP and ARMA 

approaches as the hybrid methodology based on Bayesian inferences. Note that the 

persistence model used here as a naïve reference model is defined by a forecast equal to the 

last known value of the time series (that is to say from time t to time t+1). 

2.2.1. Artificial neural Networks  

 

Although many ANN architectures exist, Multi-Layer Perceptron (MLP) remains the 

most effective and popular [16]. An MLP is made of several layers: one input layer, one or 

several intermediate layers and one output layer [21]. In the h+24 case, the main characteristic 

of the MLP concerns the global architecture of the neural network. In a previous study [13] 

we have discussed three different types of configuration for the MLP organization:  

- MLP committee that is to say, nine MLP models each of them dedicated to one given 

hour (considering that cloud occurrences and mist appear often at the same hours); 

- Multi-output MLP: a nine-output MLP model (one output related to each hour of 

prediction assuming that global solar irradiation for each hour is related to previous 

measurements);  

- A one-output MLP model used nine times (each prediction is considered 

chronologically like inputs of the network).  

This previous study [7] encourages to consider the methodology based on the multi-

output MLP (one output related to each hour of prediction). It gave the best result. This 

approach is a conventional methodology based on the sliding window principle. Measures of 
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global irradiation are chronologically ordered to build up the MLP input vector (Figure 1 ; 27 

inputs correspond to measurements related to 3 days of 9 hours each [7]). 

In this study, MLP has been compiled with the Matlab© software and its Neural 

Network toolbox. The main characteristics chosen and related to previous works [10,14,16] 

are: the hyperbolic tangent (hidden) and identity (output) activation functions, the Levenberg-

Marquardt learning algorithm with a max fail parameter before stopping training set to 3 

(early stopping method limiting the overtraining). In this study, training, validation and testing 

data sets were respectively set to 80%, 20% and 0% (Matlab© parameters) and inputs are 

normalized between – 0.9 and + 0.9. The training phases concern the 12 first years of the 

global solar irradiation values covered in the set of data (1998-2009). The testing phase for 

prediction results uses the remaining last two years of the data set (2010-2011).  
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Figure 1: MLP methodology 

 

In addition to the global radiation inputs, it makes sense with the MLP to also use 

variables of different nature (called exogenous) in order to increase the quality of prediction. 

The choice of these variables is not trivial, and it is essential to use a robust and objective 
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variables selection methodology. Often the correlation coefficient is used but it indicates only 

the linear dependence between the variables. The MLP is dedicated to the non-linear 

estimation, the use of correlation coefficient or partial correlation coefficient induces a bias in 

the methodology. An alternative is possible using the mutual information (MI(X,Y), equation 

8) [22] measuring the mutual dependence of both variables. Mutual information can be 

expressed as a combination (Equation 8) of marginal and conditional entropies (respectively 

 and ). 

       Equation 8 

To work with more useful quantities like joint probability distribution function ( ) 

and marginal probabilities (  and ), it is preferable to use the Equation 9, or the 

relative mutual information (rMI, Equation 10) resulting of the normalization by the 

maximum MI. 

      Equation 9 

       Equation 10 

 

2.2.2. The Autoregressive moving-average 

 

For ARMA models, the methodology is slightly different from the previous case 

because it is not possible to generate multi-output models. The chosen approach [7] 

corresponds to the use of nine independent ARMA models (one pattern per hour, Figure 2). 
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Figure 2: ARMA methodology 

 

Each ARMA model is based on two elementary models: the MA model and the AR 

model. They are defined like a regression on the last residues and the last measures [23]. A 

more general so-called ARIMA(p,d,q) model (dedicated to difference-stationary time series) 

is built from AR(p), MA(q) models and d
th 

difference of the series. This model is defined by 

the Equation 11 (L is the lag operator, ). The ARMA model (the most 

popular for TS prediction 13]) is a particular case of ARIMA with d equal to 0. 

     Equation 11 

Previous study concerning the h+24 horizon shows that for optimal result, only AR 

component is necessary (AR(1) for all models [7,14]).  

2.3. Bayesian decision rules for hybrid models  

 

It is interesting to develop tools which allow us to critically judge the available models. 

Experience shows that there is rarely a model that is always very good (depending on seasons, 
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locations, etc.). In this context, the hybridization or the model selection related to the current 

observations seems to be the solution: getting the best performance of each model when it is 

more efficient. In this logic, the goal is to find rules that allow in a given context, to choose 

the best model. One method (among many, like data mining, classical statistic, etc. [24]) 

consists to use the Bayes inferences. In the Bayesian context, a probability P represents a 

degree-of-belief [25] based on known information. The problem consists in inferring which 

model is most plausible given the data. With hypothesis (hyp) and observation (obs) concept, 

the Bayes theorem can be expressed by P(hyp|obs) = P(obs|hyp).P(hyp)/P(obs). This formula 

allows updating our degree of confidence, taking into account the observations. Applying the 

Bayes theorem on the data set D (observation) and the j methods of hypothesis of prediction 

called (1 < i < j;  is the ith methods), we get the Equation 12. 

       Equation 12 

 is the marginal likelihood or evidence for model  and defined from the 

parameters  (like shown in the Equation 13) and the quantity  represents a prior belief 

for model  [9,26,27]. 

   Equation 13 

A simple rule of selection between models is related to the comparison of the  

factors. If  then the  will model the data more closely than . Like 

the denominator of the posterior probability of each model  does not depend on the 

model, it is only the numerator that allows deciding between models. To compute the 

numerator, it is possible to consider n series of real and measured data (noted ) and not the 

parameter . With the hypothesis of variables independence, the equation 13 is updated and 

the selection parameter is detailed in the Equation 14. 

    Equation 14 

In the global radiation time series forecasting, the selection rule becomes the Equation 

15. 
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  Equation 15 

It is then possible to describe a Bayesian average of the available predictor, like shown 

in the Equation 16. 

       Equation 16 

By referring to previous studies [14], four modified endogenous and exogenous data are 

tested ( ; the mean global radiation of the actual day (MGR), the daily index 

of the actual day (DI; between 1 and 365), the differential pressure between the actual day and 

the day before (Pdt), and the mean error of prediction computed previous day (PME). In 

theory, the parameter  is equal to  but and if 

. For simplicity, only the first lag is 

considered. Parameters related to the Bayesian inferences are computed during the learning 

step and reported during the test phase.  

 

 

3. Results 

 

In this section, the results related to the data preprocessing will be shown (tilting and 

clear sky index generation). Then using these preprocessed data, the global radiation 

prediction with conventional models (ARMA, MLP and persistence) will be exposed. Finally, 

the hybridization of the models using Bayesian selection rules will finish the results section.  

3.1. Data preprocessing 

 

To study and estimated the tilted global radiation with stochastic models, it is necessary 

to generate large learning time series from horizontal measurement. The inclination process is 

decisive in the prediction workflow. During this section, the considered error estimation is the 

nRMSE (normalized Root Mean Square Error in % and defined by ). 
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3.1.1. Inclination of the data 

 

The validation of the model presented in the section 2.1 is done with measurements 

cross-comparison. Measures are related to horizontal (0°) and tilted global radiation (45° and 

60°) during one month (June 2010). For more information, interested reader can read the 

paper of Notton et al. [18] which describes an exhaustive benchmark of inclination modeling. 

The used methodology (CLIMED2 and Klucher) allows generating new times series from 

horizontal measurements. Global horizontal radiation is used to estimate 45° and 60° global 

radiation. The computed nRMSE are close to 11% for 45° and 23% for 60°. More the tilt 

angle is important, bigger is the error. Note that in the 30° case the error is certainly lower 

than 10%. Used methodologies are relevant and usable for other tilt angles like shown in 

previous study [14]. In the next, data used will be 30°-tilted (corresponding to the maximum 

annual PV energy for the Ajaccio latitude). 

3.1.2. Clear sky index 

 

The CS generation is necessary to make the global time series stationary. Indeed, the 

CSI (index used during the MLP and ARMA modeling) requires the global radiation without 

cloud occurrences like described in the section 2.2. The Figure 3 shows an example of the 

impact of the pretreatment during 200 consecutive and sunny days for 30°-tilted irradiation 

(the nights are not considered ; 9 hours a day between 8:00 and 16:00). With a good stationary 

process, it is possible to model with high accuracy the global radiation, to consider only a 

forecasted CSI equal to 1 (e.g. global radiation prediction equal to clear sky computing). 

Stochastic models are only necessary to take into account the “abnormal points” induced by 

the clouds attenuation.  
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Figure 3: Pretreatment of the global radiation time series 

 

3.2. Predictions with basic models 

 

Models studied in this section are MLP, ARMA, CS (computed global radiation without 

taking into account cloud cover) and persistence. The ARMA models use the methodology 

presented in section 2.2.2 of 9 patterns each one dedicated to one specific hour. In fact, the 

best configuration (after CSI transformation) for all the patterns is AR(1). For MLP, the 

model is based on a 9-outputs network, with 27 endogenous nodes and 2 hidden neurons (1 

layer). The pressure is intuitively a parameter allowing anticipating the cloud occurrences. Six 

sub-variables are constructed from pressure time series, the minimum pressure (Pm), the 

maximum pressure (PM) and the mean pressure of the current day (Pa), the daily trend 

pressure (Pdt, difference between the daily pressure of current day and the day before), the 

pressure measured at 18:00 and 12:00 the current day (P18 and P12), and the intra-day 

variation (Pid = P18-P9). Concerning the selection of exogenous inputs with the relative 

Mutual Information method (rMI), the Figure 4a gives result of the mutual dependence 

between the 12:00 global radiation time series of the day d+1 and the computed series related 

to the pressure of the day before. 
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Figure 4a: rMI between the 12:00 global radiation time series at day d+1 and the 7 series 

related to the pressure at day d 

 

Two variables (Pa and Pdt) are more dependent on the global radiation, according to 

the parsimony principle, it seems interesting to construct a test in order to select only the more 

interesting of these both variables in term of statistical relationship. The Figure 4b represents 

the difference between the rMI of Pa and Pdt computed from the nine hours of the next day. 

A positive value means that Pdt is more linked than Pa. 

 

Figure 4b: Difference between the rMI of Pa and Pdt (day d) computed from the nine 

hours of the next day (d+1) 
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As we can see, for all hours rMI is positive. Considering this fact, in the next steps, 

one exogenous input based on Pdt (difference between the mean pressure at day d and d-1 to 

predict the irradiation at day d+1) is added in the first layer of the MLP. The four models 

studied can be classified into two groups, the stochastic models (MLP and ARMA) and the 

naive models (CS and persistence). The first group gives the best results concerning the 24 

hours ahead prediction of the two years considered (2010-2011). For ARMA, the nRMSE is 

40.32% and for MLP it is 40.55% (± 0.2% depending on the random initializations of weights 

and bias [24]). The two other models give less interesting results, for persistence and CS 

nRMSE are respectively 50.62% and 53.77%. If the models of the first group are equivalent 

(± 0.2 point), for the second, the persistence model is widely better than the CS estimation. In 

the next of this document CS estimation will no longer be used. Before giving results related 

to the Bayes inferences, it is necessary to understand why, for this horizon, even the better 

model gives nRMSE upper than 40% (note that in the h+1 horizon the nRMSE was closed to 

15% [19]). The Figure 5 represents the measured and estimated global radiation profiles 

(better model, ARMA) for three characteristic hours of the day (beginning of day, midday and 

end of day). Note that the unit is Wh.m
-2

 referring to the radiation during an hour interval, i.e. 

the  8:00 radiation value corresponds to the period between 7:00 and 8:00.  

 

Figure 5: Measured (lines) end estimated (with ARMA model; marks) global radiation 

respectively for 8:00, 12:00 and 16:00 
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If for 8:00 profile, the model fits correctly the measures, concerning the two other 

hours, high frequencies of the signal are not taken into account. The model proposed is 

limited to an average or a smooth of the measured signal. The prediction does not seem 

powerful. This phenomenon is also observed in the Figure 6, which represents the classical 

hourly profile of the global radiation. At the 13
th

 day (represented by an arrow), the model is 

totally misguided. It forecasts a classical global radiation day while the measures do not 

exceed 600 Wh/m². In the next part, we will see if the Bayesian rules allow to overcome this 

problem and to reduce the prediction error.  

 

Figure 6: Measured (lines) end estimated (with ARMA model; marks) global radiation 

for 17 days (May 2011) 

 

3.3. Bayesian selection 

 

In the 2.3 section, we have seen that it is possible to mix or to hybrid the forecasting 

methodologies. The two proposed approaches are based on Bayesian selection and Bayesian 

average of models. To use these approaches, it is first necessary to explicit the  expression 

for the three studied models (MLP, ARMA and persistence).  represents the probability that 

the model i will be the best estimator given the class of the studied parameter (mean global 

radiation (MGR), daily increment (DI) or differential pressure (Pdt)). In all case, the sum of 

the probability PMLP+PARMA+Ppersistence is 1. 
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Figure 7:  expression for mean global radiation (MGR), daily increment (DI) and 

Pressure (Pdt) related to Persistence ( ), ARMA ( ) and MLP ( ) models 
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Due to the Figure 7, we note that DI parameter cannot be used in the context of model 

selection or the Bayesian average. The  curves do not intersect showing that persistence is 

always the best predictor. In the next, it will not be used. The last parameter studied is related 

to the previous mean error (PME). This construction is particular and do not correspond to the 

MGR, DI and Pdt methodologies (not compatible). It is only applicable for the selection of 

model (two by two selections) and not for the Bayesian average. Considering two models i 

and j, and considering the previous mean error of the lag t ( ), it is 

possible to construct the following difference . Trends of  and  

correspond to a Heaviside step function (H), so  and . In this 

section ten models are compared, the three previous based on a single predictor (persistence, 

ARMA, MLP) and the following seven hybrid predictors based on Bayesian rules: 

-hybrid 1: ARMA, MLP and persistence selection according to the PME rule 

-hybrid 2: ARMA, MLP and persistence selection according to the Pdt and MGR rules 

-hybrid 3: ARMA, MLP and persistence selection according to the MGR rule 

-hybrid 4: ARMA, MLP and persistence selection according to the Pdt rule 

-hybrid 5: ARMA, MLP and persistence average according to the Pdt and MGR rules 

-hybrid 6: ARMA, MLP and persistence average according to the MGR rule 

-hybrid 7: ARMA, MLP and persistence average according to the Pdt rule 

 

Note that other hybrid models can be generated, we have decided to limit this study to 

these seven models because we believe they are the most interesting (Pdt and MGR are 

equivalent and interchangeable variables and PME, by construction is different and is not 

compatible with “average” but only with “selection” mode). Table 1 draws conclusions of 

comparisons. We consider the error (nRMSE) of prediction step by step and the cumulative 

error of the prediction (hourly predictions integration during 24 hours of predictions and 

measures). If is the hourly and the daily value of the global radiation (9 hours a day) 

), the daily prediction error becomes  
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Models 
Prediction error 

(nRMSE; %) 

Daily prediction error 

(nRMSE; %) 

MLP 40.55 31.63 

ARMA 40.32 32.49 

Persistence 50.62 39.94 

Hybrid 1 36.59 28.39 

Hybrid 2 50.32 39.69 

Hybrid 3 45.97 36.29 

Hybrid 4 50.13 39.53 

Hybrid 5 77.19 70.39 

Hybrid 6 41.91 33.67 

Hybrid 7 42.24 33.81 

 

Table 1:  Hourly prediction error and cumulative prediction error (measures and 

predictions are integrated during 24 hours). Best results in bold. 

 

The best model shown by this Table is the model “Hybrid 1: ARMA, MLP and 

persistence selection according the PME rule”, it allows a reduction by about 4 points 

according to the best single predictor MLP, this gain is important and this method is relatively 

easy to implement (nRMSE=36.6% for Hybrid 1 and 40.6% for simple MLP). More the 

prediction is precise and more the management of storage/redistribution is easy for the PV 

station manager. The global radiation estimation of the next day is directly linked with the 

load profile shape of the next days, so the owner of the PV station capable of anticipate the 

first will able to propose to the grid manager an gainful solution: installation sustainability 

(without penalties and with profitability) and electrical grid stability contribution. Concerning 

the daily prediction error, the gain is less important but upper than 3 points. Concerning the 

other hybrid models, we see that using the Bayes inferences is not systematically interesting. 

The hybrid model 5 (ARMA, MLP and persistence average according the Pdt and MGR rules) 
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is not only worse than simple stochastic models (nRMSE > 70% for prediction and daily 

prediction error), but also not better than naïve model (persistence; prediction error equal to 

50.6% and daily prediction error equal to 39.9%).  

 

4. Conclusion 

 

In this paper, we have proposed a prediction methodology relevant for the PV station 

management. The horizontal measured data were tilted in order to simulate a concrete case 

(tilt_angle = latitude = 30°). We have shown that the h+24 horizon is compatible with the 

MLP and ARMA forecasters (nRMSE close to 40.5% for the both). Exogenous data are 

chosen by mutual information method and added in the input layer of the MLP. This 

methodology is not often used to the detriment of correlation coefficient whereas the linearity 

of the meteorological time series is not shown. The proposed MLP optimization is one of the 

strengths of this paper. Moreover, actually, there is no consensus regarding to global radiation 

prediction 24 hours ahead. Numerical weather predictions are often an alternative but the 

error generated is important (nRMSE ~ 40% for central Europe [23]), and we imagine that in 

the Corsican case, the orography and the small size of the island is not consistent with the 

satellite acquisition and the related resolution. The error is certainly not lower than 40%. In 

this paper, concerning h+24 predictions, we have too demonstrated that MLP and ARMA are 

equivalent but widely better than persistence (nRMSE gain close to 10 percentage points). In 

the daily integration case, MLP gives better results than ARMA (nRMSE=31.6% versus 

32.5%). The hybridization of these three predictors is difficult, even if the model 1 - ARMA, 

MLP and persistence selection according the PME rule - designed in this paper induces very 

good results (nRMSE=36.6%), we note that for other hybrid models, the generalization is not 

allowed. The global methodology of this paper is detailed in the Figure 8. The integration of 

the PV energy needs studies like this, the next step will be to test this approach on a concrete 

case of PV installation coupled with a storage system (like the MYRTE platform [3] detailed 

in introduction). Moreover, one way of improvement is also to combine the hybrid model 

described here and a classical and sophisticated numerical weather prediction like the 

AROME modeling system from Météo-France. If the first takes into account only the intrinsic 

characteristics of the global radiation time series (stochastic models), the second takes into 

account all the meteorological quantities and estimate the weather from the evolution of the 
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atmosphere over a few day. The combination of these two approaches should allow proposing 

a successful prediction tool. 
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hours of the next day (d+1) 

Figure 5: Measured (lines) end estimated (with ARMA model; marks) global radiation 

respectively for 8:00, 12:00 and 16:00 

Figure 6: Measured (lines) end estimated (with ARMA model; marks) global radiation 

for 17 days (May 2011) 

Figure 7:  expression for mean global radiation (MGR), daily increment (DI) and 

Pressure (Pdt) related to Persistence ( ), ARMA ( ) and MLP ( ) models 
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Figure 8: Modeling methodology 


