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Abstract

One class classification is a binary classification task foictv only one class of
samples is available for learning. In some preliminary 8ofke have proposedne
Class Random Fores{©CRF), a method based on a random forest algorithm and an
original outlier generation procedure that makes use afisdi@r ensemble randomiza-
tion principles. In this paper, we propose an extensiveystidhe behavior of OCRF,
that includes experiments on various UCI public datasetscamparison to reference
one class algorithms — namely, gaussian density modelgePastimators, gaussian
mixture models and One Class SVMs — with statistical sigaifce. Our aim is to
show that the randomization principles embedded in a ranidoest algorithm make
the outlier generation process more efficient, and allowairtiular to break the curse
of dimensionalityOne Class Random Foresige shown to perform well in comparison
to other methods, and in particular to maintain stable perémce in higher dimension,
while the other algorithms may fail.

Keywords:
One class classification, supervised learning, decise@strensemble methods,
random forests, outlier generation, outlier detection

1. Introduction

One class classification (OCC) is a binary classificatiok faswhich only one class
of objects, the target class or positive class, is availailéearning. Little knowledge
or even no prior information about the other class, the eutliass or negative class, is
available during the learning stage, most of time becaussetldata are either difficult
or impossible to collect [1]. However, such data may occuirduthe prediction phase.
Application examples include authorship verification @hist or speaker recognition
[3, 4], mobile-masquerader detection [5], intrusion detec[6, 7], medical diagnosis
[8]. We refer the reader to [9, 10] for a more exhaustive FSDE&C applicative fields.

In the OCC literature, two main types of approaches are lyspiadposed: (i) meth-
ods using only positive samples to learn the target con€gpinethods generating or
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simulating negative samples so that existing multi-cldassification methods may be
used. The first type of approaches aims at estimating theapiittly density function
by fitting a statistical distribution, such as a Gaussiarthtotarget data, and predict-
ing as outlier any instance that exhibits a low probabilityappearing. However, these
methods are sensitive to an increasing number of featumesnteactable amount of
training samples is required in order to provide a good egtrof the distribution, even
in reasonably sized feature spaces [11, 12]. The secondfygaproaches consists in
extrapolating the missing samples so that the resultingripiclassification problem can
be learnt with standard (discriminative) classifiers. Téxgapolation may be ensured
by artificially generating outliers during training [3]. this case, outliers are often as-
sumed to be uniformly distributed, so as to cover the wholaala of variation of the
feature space. This implies to generate an exponentiallarslexpensive amount of
outliers with respect to the dimension of the feature space.

One solution to tackle this issue may be to use randomizatimciples offered by
classifier ensemble approaches. These approaches, dlthopglar, have not been ex-
ploited very much for OCC problems [13]. In some preliminayrks [8, 14], we have
shown that randomization principles may be used in a onesakssification task for
generating outliers quite efficiently. This first solutiar OCC, called One Class Ran-
dom Forests (OCRF), is based on a random forest (RF) algofitb] and an original
outlier generation procedure that makes use of the ensde®i@ng mechanisms of-
fered by RF algorithms to reduce both the number of artifioigliers to generate and
the size of the feature space in which they are generatednisirgy but preliminary
results obtained on a real-world medical problem [8] and devaUCI datasets [14]
have led us to investigate more deeply this new OCC methodthWepropose in this
paper an extensive study of the behavior of OCRF, that ird@kperiments on various
UCI public datasets and comparison to reference one clgesithims — namely, gaus-
sian density models, Parzen estimators, gaussian mixtodelsiand One Class SVMs
— with statistical significance. Our aim is to confirm that thedomization principles
embedded in the random forest algorithm make the outlieeigdion process more
efficient, and allow in particular to break the curse of disienality. One Class Ran-
dom Forestsare shown to perform equally well or better than the statthefart OCC
methods, and in particular to maintain stable performandggher dimension feature
spaces, while the other algorithms may fail.

The remainder of the paper is organized as follows. In Se&jave present related
works on OCC. In Section 3, the One Class Random Forest méthietailed. Sec-
tion 4 is devoted to the experimental protocol while resates reported in Section 5.
Conclusions and future works are drawn in Section 6.



2. Related works in one class classification

Numerous reviews presenting OCC state-of-the-art have pesposed in the past
decade [13, 16, 5]. Some of them specifically address OC@niarsuch as outlier de-
tection [17, 9], anomaly detection [10] and novelty detae{il8, 19]. In the following,
we divide existing OCC methods into methods learning fromilable target samples
only, and methods requiring the extrapolation of outlienpkes. We finally conclude
this brief overview by focusing on one class classifier efderbased approaches in
order to introduce and justify our contribution.

2.1. Learning from available target samples only

Learning from the available target samples only means teatlassifier does not
require any hypothesis on the outlier data to estimate thesida boundary. Genera-
tive methods are straightforwardly applicable to OCC astdéinget class may directly
be modeled from the available training instances, by foatind some hypothesis on
the underlying target distribution. For this reason, gatiee methods are the most
used methods for OCC [20], even though they generally recine estimation of a
large number of parameters. Generative methods inclujlelefisity-based methods,
such as gaussian and Mixture of Gaussians estimatorsjdignte-based approaches,
such as Nearest Neighbor density estimatorkanteans clustering, (iii) reconstruction
approaches that encode the target data, and (iv) SVM-bagadldscription (SVDD)
[16, 19, 21].

Density-based methods aim at estimating the probabilitysie function of the
underlying distribution of the target data. The main diffi@s reside in finding an
appropriate model for the distribution of the training datad providing an accurate
and adapted threshold on the output probability for degidanaccept or reject an in-
put sample. Furthermore, density-based approaches eeglarge number of training
data to obtain a reliable estimate of the probability moateparticular when the data
dimensionality is high [19, 22, 12]. Well-known densityseal approaches are Parzen
windows and Mixture of Gaussians [23, 24, 25, 16, 26, 27]. Az®a classifier is a
non-parametric density estimator that consists in compguh identical kernel for each
example of the training set and then defining a linear contimnaf these kernels to
estimate the probability density function of the data. Aggan kernel is generally used
and the width parameter can be estimated with a leave-onprocedure [28, 29]. As
Parzen is a non parametric density estimator, the outpué sifaa test input is better
predicted when the training set is large, but high componati resources are then re-
quired. Because of the large computational cost of Parzgmasr, Mixture of Gaus-
sians (MoG) are generally preferred. The MoG approach stmsi building several
density functions (kernels) to model the entire availabiget data set. Parameters of the



mixture are estimated on the training data: the number adgjan kernels and the stan-
dard parameters of each kernel are estimated by maximikamgpg-likelihood of the
training data for the model, using standard techniquesHikgectation-Maximization
algorithm [30, 31, 32, 33]. However, when a small amount dada available, the
choice of the number of kernels for the MoG classifier becooniéisal and a unimodal
normal distribution is often used [16, 19].

Distance-based approaches, such as Nearest Neighbor (&tNyds, have also been
proposed for non-parametric density estimation. The oagsdNN, a modified version
of the classical NN, consists in computing the distance ofngmit X to the nearest
neighborNN(x) and comparing to the distance of the nearest neighbor teeasest
neighbor NN(NN(x))) [19, 34]. If the first distance is larger than the secondn tthe
input example is considered as outlierkANN approach is also proposed, where a new
data is considered as an outlier data if the average distentsek nearest neighbors is
above a predefined threshold. The main difficulty of the NNragaph lies in its high
computational cost for large sized datasets as the whaldngaset has to be stored
and entirely evaluated. Furthermore, it has theoreticatig empirically been shown
in [35] that in a broad set of conditions such as i.i.d. asdionpthe distance to the
nearest neighbor of an input becomes closer to the distante tfarthest neighbor as
dimensionality increases (beyond roughly 10-15 dimersjiohhese observations limit
the use of these methods in high dimensional problems. @y@oaches include also
clustering [36, 37]. For example, in the one clagseans algorithnk clusters are first
computed from the target data, and the minimum distance @dtariput to the nearest
cluster is compared to a predefined threshold in order taldeghether or not the test
input is rejected.

Reconstruction methods aim at encoding the target datanapping the input data
onto the output of the classifier by learning a more compautesentation of the tar-
get data. The optimization routine aims at minimizing theorestruction error on the
training target data. Thus, at prediction time, an exampharty high reconstruction
error is likely to be an outlier instance. Auto-encoder rats are one of the most used
reconstruction methods [38, 39, 27, 40]. In [40], the awtlpyopose a Diabolo network
where a hidden layer is composed of a very low number of uciégting a bottleneck
that is expected to compress the available information bygpimg the target class in
the hidden layer. Thus, inputs that have low projection as leyer will produce high
reconstruction error.

Finally SVM-based approaches have also been proposed f@. Q@pport Vector
Data Description (SVDD) [34] is a generative approach detifrom the Support Vec-
tor Machine classifier (SVM) [41]. It aims at minimizing thelume (i.e. its radius) of



an hypersphere covering the target data. The data desoriggin be made more flexible
by applying the kernel trick instead of the rigid hypersgheResults show that SVDD
performance are comparable to Gaussian, Parzen densiaests and Nearest Neigh-
bor method.

Note that density-based methods and SVDD may assume tlzatimfr of legitimate
target data are outlier data. This allows to automaticatyashreshold on the probabil-
ity density function for density-based methods and it makesdata description more
flexible by optimizing the regularization of the cost paraenéor SVDD [34, 19].

2.2. Learning from both target samples and artificial outie

In this category of methods, the aim is to learn directly fribv@ training data set the
decision boundary to support both the target and the oudléexses. Therefore, these
methods require either the presence of outlier data in #iritig set or a strong hy-
pothesis on their distribution so that the outlier data candken into account during
the learning phase [5]. Heuristics have been proposed &r docadapt standard multi-
class discriminative methods to the one class problemefegating outlier data based
on hypothesis concerning their distribution, their quignand their location [3, 6], (ii)
considering strong assumptions on the outlier data digtab without generating them
in the training set [42, 43], or (iii) modifying the inner wangs of existing standard
multi-class boundary estimators in order to adapt them t€ @@hout generating out-
lier data [44]. We now review these three possibilities.

The first approach consists in augmenting the training st outlier data, that are
generated according to a predefined distribution. Theayutlata are commonly as-
sumed to be either uniformly distributed in the entire featspace, or located in sparse
regions of the target domain, i.e regions where the target al@ either absent or iso-
lated from the rest of the data. Note that any standard mlasis method can be used,
since the one class problem has been turned into a classaalass classification prob-
lem, i.e. target versus outlier. In [3] for example, the aushcombine such an outlier
generation method with a tree-based class probabilitynesiton to obtain a model of
the target distribution. Firstly, the outlier data are geted following a normal distri-
bution estimated directly from the target data. Secondgcprobability estimates are
induced with the decision tree learner, with the traininfgceenposed of generated out-
lier data and target data. Lastly, by using the Bayes’ rhile a@uthors combine the class
probability estimates with the outlier density functiorotatain an estimate of the target
density function. In [6], the authors propose to generatbars close to the target data
by constraining the learning algorithm to form an accuraianaary between known
classes and anomalies. To generate an outlier data, theraudmdomly change the
value of one feature of a target instance while leaving otb&tures unchanged. One
property of this approach is that the authors identify lmoet in the feature space that
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are poorly populated with target data. Indeed, by analy#iegfrequencies of target
data values for each dimension of the feature space, spg®ms are found and con-
sequently more outlier data are generated in these regMagr drawbacks of most
of outlier generation approaches are the impossibilitygioggate a sufficient amount of
outlier data in high dimensional situations due to the cafsgimensionality, and the

fact that the strong assumptions about the outlier datailaliibn may be violated in

real datasets [20].

The second approach consists in taking into account thelp@egsesence of outlier
data during the training phase while these data are not gdiliyspresent in the training
set, i.e. these data are not generated. Thus, strong hyesthave to be stated, such
as a uniform distribution of outliers in the entire featupase or in some identified and
delimited sub-regions of the target region. In [43] for exden the authors have pro-
posed to identify specific subspaces of the target domangassparsity coefficient that
measures how the target data populate the selected regrates, the strong assumption
of uniform distribution of outlier data. The main difficultyf the algorithm resides in
the search and selection of these valuable regions For tinmpe, the authors present
an evolutionary search algorithm that is able to quickly fmdden combinations of
dimensions resulting in sparsely populated regions. Thessty populated subsets can
be seen as a patrtition of the data that highlight possiblkeoytatterns, relaxing the
need for a classifier. In [42], the authors propose a deciseminduction procedure
to perform clustering tasks. In order to define clusters igfadata points, outlier data
points are simulated and not generated, as they are notdphgsically to compute the
partitioning criterion at each node of the decision treee Tiethod has initially been
proposed to tackle clustering tasks with a supervised égabut it can be easily shifted
to a one class classification task by labeling initial clteiedata as target and identified
empty regions as outlier.

The third approach consists in modifying a standard twesscta multi-class classi-
fier to make it learn from the target training set only, i.eth@ut generating outlier data.
An example of such method has been proposed in [44] as the [aae EVM (OCSVM)
or v-SVM. OCSVM is derived from the traditional SVM algorithmJBwith a modi-
fied objective function and may be trained with a unique cléssmain principle is to
separate the target class from the origin, considered asiijae instance of the outlier
class, with an hyperplane. The algorithm maximizes the mdmgtween the hyperplane
and the origin. The frontier separating the target data fituerorigin can be made more
flexible using the kernel trick. The authors show that SVDI &CSVM coincide in
their decision function for a particular choice of kernehdtions such as the gaussian
kernel but differ for other choices. However, as the undegyprinciple of these two
approaches is different, these two methods are categatiffecently in this paper.



2.3. Classifier ensemble based methods

Ensemble methods have been poorly exploited for the dedigdGL methods
[13, 12, 45, 46]. Yet, ensemble methods offer more versatdilearn from the available
data than a single algorithm and have been shown to outpeifatividual classifiers
[47]. Examples of ensembles of one class classifiers aremess in [12], where the
authors’ goal is to propose some guidelines for the indactibone class classifier
combination systems. They have studied various multipdesifier systems, several
combination rules with distance-based learnd&r8/1€éans, k-Center), reconstruction-
based learners (auto-encoder network), generative ms2Dand density-based one
class classifiers (Gauss, MoG, Parzen), using differemifesets. In [45], the authors
present a bagging OCSVM in which a pool of OCSVM classifiees@mbined. Each
OCSVM classifier is constructed from a bootstrap sample efaailable target data.
The authors show that the ensemble method improves penf@e@mpared to the in-
dividual and rather unstable OCSVM, but requires highermatational resources than
the OCSVM alone.

Although these methods adopt a multiple classifier arctitecand apply it to an
OCC task, they use existing OCC approaches instead of fyfiioging all the mecha-
nisms offered by classifier ensemble theory to build an OCsgrble. Yet, this family
of learning methods embed some interesting randomizatimeiples [48], like bag-
ging, random feature selection and random subspaces,ahdtecused to tackle issues
specific to one class classification. In particular, thesstinethods can be used to over-
come the exponential amount of outlier data to generategthyaing both the number
of artificial outliers to generate and the size of the feasy@ce in which they are gener-
ated. We propose to tackle the one class classification taklkaviRandom Forest (RF)
based method, as (i) it allows to benefit from several of teeghentioned randomiza-
tion principles that are naturally embedded in RF algorghand (ii) it uses tree-based
classifiers that have shown to perform well with these randation principles [15]. In
the following section, we present such a one class randoestfanethod.

3. One class random forests

The One Class Random Forest is an ensemble learning apgraset on a random
forest algorithm. Let us recall that the RF principle is oi¢he most successful and
general purpose ensemble techniques [49, 50], and has beem $0 be competitive
with state-of-the-art classifiers like SVM and Adaboost,[%%, 52]. It uses random-
ization to produce a diverse pool of individual tree-badedsifiers. Particularly, it has
been shown in [15, 53] that the forest error rate depends ercdirelation between
any pair of trees in the forest and on the strength (or pedoca) of individual trees:
minimizing the correlation between trees and maximiziragrtimdividual accuracy both
contribute to decreasing the forest error rate. In the stahBF learning algorithm [15],



two powerful randomization processes are used: bagginjgaidd random feature se-
lection (RFS). The first principle, bagging, consists inrirgg each individual tree on a
bootstrap replica of the training set. It is typically usedtteate the expected diversity
among the individual classifiers and is particularly effextith unstable classifiers,

like decision trees, in which small changes in the trainieigresult in large changes in
predictions. The second principle, RFS, is a randomizgtramciple specifically used

in tree induction algorithms. It consists, when growing tite®, in randomly selecting

at each node of the tree a subset of features from which thergptest is chosen. RFS

contributes to the reduction of the dimensionality and heenbshown to significantly

improve RF accuracy over bagging alone [55, 56].

3.1. Atrtificial outlier generation and related issues

Our OCREF algorithm integrates an artificial outlier generaprocess in order to
transform the OCC task into a binary classification probleMhen generating such
outliers, one faces the difficulty to generate both enough r@presentative outliers
to obtain quite good performance. These artificial outlieesd to cover the "entire”
feature space and are expected to be sufficiently dense ifug bell separated from
target data during training. This implies to determine:

e the outlier distribution: the distribution of the outlieai@ is unknown a priori.
Generally, outlier data are supposed to be uniformly distad in the entire fea-
ture space [57, 27].

e the outlier sampling: the number of outliers and their ranfealues must be
defined according to the available target samples; in pa&dine domain may be
set as an hyperbox or an hypersphere surrounding the tatgefa¥, 43].

Once a distribution is chosen, the number of outliers to geren order to keep the
same sparsity among the outlier data increases drastaatiyrding to the dimension
of the feature space [43]. Indeed, considering a uniforrridigion of outlier data in
a rectangular domain of the whole feature space (hyperctheyolume of the outlier
domain is:

Vhypercubéc) = CM (1)

wherec is the side of the hypercube aMithe dimension of the feature space. If
we consider a rectangular grid covering the hypercube domaivhich we generate
exactly one outlier data in each cell, the amount of outlaads given by:

Vhypercube cM
Noutliers(C) = = 2
outllers( ) Voutlior (10—p)M 2)

where 10 P is the value of the side of the individual rectangular cellghe grid or, in

other words, the desired precision on the values of theesuthta. Considering a unite
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hypercube for example, we haMgtjiers = Flpm =10°M e g tens of billions of outliers

have to be generated for reasonable values of pregsio and dimensioM = 5. This
phenomenon thus makes it almost impossible to adopt theramdistribution strategy,
even for low-sized feature spaces suclivas 10.

3.2. Our solution for efficient outlier generation

The rationale behind OCREF is to generate outliers, withollfving a uniform dis-
tribution. The first idea of OCRF is to use some randomizagpionciples of ensemble
learning methods to subsample the number of features amiithber of training target
instances in order to make possible the generation of esifiiem a computation point
of view. To subsample the number of features, we use the margildspace method
(RSM) [58]. This well-known randomization principle of esmable learning consists
in training each individual classifier of the ensemble onradcan subspace of features:
K unique features are randomly selected from the initialui@aset; the training sam-
ples are then projected in the subspace formed by tKefsatures, and a component
tree classifier is trained on the new resulting set. This gseds repeatell times to
form an ensemble df component classifiers, each one trained on a diffeiersized
feature space. RSM may be used to subsample the feature sgaleecontrolling its
dimension through the paramet€y making thus possible to reduce the amount of out-
liers to generate as desired. To subsample the traininghdetharefore the number of
outliers to generate, we use bagging [54]. It consists imitrg each individual tree
classifier on a bootstrap replica of the training datasetes&hbootstrap replicas are
formed by randomly selecting with replacement a subsetadhitig samples. These
two randomization principles combined together providaral solution to overcome
the exponential amount of outliers that would be neededraike to reach good per-
formance.

The second idea of the OCRF method is to make use of the infanmgiven by
the target samples in order to adapt accordingly the outistribution. As mentioned
above, if outliers were generated following a uniform disition throughout the entire
domain of definition, the amount to generate would be exptaergarding the number
of features. Additionally, it would mean that outliers cdble generated in areas where
target instances are already densely located, leadingtiupe useless outliers that may
introduce confusion in the learning process. One way todagenerating these useless
outliers is to generate more outliers where the target daitaare sparsely located in
the feature space, and conversely to generate fewer autii@reas containing a lot of
target samples. The distribution of outliers is thus desibio be complementary to the
distribution of targets.

To summarize, the outlier generation process of OCRF ishas¢hree key mecha-
nisms: (i) the RSM process allows to reduce the dimensioheofdature space in which
outliers are generated; (ii) the bagging principle allowwstibsample the target data so
that less outliers are needed; (iii) the outlier distribatestimation is complementary
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to the target distribution so that it avoids the generatibnamfusing and useless out-
liers. These three mechanisms altogether allow to tramsfmre complex (and often
impossible to solve) outlier generation problem into salveasier and more efficient
ones.

3.3. The OCRF algorithm

The whole OCRF procedure, illustrated in Figure 1, is madiefollowing steps.
First, we build as many bootstrap replicas of the trainirtgaseéhe numbel of trees of
the random forest, each component tree being trained indonaly selected subspace.
Second, using sparsity information extracted from théahitaining sefl’, we generate
for each component tree the artificial outliers according thstribution designed to be
complementary to the distribution of the target samplestdlieach component tree is
trained on the binary dataset made up of the projected taageples and the artificial
outliers, and is then added to the ensemble. The OCRF legpnacedure is detailed in
Algorithm 1.

, ) ( Sparsity
Training setT |---- - information
\ ) extraction

‘/r l \\: N

BootstrapT; + BootstrapT, + BootstrapT, +
RSM projection RSM projection RSM projection
. J . J

_____________________________________________________

[P

Combination rule for final decision

Figure 1: Overview of the OCRF induction. Additional proceels, in comparison to a traditional RF, are
highlighted (in green and boldface).

In summary, the OCRF method takes advantage of: (i) comipiaidiverse ensem-
ble of weak and unstable classifiers, which is known to be rateuand to increase
the generalization performance over single classifiers (@nsubsampling the training
dataset, in terms of training samples and features, in todficiently generate outliers
by controlling their location and their number.
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Algorithm 1 OCREF training algorithm

Require: atraining sefl, the number of outliers to be generatégjier, the domain of
definition for the generation of outlie3qjier, the number of trees in the fordst
the parameter of RSMgrsm

Ensure: a one class random forest classifier

1: (A) Prior information extraction

2: ComputeHarget the normalized histogram of the target data

3: ComputeHguiier the normalized histogram of the outlier data, so thakjier is the
complementary oHarget, i.€. Houtlier = 1 — Htarget

(B) Outlier generation and forest induction

for| =1toL do
(i) Draw a bootstrap sample from the training set
(i) Project this bootstrap sample onto a random subspace eigionKrsy
(iii ) GeneratéNyjier OUtliers according to the complementary histogtdgkiier
in the domaimqtiier, SO that the probability that a generated outlier falls ifra b
of the histogramHgjier IS proportional to the value associated to that bin

9: (iv) Train a random tree on the augmented dataset composed tH#rget data
and the newly generated outlier data
10: end for
11: return a one class random forest model

O N R

4. Experimental protocol

In this section, we present the public datasets, the evatuatetrics, the one class
methods used in our comparison study, and the parametedddixthe experiments.

4.1. Datasets

By definition, negative instances for OCC applications ae rand/or unevenly
spread in the feature space for being correctly sampledrefdre, genuine one class
datasets, with representative positive and negative ssmnpte also rare. In order to
test OCC methods, authors generally transform multi-ghaieblems into several bi-
nary "target versus outlier” classification tasks and adofine versus rest” strategy,
for each class of the dataset. Some authors select one slésgat and label the re-
maining classes as outliers [57, 3, 44], while some othehdmpposite, i.e. select one
class as outlier and consider the remaining classes asrayie g&rget class [59, 37]. As
a consequence, elaborating fair comparisons with otheksMoased on such datasets
is difficult as there is no consensus on a clear and singl®egobt We will use in our
experiment the first approach that is the most frequently uséhe literature, with one
class as target and the others as outliers.
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We tackle in our experiments several problems of the liteeattaken from the rec-
ognized UC Irvine Machine Learning public repository (se®l€ 1). We have se-
lected these 13 datasets as they are often used for OCC dempar hemfeatprob-
lem (multiple feature datasgf12] is computed for 5 different feature spaces extracted
from scanned handwritten numerals, resulting in five défifierdatasets; these feature
spaces are Fourier coefficients, Karhunen-Loeve coeftgienorphological features,
raw pixels values, Zernike moments and factor correlatiohso datasets from the
mfeatproblem, namelynfeat-pixelandmfeat-fourierare not included in this paper due
to the parameterization optimization of standard denstyv&tors that have failed on
these datasets. Dataggdissincludes originally 7 classes, describing different kinds
glasses commonly found on criminal scenes. Sglasstype 4 is not represented at all
and type 6 has only 9 elements, these two classes have notakegnnto account and
type 6 data have been merged into the outlier cases.

Datasets have feature space sizes ranging from 4 to 216,enwhblasses ranging
from 2 to 10 and number of instances from 150 to 11000. Ourréxeats thus cover
a wide range of conditions. As one class is selected in turthivtarget class and the
others gathered for the outlier class, we have conducteerempnts on 78 datasets in
total, according to Table 1. In our experiments, the dateewent preprocessed, i.e.
there was no normalization, nor principal component radact

Table 1: Description of the datasets taken from the UC Irvapmsitory [60]

Total number of
Datasets attributes| classeg instances
sonar 60 2 208
glass 9 5 214
ionosphere 34 2 351
optdigits 64 10 5620
iris 4 3 150
musk 166 2 6598
breast cancer wisconsin (bcw) 9 2 699
pendigits 16 10 10994
diabetes 8 2 768
mfeat-factors 216 10 2000
mfeat-karhunen 64 10 2000
mfeat-zernike 47 10 2000
mfeat-morphological 6 10 2000
Total number of one class datasets 78
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4.2. Evaluation criteria

It is difficult to fairly compare between OCC methods as dtzdsevaluation mea-
sures may not be adapted nor accurate enough for the propasedinfluenced by
the nature of the dataset sample and/or the nature of theid@nalied. Indeed, a
wide range of measures has been proposed in the literatuagamhich global ac-
curacy, sensitivity, specificity, precision and recall, R@urves, Area Under the ROC
curve (AUC), weighted AUC or other averaging methods that ai summarizing the
performance of a given classifier [61]. But there is no comasrfor the performance
computation of one class algorithms nor for their comparisecause each one of these
measures is more or less biased by the imbalanced ratio &etive two classes.

In spite of this bias, results of our experiments will be prasd in terms of global
accuracy, target and outlier recognition rates, as thesesunes will allow for an analy-
sis of the "target vs outlier performance” trade-off. Howewas these evaluation mea-
sures do not take into account the imbalanced nature of OGGets [61], we will use
an additional measuremeng. the Matthews correlation coefficient (MCC) or "phi co-
efficient” [62]. It is often used in combination with pre@si and sensitivity measures
in biomedical applications, where datasets are known taabicplarly imbalanced. As
we will show in Section 5, this coefficient is more suitable éme class studies than
standard accuracy measures [61, 36].

MCC uses the contingency table from the confusion matrixiagiven by:

TPxTN—FPxFN

MCC = 3)
V/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

where TP (true positive) is the number of correctly identified targeta, TN (true
negative) the number of correctly identified outlier defd\ (false negative or non-
detection) the number of legitimate target data that haw buisclassified an& P
(false positive or false alarm) the number of misclassifeggtimate outlier data. MCC
measures the degree of correlation between the obsenasksland the outputs of the
classifier. It ranges from -1 if all predictions are wrong tbfer perfect classification.
Null values indicate that either predictions are completanhdom or one of the two
classes has not been correctly classified at all, i.e. tissifler always predicts only one
of the two classes.

Results will thus be presented in terms of MCC, global aayyrarget and outlier
recognition rates. For the evaluation process, we compoteglach dataset a 10-fold
stratified cross validation repeated 5 times. The 10-faddstvalidation method is com-
monly considered as a good estimate of the mean of the ctagsh error and is a good
compromise in case of small datasets [63, 64]. The claspéigormance are then av-
eraged over the different runs.
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4.3. Statistical comparison

It is not a straightforward task to evaluate and compareipieltlassifiers on mul-
tiple datasets as pointed out in [65, 66] and developed imgpcehensive study of this
issue [67, 68, 69]. Several techniques have been propossmhipare classifiers like
statistical tests [70] for pairwise comparisons (pairviisest with re-sampling evalua-
tion schemes, t-test with 10-folds, corrected t-test [@kjrig into account overlapping
issues, 5x2CV, McNemar test) or ranking methods like averagks [72]. There have
been many discussions about the right tests to apply forrgecemparison purposes
[70, 73, 74]. But methods for fairly comparing multiple dégers on multiple datasets
are rare and often totally ignored [69]. Two approaches aggasted in [69]: the well-
known ANOVA [75] and the non-parametric Friedman statadttest [76, 77] associated
to the Nemenyi post-hoc test [78]. ANOVA is based on assumngtthat are not always
granted in typical machine learning studies, i.e. the parémce samples must be drawn
from a normal distribution and the random variables muselexyual variance. There-
fore we eschewed the ANOVA test in favor of the Friedman tistt better suits the
characteristics of our experimental protocol (as suggeastgs9]).

The Friedman test is a statistical test that uses the rankaf algorithm on each
dataset. The null hypothesis states that the compareditalgarare not significantly
different. Fork classifiers andN datasets, iR; is the mean rank of classifigramong
all datasets, the Friedman statistic is given by:

AN [k k(k+1)2
Xlg = m (gleZ_ T) 4)

with k— 1 degrees of freedom. An improved version of this test has pegposed by
Iman and Davenport [79] with a less conservative corre@bx& :

(N-1)x2

Fr=— ~JAF
N(k—1) — x2

(5)
distributed according to thE-distribution with (k— 1) and (k— 1)(N — 1) degrees of
freedom.

If the null hypothesis is rejected, a post-hoc test is cdroigt like the Nemenyi test
[78], which is used when all classifiers are compared to edobr @r the Bonferroni

Dunn test [80], which is used when comparing one controlrélgm to the other ones.
We use in this study the Nemenyi statistical test given byGhtcal Difference (CD):

CD=0qq % (6)

whereqy is the critical tabulated value for this test [78].
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4.4. State-of-the-art OCC methods and parameterization

The OCRF algorithm is compared to four state-of-the-art G@forithms, namely
the One Class SVM [44] taken from the LibSVM toolbox and thdemsity estima-
tors, Gaussian estimator (Gauss), Parzen windowing (Reanel Mixture of Gaussians
models (MoG) taken from the Pattern Recognition ToolboXT@u%s) [81, 82].

The OCSVM algorithm is computed using the default paransstings taken from
the LibSVM toolbox (i.e. cost coefficier@ = 1, radial basis function for the kernel
choice,y = mnfor the kernel bandwidth), except for thecoefficient, a lower
bound on the fraction of support vectors that we set to a mmaguently cited value
v = 0.1 (instead ofv = 0.5 in LibSVM). Similarly, the three other algorithms (Gauss,
Parzen and MoG) are run with their default parameters defmB&Tools. In particular,
MoG is computed by default with 5 clusters, the positionesand priors of each of
the clusters being optimized using the conventional Exgigst-Maximization (EM)
algorithm. Likewise, the bandwidth parametein Parzen is by default optimized by
maximizing the likelihood on the training data using leare-out [81]. Note also
that for these three density estimators PRTools definesateneterfracrej = 0.05,
corresponding to the fraction of legitimate target casasulill be considered as outliers
in the training phase of the algorithm. This trick allows iarficular to compute a
threshold on the outputs of the density estimator. All théskault parameter settings
are discussed in [3, 83, 57, 44].

Regarding the OCRF parameterization, standard valuetiéoparameters are also
used:

e the number of trees in the random foredt is 200, a value commonly considered
as sufficient in practice to ensure statistical convergehte algorithm [55, 53];

e trees are fully developed as it is proven to be more efficieiRf [15].

e the number of attributes for the Random Subspace Method jmrieally set to
Krsm= 10 orKrsm= M if M < 10, whereM is the dimension of the feature space
[58];

e the number of attributes for the Random Feature Selecti&ris= /Krsm as
suggested in [55, 53].

Finally, the generation of outliers during training reesirto define their number and
the range of their values. We have chosen the generationidahautliers to be 12
times greater than the target domain estimated throughrdivéng set, assuming that
the outlier domain needs to cover the whole target domaire Atmber of outliers to
generate is empirically set tytjier = 10- Niarget WhereNearget is the sample size of the
bootstrap replica (see Algorithm 1).
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5. Experimental results

In this section, we report the results obtained accordirigg@xperimental protocol
described in the preceding section. We first discuss theatiyeerformance of each
OCC method mainly according to the "outlier versus targedtie-off. We then show
that OCRF method compares favorably to standard OCC dhgosif OCSVM, Gauss,
Parzen, MoG), according to the test of statistical signiftea

5.1. Analysis of classifier performance

In order to show the interest of using the MCC for performaamtalysis, we discuss
the results of Table 2. In this table, results for three OC&3gfiers (namely OCRF,
OCSVM and Gauss) are presented on two illustrative datdsataelyopdigits and
mfeat-factor¥in terms of averaged MCC, accuracy, target and outliergeition rates.
We recall that this coefficient enables to take into accobatimbalanced nature of
OCC datasets: the closer to +1 the MCC, the better the peaforenof the classifier;
a null value of MCC usually indicates that the classifier presdonly one of the two
classes, the other class is never classified correctly;ltisercto -1 the MCC, the worst
the performance of the classifier. Results show that MCGbetedicts the behavior
of an OCC classifier than the accuracy rate, as shown in Tabec2e three different
cases can be identified:

(i) MCC and accuracy both have a high value (e.g. OCRBigits0)
(i) MCC and accuracy both have a low value (e.g. OCRptdigits 1)

(iif) MCC value is null or very low while accuracy is high (e. @CSVM on all datasets
in this table)

In the latter case, one can see that accuracy rates fail ittatedhat either target or out-
lier data are poorly, or even not at all, recognized by thesifeer whereas MCC better
highlights this phenomenon by providing a value close tozdhus the remainder of
the result analysis will be conducted using the MCC indicato

For sake of clarity, the averaged MCC values are presenteallfdatasets and all
classifiers in Appendix A. A synthesis of these results is@néed in Table 3. In the
forthcoming analysis, our aim is (i) to focus on the globatipenance of OCRF on all
datasets and (ii) to give some insights on local behaviomparison with the four
other state-of-the-art OCC methods.

Table A.7 and Table 3 show that OCRF performs generally welhmst of the
datasets, as more than half of its MCC values are high (tiipieéove 0.5 for 45
datasets over 78). This illustrates the ability of the mdttwocorrectly handle the "tar-
get vs outlier” trade-off for a large range of OCC problemsspite of their imbalanced
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OCRF | OCSVM | Gauss OCRF | OCSVM | Gauss

MCC | 0,776 | 0,165 | 0,954 MCC | 0,844 | 0,000 | 0,737
Acc | 0,94 0,90 | 0,99 Acc | 0,97 0,90 | 0,96
opt0 | T 0,99 0,04 0,92 factO | T 0,86 0,00 0,58
o) 0,94 1,00 | 1,00 0 0,98 1,00 | 1,00
MCC | 0,147 | 0,054 | 0,937 MCC | 0,873 | 0,000 | 0,712
Acc | 0,26 0,90 | 0,99 Acc | 0,98 0,90 | 0,95
optl | T 1,00 | 0,01 | 0,90 factl | T 079 | 0,00 | 054
o) 0,18 1,00 | 1,00 o) 1,00 1,00 | 1,00
MCC | 0,143 | 0,000 | 0,953 MCC | 0,879 | 0,000 | 0,740
Acc | 0,26 0,90 | 0,99 Acc | 0,98 0,90 | 0,96
opt2 T 1,00 0,00 0,92 fact2 T 0,85 0,00 0,58
o) 0,18 1,00 | 1,00 o) 0,99 1,00 | 1,00
MCC | 0,121 | 0,000 | 0,914 MCC | 0,887 | 0,017 | 0,695
Acc | 0,22 0,90 | 0,98 Acc | 0,98 0,90 | 0,95
opt3 | T 1,00 0,00 | 0,92 fact3 | T 0,87 0,00 | 0,51
o) 0,13 1,00 | 0,99 0 0,99 1,00 | 1,00
MCC | 0,077 | 0,000 | 0,905 MCC | 0,884 | 0,000 | 0,743
Acc | 0,16 0,90 | 0,98 Acc | 0,98 0,90 | 0,96
optd | T 1,00 | 000 | 0,92 fact4 | T 082 | 000 | 058
o) 0,06 1,00 | 0,99 0 1,00 1,00 | 1,00
MCC | 0,041 ] 0,000 | 0,954 MCC | 0,843 | 0,013 | 0,738
Acc | 0,12 0,90 | 0,99 Acc | 0,97 0,90 | 0,96
opts | T 1,00 0,00 0,92 fact5 | T 0,82 0,00 0,58
o) 0,02 1,00 | 1,00 0 0,99 1,00 | 1,00
MCC | 0,410 | 0,026 | 0,956 MCC | 0,910 | 0,068 | 0,770
Acc | 0,70 0,90 | 0,99 Acc | 0,98 0,90 | 0,96
opté | T 1,00 0,00 0,92 fact6 | T 0,85 0,02 0,62
o) 0,67 1,00 | 1,00 o) 1,00 1,00 | 1,00
MCC | 0,264 | 0,000 | 0,933 MCC | 0,879 | 0,017 | 0,841
Acc | 0,48 0,90 | 0,99 Acc | 0,98 0,90 | 0,97
opt7 | T 1,00 0,00 | 0,91 fact7 | T 0,83 0,00 | 0,73
o) 0,42 1,00 | 1,00 o) 1,00 1,00 | 1,00
MCC | 0,043 | 0,000 | 0,719 MCC | 0,613 | 0,000 | 0,647
Acc | 0,12 0,90 | 0,94 Acc | 0,01 0,90 | 0,94
opt8 | T 1,00 0,00 | 0,91 fact8 | T 0,83 0,00 | 0,45
o) 0,02 1,00 | 0,94 o) 0,91 1,00 | 1,00
MCC | 0,077 | 0,000 | 0,860 MCC | 0,866 | 0,026 | 0,751
Acc | 0,15 0,90 | 0,97 Acc | 0,98 0,90 | 0,96
opt9 | T 1,00 | 0,00 | 0,90 fact9 | 1 085 | 001 | 0,60
o) 0,06 1,00 | 0,98 o) 0,99 1,00 | 1,00

(@) (b)

Table 2: Case study for results of OCRF, OCSVM and Gauss a@p(djgit(opt.N) and (b)mfeat-factors
(fact.N) datasets. Best MCC results for each dataset are indicatsald face.
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OCRF | OCSVM | Gauss| Parzen| MoG
# of MCC negative val{ 0 1 2 2 1
ues
# of MCC null values 0 32 0 37 12
# of MCC values supey 45 12 60 8 39
riorto 0.5
# of occurences of 1st 23 7 35 4 9
rank wrt MCC values

Table 3: Synthesis of the results extracted from Table AAgpendix A

nature. This observation will be confirmed in the followirgcBon, with a statistical
analysis based on the rank values of each classifier on aelst Another observation
is that OCREF is the best OCC method on 23 datasets among 78&ashloG is the
best one on only 9 datasets, OCSVM on 7 and Parzen on 4 datasetsns of MCC
values. Gauss is the best of the five OCC methods, since ihbdsghest MCC values
on 35 datasets over the 78. According to these results, GaglSOCRF clearly outper-
form the three other OCC methods. This will be also confirnmethé next section with
the statistical comparison.

Another remarkable result is that OCRF never exhibits ralligs of MCC, contrary
to the four other state-of-the-art OCC methods: Parzen hhsvalues on 37 datasets,
OCSVM on 32, MoG on 12 and Gauss none. Let us recall that a nGCMalue
indicates that the classifier either predicts completatgloanly or always predicts only
one of the two classes. Such cases may be found in Table A.lev€SVM and
Parzen for example both always predict the outlier claspemdigits optdigits and
mfeat-zernikeas 90% of the test data are outliers. Similarly, Parzen ao® Mlways
predict the target class only anfeat-factor as 10% of the test data are targets. These
latter results confirm that OCSVM, Parzen and MoG are lesstalthandle the "target
vs outlier” trade-off than OCRF and Gauss. Note finally théva negative values are
obtained for all four state-of-the-art methods whereas B@Bes not exhibit any. Let
us recall that a negative MCC value indicates that the dlassiehaves worst than a
random predictor. Nevertheless, these behaviors seemnaiggnal.

In summary, even if these experiments highlight that OCRfoisalways the best
OCC method over all the datasets, they reveal that OCSVMzelRaand sometimes
MoG may have very unstable behaviors, being the best oneroe satasets and the
worst in some others. This is not the case of OCRF neither Gavtsch appear to be
good classifiers for OCC tasks.

5.2. Classifier ranking and statistical significance

In this section, our aim is to rank the OCC algorithms to alfowa better com-
parison of the five OCC methods. We use the statistical tesigmted in section 4.3 to
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evaluate the significance of these comparisons.

For each dataset, the five OCC methods have been ranked fromgte$t MCC
value) to 5 (lowest MCC value). The mean rank over the 78 dtdas provided in Table
4, with corresponding standard deviation values. One carreb that the best method
in average is Gauss, as it exhibits the lowest mean rank)(aréDthat the second best
one is OCRF (2.43). The MoG method is ranked in average rifjat @CRF, with a
mean rank of 2.79, while the two remaining methods, OCSVMRaien, are clearly
outperformed by the three others.

Additional statistics on the rank values are provided iruFég2, under the form of
boxplots. Red lines correspond to the median values, boxes thalf of the rank values
and black segment to the minimum and maximum ranks of eachadeOne can see
that OCRF is ranked in the Top 3 best methods for 75% of thesdtgdi.e. 52 over 78).
However, it does not outperform Gauss that is ranked eithsrdr second on 75% of
the datasets, and that exhibits ranks always inferior oaleigu3. These plots confirm
that OCSVM and Parzen have the worst performance, with reakseen 3 and 5 for
75% of the datasets.

OCRF OCSVM Gauss Parzen MoG
Mean rank| 2.43+1.16| 4.044+1.28 | 1.90+1.15| 3.83+1.12 | 2.794+1.08

Table 4: Mean rank values(standard deviation) of OCC methods over the 78 datasets

Statistical distribution of rank values
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Figure 2: Boxplots of rank values of the OCC methods over thdatasets. Red segments correspond to
the median values. The boxes indicates the repartitionlbbfithe ranks around the median and black
segments indicate minimum and maximum ranks.

Figure 3 is another way to gain some insight on the rankindhefa methods. It
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shows the ratio of the datasets for which a given method isngntioen first ranked
methodsn ranging from 1 to 5. For instance, Gauss is the first rankedthoakior 50%
of the datasets, while OCRF is ranked first for 30% of the @asasWe can clearly
distinguish two groups of methods: the first one is made ofsSa@CRF and MoG,
that are in the Top 3 for more than 70% of the datasets, whéled#icond one is made of
OCSVM and Parzen, that are in the Top 3 methods for less thano3the datasets. We
can thus assume that this gap of performance between thesgréwps is significant
enough, but it seems less obvious how methods compare tonmtkea inside each
group. This hypothesis is now tested using the Friedmarptesented in section 4.3.

1

~|E | ocrF
- 1 I8 | | M= ocsvMm
0.8+ - B | JGauss
. B B[ |Parzen
L | ;‘,i 777 Mog
0.6 -2
0.4+ g . '
0.2 / | |8 —
0 HH ; /] ||

Top1 Top2 Top3 Top4d Topb

Figure 3: Statistics on rank values obtained over the 78sdtta ratio of datasets associated to the
cumulative rank values for all classifiers (the higher th#orahe better; the lower the rank value, the
better).

Let us recall that the Friedman test has been applied on M@@waUsing Equation
4 with N = 78 datasets ankl= 5 classifiers, we havxeé = 104.48. Applying the Iman
and Davenport improvement, we obtdin = 38.768 from Equation 5. From common
tabulated values, we read that the critical value for thésE+itlution withk — 1 =4 and
(k—1)(N —1) = 308 degrees of freedom and under the sk 0.05 isF(4,308) ~
2.37< 38768. This indicates that the null hypothesis is rejectedchaling that the
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given ranks are significantly different. We can now use th&4hoc Nemenyi test for
the method ranking. From Equation 6, we obt@in = 0.690. From this value, we can
conclude that, under the risk of 5%, OCRF performs signifigdvetter than Parzen
(asRparzen— Rocrr = 3.83—2.43> CD) and OCSVM (aRocsvm— Rocrr = 4.04—
2.43> CD). On the contrary, nothing can be said about OGREBauss nor OCRNs
MoG as the differences between their mean ranks are smadie€D. Using the same
calculus, one can conclude that Gauss performs better tloé, Marzen and OCSVM,;
MoG performs significantly better than OCSVM and Parzenldalsummarizes all the
duels results. It clearly shows that the two groups idetifiiethe previous figures are
indeed statistically different in terms of MCC results, iRarzen and OCSVM are both
statistically outperformed by the three other methods. él@s, these results barely
allow to conclude about the differences between the methsiide these two groups:
(i) Parzen and OCSVM can not be distinguished from their M@ues; (ii) even if
Gauss statistically outperforms MoG, it is difficult to dsdtah a ranking between these
two methods and OCRF, since the two remaining duels are maiusive. More data
would be of course required to reliably compare these tHessiiers.

Note finally that our OCRF method is quite surprisingly oftartperformed by a
simple parametric density estimator such as Gauss. It dmuttius inferred that target
samples are normally distributed in a majority of the dataséour experiments since
the Gaussian estimator would particularly suit to thoseesadMe report in the next
subsection the results of our investigation on this issue.

Gauss| OCRF | MoG | Parzen| OCSVM
Gauss 0 + + +
OCRF 0 0 + +
MoG - 0 + +
Parzen - - - 0
OCSVM - - - 0

Table 5: Duels between the methods, in terms of statistigaificance. A '+’ (resp. ) indicates that
the method in the corresponding line statistically outperis (resp. is outperformed by) the method in
the corresponding column. A0’ indicates that no conclasitay be drawn from the statistical test.

5.3. OCRF vs Gauss: multi-normality of target samples

As mentioned above, the Gaussian estimator is the clasfiiémost often out-
performs the other methods, leading to infer that targetpdesrmay be normally dis-
tributed in the corresponding datasets. In order to testrib#i-normality of these
datasets, we have used the classical Mardia’s test of rattie skewness and kurtosis
[84]. This testis considered as one of the best method tea#se degree to which mul-
tivariate data deviate from multi-normality [85]. The testes two statistical moments,
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the multivariate skewness (third moment) and kurtosisr{ffomoment) in order to test
independently if these measures are consistent with themggeon of multi-normality.
Data are assumed to conform to a multi-normal distributioly @ the null hypothesis
of multi-normality has not been rejected for both tesexno significant skew in the data
and no significant deviation of kurtosis from expectancy.

The sample measure of multivariate skewness is given by :

1
o=z m; o)

i<NT<N

and the measure of kurtosis by :

pa=y 3 i ®

where N is the sample size, d the dimension of the featureespag = (X —
x)TS™1(x; —x), % a data vectorx the sample mean ar®the sample covariance matrix.

The first part of the Mardia’s test leans on the fact that, utide assumption of
multi-normality, the statistidN - y; 4/6 asymptotically follows a chi-squarg?) distri-
bution withd(d + 1)(d + 2) /6 degrees of freedom. Hence, if the estimation given by
equation 7 significantly deviates from the corresponditigremce value in thg? dis-
tribution table, one can conclude that the underlying dataot likely to come from a
multi-normal distribution. In the same manner, the secoad @f the test is based on
the fact that the statistig 4 is asymptotically normally distributed with mealgd + 2)
and variance &(d +2)/N. The (centered reduceg 4 value estimated from equation
8 can thus be compared to the corresponding critical vabm the normal distribution
table.

All those values, obtained with equations 7 and 8, and froenrtbrmal andy?
distribution tables, are provided in table B.8. They intkddat among 78 datasets, the
multi-normality hypothesis is rejected for 58 datasetsacugpted for 3. For 17 datasets
no result could be obtained due to singular variance-camad matrix for each dataset
causing computational issues when computing for instame&Mtahalanobis distance or
m j values aforementioned.

Nonetheless, these results show that a vast majority ofefted datasets do not
match the assumption of multi-normality, in particular diwge datasets for which the
Gaussian estimator exhibits the best performance (SorthiVikieat-zernike datasets
for example). It seems therefore that the good results ok&auer OCRF cannot be
explained by the multi-normality of these datasets and filndher investigations are
needed to better understand why OCREF is often outperformézboss.
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5.4. Robustness with respect to dimensionality

One of the main advantages of OCRF over the other stateeedithOCC methods
is its robustness regarding the number of dimensions. Bsaske rather good behavior
of OCRF with an increasing size of the feature space, we hexferped the additional
experiments detailed below.

Note first that it is still an issue to generate artificial data for "high” dimensional
spaces due to the curse of dimensionality. In some preliypiagperiments, we have
noticed that above about 10 features, OCC methods oftebhieXMCC values equal to
either 1 or 0, depending on the distribution of both positivel negative samples. As
shown in [86, 87], the difficulty of generating well repretaive distributions can be
explained by empty space phenomenons or concentration asunes. On the other
hand, real-world high-dimensional datasets are very dftgh with a lot of uninfor-
mative or sparse features, as it is the case in gene analyttocategorization for
example. Such amounts of non discriminant or non infornedi@atures may strongly
bias the results and the analysis as explained in [86, 87].

Therefore, we have rather turned towards designing a dediexperimental pro-
tocol by creating a quite high-dimensional artificial datalsom the real-world MFeat
datasets: a feature space has been created with discriff@adures by concatenating
the differentMFeatfeature vectors. Let us recall that the four dataéfsat-Factors
MFeat-Karhunen MFeat-Zernikeand MFeat-Morphologicalhave been built from the
same data instances representing single digits betweed 9, dnut for which different
descriptors have been extracted. We have thus created aateset calledVFeat-
FKZM, by concatenating factors, karhunen, zernike and morgieabdescriptors in
the same feature vector, leading for each sample to a 33@rée@ector. Then, 10 dif-
ferent OCC datasets, callédigit X" whereX is the digit used as the target class, have
been extracted following the previously used "1-versistretrategy. The five OCC
classifiers have been tested on thedidlt X datasets several times with different sizes
of the feature space: on eadlyit X datasetm features have been randomly sampled
from 333 features, for alh € {2, 3, 5, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200,
225, 250, 275, 300, 325, 333each time, 10 random subsetsmofeatures have been
sampled so that averaged MCC values over these 10 replica$ban obtained on each
digit X and for each value ah, along with their standard deviations.

Full MCC results for each of the 10 datasets and for eachifikrsare presented in
Figure 5 as curves of mean MCC values with respeeh.tdo give the precise values
of MCC means and standard deviations, a detailed examptigiinl dataset is also
given in Table 6. For clarity concerns, ordygit 1 dataset is presented in this table and
enlarged in Figure 4, but as it can be seen on Figure 5, sinsgaitts have been obtained
for the 9 other datasets.

From Figure 5, one can clearly observe that OCRF exhibitg stble behaviors
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as the size of the feature space increases, contrary todhettrer methods that fail to
maintain their performance obtained on lower dimensiorssfoh previously presented
MCC results, it is important to note that some classifiers IKCSVM exhibits several
zero MCC values as they predict only one of the two classeslfoost all samples.
These stable behaviors are assessed by the evolution of MDEsy but are also con-
firmed by standard deviations, as shown in Table 6 and Figiwe the digit 1 dataset.
OCRF exhibits quite low values of standard deviatioa. (ower than or equal to 0.05)
for all sizes above 50, contrary to Gauss for example, thavsistandard deviations
up to 0.14 for the same sizes. Even if the Gauss method soewetiniperforms OCRF
in terms of averaged MCC values, these results show thatyitbmaat the expense of
rather unstable performance for larger dimensions.

As a conclusion, these additional experiments give bettgights on how OCRF
manage to handle OCC problems, for which state-of-the-athaus often exhibit very
unstable performance. They confirm as expected that razédneinsemble principles
make the OCRF method more robust than the other methods heeeasing size of the
feature space.
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Figure 4: MCC values with respect to the number of feature$XGRF, OCSVM, Gauss, Parzen and
MoG classifiers, obtained on tliggit 1 dataset.
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Table 6: Performances of OCRF compared with OCSVM, GaugzeRaMoG classifiers on MFeat-

FKZM dataset for digit 1

m

OCRF

OCSVM

Gauss

Parzen

MoG

2

0.15 @& 0.09)

0.53(% 0.16)

0.10 & 0.06)

0.13 @& 0.05)

0.12 @& 0.05)

3

0.20 (& 0.13)

0.39(% 0.31)

0.11 @& 0.09)

0.17 @& 0.12)

0.15 @& 0.10)

5

0.39(+ 0.09)

0.00 @ 0.00)

0.19 @& 0.07)

0.30 @& 0.10)

0.26 @& 0.06)

10

0.59(% 0.13)

0.00 (& 0.00)

0.34 (& 0.09)

0.23 @ 0.12)

0.56 @ 0.11)

15

0.70(< 0.08)

0.00 (£ 0.00)

0.46 (£ 0.14)

0.11 (& 0.07)

0.66 (£ 0.09)

20

0.68 (£ 0.09)

0.00 (£ 0.00)

0.56 (£ 0.14)

0.00 ¢ 0.00)

0.69(= 0.07)

25

0.71(< 0.09)

0.00 (£ 0.00)

0.69 (£ 0.13)

0.00 (t 0.00)

0.67 (£ 0.12)

50

0.80 (£ 0.03)

0.00 (£ 0.00)

0.88(+ 0.02)

0.00 ¢t 0.00)

0.36 (£ 0.18)

75

0.80 (& 0.05)

0.00 (& 0.00)

0.84(% 0.05)

0.00 @& 0.00)

0.25 @& 0.14)

100

0.79(% 0.04)

0.00 (& 0.00)

0.76 @& 0.07)

0.00 @& 0.00)

0.00 @& 0.00)

125

0.80(% 0.04)

0.00 & 0.00)

0.72 @& 0.07)

0.00 @& 0.00)

0.00 @& 0.00)

150

0.82(% 0.03)

0.00 (& 0.00)

0.69 (& 0.07)

0.00 @& 0.00)

0.00 @& 0.00)

175

0.80(% 0.04)

0.00 & 0.00)

0.64 (& 0.07)

0.00 @& 0.00)

0.00 @& 0.00)

200

0.79(* 0.05)

0.00 € 0.00)

0.53 (£ 0.13)

0.00 ¢t 0.00)

0.00 ¢ 0.00)

225

0.80( 0.04)

0.00 (£ 0.00)

0.50 (t 0.13)

0.00 (t 0.00)

0.00 ( 0.00)

250

0.77(<£ 0.03)

0.00 (£ 0.00)

0.38 (£ 0.14)

0.00 ¢ 0.00)

0.00 ¢ 0.00)

275

0.80( 0.04)

0.00 (£ 0.00)

0.37 (£ 0.08)

0.00 (t 0.00)

0.00 ( 0.00)

300

0.80(% 0.02)

0.00 @& 0.00)

0.35 @& 0.05)

0.00 @& 0.00)

0.00 @& 0.00)

325

0.79(% 0.04)

0.00 & 0.00)

0.27 @& 0.04)

0.00 @& 0.00)

0.00 @& 0.00)

333

0.79(% 0.04)

0.00 (& 0.00)

0.28 (& 0.05)

0.00 @& 0.00)

0.00 @& 0.00)

25




(a) Digit 0 (b) Digit 1 () Digit 2

(9) Digit 6 (h) Digit 7 (i) Digit 8

(i) Digit9

Figure 5: MCC values vs. the number of features (ranging foaim 333) for OCRF k), OCSVM (A),
Gauss ¢), Parzen {) and MoG &) classifiers on MFeat-FKZM dataset for all digits
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6. Conclusion and future works

One-Class Random Forest is a discriminative OCC methoddb@s¢he reference
random forest algorithm combined with an original procediar generating artificial
outliers. Generating outliers is often used with discriative learning methods to coun-
terbalance the absence of outlier data during the trainiage but is difficult to imple-
ment since the number of outliers to generate for havingoresdy good performance
is exponential with respect to the dimension of the featpees, and may also increase
as the number of available training samples increases. Wedieown that the random
principles used in traditional RF can be powerful tools tereome this issue: by sub-
sampling the training set for each component classifier efeihsemble, through the
selection of both the training samples (with bagging) arel fatures (with random
feature selection and random subspace method), and by tmebirting all of them,
we reduce the minimum number of outliers to generate an@#aser the generalization
accuracy of the ensemble.

To assess the efficiency of our method, experiments have dwetucted on sev-
eral public datasets from the UCI repository and OCRF has beistically compared
to four of the most used OCC algorithms, namely one-class S@klUssian estima-
tor, Parzen windowing and Mixture of Gaussians models. Ostrobthese datasets
and using the default parameterization of each methoditsdsave shown that OCRF
performs equally well or better than these state-of-the282C algorithms. Besides,
OCRF performance appears to be rather stable even in eiatigh dimensional
space, whereas other OCC method accuracy rates decrease.

Room for improvement is still left in our OCRF framework. betl, the OCRF
method depends on two parameters whose values have notrivestigated nor tuned
for these experiments: (i) the ratio of outliers to be geteetaccording to the number
of available target samples and (ii) the range of each featalue of these artificial
outliers. Although standard values for these parameteesggtisfying results for most
of the datasets, preliminary experiments conducted on guartecular datasets have
shown that these parameters could have optimal values. pedetudy on the influ-
ence of these parameters according to the target distsibatuld help choosing their
appropriate values automatically.

Appendix A. Matthews correlation coefficient (MCC)

Dataset OCRF OCSVM Gauss Parzen MoG
iris_versicolour| 0,579 (81,5)| 0,897 (95,3)| 0,903(95,6) | 0,685 (85,6)| 0,607 (82,9)
iris_virginica | 0,614 (82,7)| 0,900(95,5) | 0,813 (90,9)| 0,716 (87,3)| 0,604 (82,5)
iris_setosa 0,722 (87,1)| 0,903 (95,6)| 0,921(96,4) | 0,799 (90,9)| 0,643 (83,3)
bcw_benign* | 0,919(96,2) | 0,848 (92,1)| 0,902 (95,3)| 0,709 (83,2)| 0,867 (93,3)
results continued on next page
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Dataset OCRF OCSVM Gauss Parzen MoG
bcw.malignant* | 0,629(81,3) | 0,208 (68,2) | 0,179 (46,3) | 0,273 (69,1)| 0,084 (49,6)
ionospherggood | 0,683 (83,3)| 0,785(89,5) | 0,781 (89,3) | 0,180 (40,8)| 0,584 (75,4)
ionospherebad 0,169(56,7) | -0,348 (28,2)| -0,410 (26,0)| 0,106 (64,7)| -0,346 (33,2)
muskO 0,071 (84,6)| 0,103 (21,0) | 0,264(83,6) | 0,180 (30,6)| 0 (84,6)
musk1 0,306 (49,3)| 0,049 (84,7) | 0,818(95,1) | 0,495 (88,9)| 0(15,4)
sonarmines 0,048 (53,3)| 0,882(93,6) | 0,342 (65,9) | 0(46,2) 0,222 (47,8)
sonarrocks 0,179 (59,0)| 0,889(94,0) | 0,120 (56,3) | 0(53,8) 0,274 (56,1)
diabetespositive | 0,139 (46,4)| 0 (65,2) 0,147 (35,2) | 0,188 (55,3)| 0,219(39,2)
diabetesnegative | 0,241(68,7) | 0 (34,8) -0,046 (66,5)| 0,064 (53,9)| 0,020 (68,3)
pendigitsO 0,976(99,6) | 0(89,6) 0,970 (99,4) | 0,100 (89,7)| 0,961 (99,3)
pendigitsl 0,585 (85,8)| 0(89,6) 0,652 (90,0) | 0,212 (90,1)| 0,835(96,6)
pendigits2 0,835 (96,3)| 0(89,6) 0,957(99,2) | 0(89,6) 0,956 (99,2)
pendigits3 0,918 (98,5)| 0(90,4) 0,969(99,5) | 0,092 (90,4)| 0,949 (99,1)
pendigits4 0,961 (99,3)| 0(89,6) 0,969(99,4) | 0(89,6) 0,953 (99,1)
pendigits5 0,756 (94,1)| 0(90,4) 0,880 (97,8) | 0,092 (90,4)| 0,942(99,0)
pendigits6 0,985(99,7) | 0(90,4) 0,970 (99,5) | 0(90,4) 0,954 (99,2)
pendigits7 0,887 (97,6)| 0(89,6) 0,887 (97,7) | 0(89,6) 0,937(98,8)
pendigits8 0,634 (89,3)| 0(90,4) 0,716 (93,2) | 0(90,4) 0,951(99,2)
pendigits9 0,577 (85,9)| 0(90,4) 0,577 (86,9) | 0,093 (90,4)| 0,936(98,9)
optdigits0 0,776 (94,2)| 0,165 (90,5) | 0,954(99,2) | 0(90,1) 0,745 (95,9)
optdigits 1 0,147 (26,2)| 0,054 (89,9) | 0,937(98,9) | 0(89,8) 0,803 (96,7)
optdigits 2 0,143 (25,8)| 0(90,1) 0,953(99,2) | 0(90,1) 0,755 (96,0)
optdigits3 0,121 (21,7)| 0(89,8) 0,914(98,4) | 0(89,8) 0,727 (95,5)
optdigits4 0,077 (15,6)| 0(89,9) 0,905(98,3) | 0(89,9) 0,766 (96,1)
optdigits5 0,041 (11,5)| 0(90,1) 0,954(99,2) | 0(90,1) 0,738 (95,8)
optdigits6 0,410 (70,3)| 0,026 (90,1) | 0,956(99,2) | 0(90,1) 0,778 (96,3)
optdigits 7 0,264 (48,2)| 0(89,9) 0,933(98,8) | 0(89,9) 0,777 (96,3)
optdigits8 0,043 (11,7)| 0(90,1) 0,719(93,6) | 0(90,1) 0,696 (95,2)
optdigits 9 0,077 (15,2)| 0(90,0) 0,860(97,4) | 0(90,0) 0,739 (95,7)
mfeat-factorsd 0,844(97,2) | 0(90,0) 0,737 (95,8) | 0(10,0) 0(10,0)
mfeat-factorsl 0,873(97,8) | 0(90,0) 0,712 (95,4) | 0(10,0) 0(10,0)
mfeat-factor2 0,879(97,9) | 0(90,0) 0,740 (95,8) | 0(10,0) 0(10,0)
mfeat-factors3 0,887(98,0) | 0,017 (90,0) | 0,695 (95,1) | 0(10,0) 0(10,0)
mfeat-factorsA 0,884(98,0) | 0(90,0) 0,743 (95,8) | 0(10,0) 0(10,0)
mfeat-factorsb 0,843(97,3) | 0,013(90,0) | 0,738 (95,8) | 0(10,0) 0(10,0)
mfeat-factorss 0,910(98,5) | 0,068 (90,2) | 0,770 (96,2) | 0(10,0) 0(10,0)
mfeat-factors/ 0,879(97,9) | 0,017 (90,0) | 0,841 (97,3) | 0(10,0) 0(10,0)
mfeat-factors3 0,613(90,6) | 0(90,0) 0,647 (94,5) | 0(10,0) 0(10,0)
mfeat-factors9 0,866(97,6) | 0,026 (90,1) | 0,751 (96,0) | 0(10,0) 0(10,0)
mfeat-karhune® | 0,807(96,4) | 0,363 (91,6) | 0,784 (96,5) | 0(90,0) 0,302 (90,1)
mfeat-karhunerd | 0,750 (95,5)| 0,248 (90,9) | 0,765(96,1) | 0(90,0) 0,247 (90,3)
mfeat-karhuner? | 0,755 (95,5)| 0,222 (90,7) | 0,776(96,3) | 0(90,0) 0,213 (90,1)
mfeat-karhuner8 | 0,703 (93,8)| 0,239 (90,8) | 0,759(96,0) | 0,213 (90,1)| 0,213 (90,1)

results continued on next pag

je
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Dataset OCRF OCSVM Gauss Parzen MoG

mfeat-karhuner | 0,813(96,5) | 0,192 (90,6)| 0,794 (96,6)| 0 (90,0) 0,257 (90,1)
mfeat-karhunets | 0,622 (91,6)| 0,167 (90,5)| 0,730(95,7) | 0,213 (90,1) | 0,229 (90,2)
mfeat-karhuner® | 0,684 (93,8)| 0,255 (90,9)| 0,790(96,5) | 0,224 (90,2) | 0,232 (90,2)
mfeat-karhunery | 0,864(97,7) | 0,532 (93,2)| 0,849 (97,5)| 0,213 (90,1) | 0,257 (90,4)
mfeat-karhune® | 0,407 (78,5)| 0,030 (90,1)| 0,713(95,4) | 0(90,0) 0,213 (90,0)
mfeat-karhune® | 0,752 (95,4)| 0,315 (91,2)| 0,770(96,2) | 0,213 (90,1) | 0,220 (90,1)
mfeat-zerniked 0,697 (93,5)| 0(90,0) 0,944(99,0) | 0(90,0) 0,637 (94,4)
mfeat-zernikel 0,663 (92,7)| 0(90,0) 0,908(98,4) | 0(90,0) 0,686 (95,0)
mfeat-zernike2 0,679 (93,5)| 0(90,0) 0,903(98,3) | 0(90,0) 0,512 (93,0)
mfeat-zernike3 0,365 (77,3)| 0,017 (90,0)| 0,674(91,8) | 0,213 (90,1) | 0,617 (94,2)
mfeat-zernike4 0,461 (84,2)| 0(90,0) 0,908(98,3) | 0(90,0) 0,653 (94,6)
mfeat-zernikeb 0,322 (72,4)| 0,013 (90,0)| 0,721(94,1) | 0,213 (90,1) | 0,535(93,2)
mfeat-zernikeb 0,413 (79,7)| 0,068 (90,2)| 0,551(86,3) | -0,036 (86,4)| 0,321 (87,4)
mfeat-zerniker 0,796 (96,5)| 0,013 (90,0)| 0,925(98,7) | 0,213 (90,1) | 0,647 (94,6)
mfeat-zernike8 0,548 (87,3)| 0(90,0) 0,908(98,4) | 0(90,0) 0,598 (93,9)
mfeat-zernike9 0,455 (83,5)| 0,026 (90,1)| 0,578(87,5) | -0,045 (86,6)| 0,337 (87,6)
mfeat-morphO 0,698 (91,6)| 0,136 (90,4)| 0,682 (91,6)| 0,765(94,5) | 0,764 (94,5)
mfeat-morphl 0,304 (56,5)| 0(90,0) 0,345 (65,2)| 0,375(82,2) | 0,395(71,3)
mfeat-morph2 0,291 (54,0)| 0(90,0) 0,400 (71,9)| 0,457(81,2) | 0,407 (72,9)
mfeat-morph3 0,335(63,5) | 0,030(90,1)| 0,326 (63,0)| 0,298 (71,5) | 0,328 (63,2)
mfeat-morph4 0,294 (56,8)| 0(90,0) 0,432 (75,4)| 0,443(87,2) | 0,430 (75,3)
mfeat-morph5 0,378 (67,4)| 0,013 (90,0)| 0,468 (78,6)| 0,388 (86,5) | 0,468(78,7)
mfeat-morph6 0,637(88,7) | 0,057 (90,1)| 0,397 (71,7)| 0,398 (75,6) | 0,416 (74,0)
mfeat-morph?7 0,398 (70,0)| 0,026 (90,1)| 0,524 (82,8)| 0,505 (88,0) | 0,540(84,0)
mfeat-morph8 0,943(98,9) | 0,013 (90,0)| 0,682 (91,6)| 0,666 (91,7) | 0,645 (89,9)
mfeat-morph9 0,456(76,7) | 0,013 (90,0)| 0,389 (70,9)| 0,395 (74,1) | 0,398 (71,9)
glassl 0,403 (66,2)| 0,896(95,4) | 0,465 (67,0)| 0,484 (77,7) | 0,509 (77,8)
glass2 0,229 (56,5)| 0,880(94,4) | 0,212 (49,7)| 0,322 (64,8) | 0,365 (65,5)
glass3 0,064 (69,0)| 0,908(98,6) | 0,179 (73,7)| 0,145 (92,1) | 0,091 (92,6)
glassb 0,498 (90,9)| 0,465 (96,6)| 0,964(96,1) | 0,307 (94,1) | 0,823 (94,4)
glass7 0,813 (95,0)| 0,703 (95,4)| 0,308 (67,2)| 0,877(96,4) | 0,749 (93,1)

Table A.7: Matthews correlation coefficient (MCC) obtairmdall datasets for all one-class classifiers;
accuracy rate is indicated in parenthesis. Best MCC reardtindicated in bold face. *bcw refers to the
breast cancer wisconsitataset.

Appendix B. Multi-normality test results

Detailed results for the Mardia’s multinormality test argen in Table B.8. The
hypothesis of multinormality is accepted (A) only if bottethbsolute value of the sta-
tistical measure for Mardia’s skewness test (Ms) and Madiartosis test (MK) are
smaller than their respective critical values (CVs and C\@herwise, the hypothesis
is rejected (R). We have used the publicly available impletaigon of A. Trujillo-Ortiz
and R. Hernandez-Walls [88].
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Dataset Gauss| OCRF| M | Hs | Hk Ms CVs Mk CVk
iris_versicolour | 0.903 | 0579 | A | A | A 23.70 31.41 -1.03 | 1.64
iris_virginica 0813|0614 | A | A | A 24.73 31.41 -0.34 | 1.64
iris_setosa 0921 0722 A| A | A 24.22 31.41 0.81 | 1.64
bw_benign 0902 | 0919 | R| R | R 17792 | 195.97 | 262.98 | 1.64
bw_malignant 0179 0629 | R| R | A 379.05 | 195.97 0.19 | 1.64
ionospheregood | 0.781 | 0.683 | - - - - 7337.70 - 1.64
ionospherebad | -0.410| 0.169 | - - - - 7337.70 - 1.64
muskO 0.264 | 0071 | R | R | R | 7427800 778270 | 759.52 | 1.64
musk 1 0.818 | 0.306 | R | R | R | 2510300 778270 | 400.30 | 1.64
sonarmines 0342 | 0048 R| R | R 46219 38274 | 11.72 | 1.64
sonarrocks 0120 0179 | R| R | R 42422 38274 429 | 1.64
diabetespositive | 0.147 | 0.139| R | R | R | 83450 | 146.57 | 16.28 | 1.64
diabetesnegative| -0.046| 0.241 | R | R | R | 2036.70| 146.57 | 35.90 | 1.64
pendigitsO 0970 | 0976 | R | R | R 35883 | 883.57 | 276.09 | 1.64
pendigits1 0652 | 0585 | R| R | R 25181 | 883.57 | 145.08 | 1.64
pendigits2 0957 083 | R| R | R 29982 | 883.57 | 181.53 | 1.64
pendigits3 0969 | 0918 R | R | R 93759 | 883.57 | 501.62 | 1.64
pendigits4 0.969 | 0.961 | - - - - 883.57 - 1.64
pendigits5 0880 | 0756 | R| R | R 9777 883.57 | 47.19 | 1.64
pendigits6 0970 | 0985 | R| R | R 79284 | 883.57 | 423.84 | 1.64
pendigits7 0887 | 0887 | R| R | R 16781 | 883.57 | 72.32 | 1.64
pendigits8 0716 | 0634 | R| R | R 15720 | 883.57 | 71.33 | 1.64
pendigits9 0577 | 0577 | R| R | R 22974 | 883.57 | 117.02 | 1.64
optdigits 0 0.954 | 0.776 | - - - - 46259 - 1.64
optdigits 1 0.937 | 0.147 | - - - - 46259 - 1.64
optdigits 2 0.953 | 0.143 | - - - - 46259 - 1.64
optdigits 3 0.914 | 0.121 | - - - - 46259 - 1.64
optdigits 4 0.905 | 0.077 | - - - - 46259 - 1.64
optdigits5 0.954 | 0.041 | - - - - 46259 - 1.64
optdigits 6 0.956 | 0.410 | - - - - 46259 - 1.64
optdigits.7 0.933 | 0.264 | - - - - 46259 - 1.64
optdigits 8 0.719 | 0.043 | - - - - 46259 - 1.64
optdigits 9 0.860 | 0.077 | - - - - 46259 - 1.64
mfeatfactorsO 0.737 | 0844 | R | A | R | 1182300| 1706100| -197.80| 1.64
mfeatfactorsl 0.712 | 0.873| R | A | R | 1294000( 1706100| -181.54| 1.64
mfeatfactors?2 0.740 | 0879 | R | A | R | 1307400| 1706100| -174.76| 1.64
mfeatfactors3 0.695| 0.887 | R | A | R | 1274800| 1706100| -190.40| 1.64
mfeatfactors4 0.743 | 0884 | R | A | R | 1292000| 1706100| -182.07| 1.64
mfeatfactors5 0.738 | 0.843| R | A | R | 1403200| 1706100| -122.57| 1.64
mfeatfactors6 0.770 | 0910 | R | A | R | 1261500| 1706100| -203.41| 1.64
mfeatfactors7 0.841| 0879 | R | A | R | 1322600( 1706100| -172.74| 1.64
mfeatfactors8 0.647 | 0613 | R | A | R | 1313900| 1706100| -172.14| 1.64

Mardia’s results continued on next pa

ge
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Ms CvVs Mk CVk
1259600 | 1706100| -199.69| 1.64
60984 46259 2157 | 1.64
62413 46259 23.83 | 1.64
59144 46259 17.76 | 1.64
63683 46259 23.30 | 1.64
62594 46259 23.28 | 1.64
56194 46259 12.32 | 1.64
63072 46259 24.79 | 1.64
70505 46259 38.11 | 1.64
54754 46259 9.40 | 1.64
59354 46259 18.11 | 1.64
45559 18741 65.53 | 1.64
52521 18741 81.09 | 1.64
31692 18741 32.08 | 1.64
39827 18741 54.49 | 1.64
42016 18741 59.67 | 1.64
33583 18741 36.38 | 1.64
42811 18741 65.64 | 1.64
34880 18741 42.32 | 1.64
38553 18741 52.73 | 1.64
45975 18741 71.96 | 1.64
- 74.47 - 1.64
10122 74.47 | 218.95| 1.64

Dataset Gauss| OCRF
mfeatfactors9 0.751 | 0.866
mfeatkarhunenO | 0.784 | 0.807
mfeatkarhunenl | 0.765 | 0.750
mfeatkarhunen2 | 0.776 | 0.755
mfeatkarhunen3 | 0.759 | 0.703
mfeatkarhunen4 | 0.794 | 0.813
mfeatkarhunen5 | 0.730 | 0.622
mfeatkarhunen6 | 0.790 | 0.684
mfeatkarhunen7 | 0.849 | 0.864
mfeatkarhunen8 | 0.713 | 0.407
mfeatkarhunen9 | 0.770 | 0.752
mfeatzernikeO 0.944 | 0.697
mfeatzernikel 0.908 | 0.663
mfeatzernike?2 0.903 | 0.679
mfeatzernike3 0.674 | 0.365
mfeatzernike4 0.908 | 0.461
mfeatzernikeb 0.721 | 0.322
mfeatzernike6 0.551| 0.413
mfeatzernike7 0.925| 0.796
mfeatzernike8 0.908 | 0.548
mfeatzernike9 0.578 | 0.455
mfeatmorph0 0.682 | 0.698

70| | 1| 0| 1| 1| 0| 0| 0| B| 0| 0| 0| 0|0 W DO 00O DI

Q| > > oo oD |D || DD ;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U:D%
A 0| 0|0 DD |D DDA ﬂ?UJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJUJU;

mfeatmorphl 0.345| 0.304 | R

mfeatmorph2 0.400| 0.291 | R 10030 74.47 | 201.90 | 1.64
mfeatmorph.3 0.326 | 0.335 | - - 74.47 - 1.64
mfeatmorph4 0.432] 0294 | R 7960.40 | 74.47 | 168.16 | 1.64
mfeatmorph5 0.468 | 0.378 | - - 74.47 - 1.64
mfeatmorph6 0.397| 0.637 | R 12871.00| 74.47 | 300.58| 1.64
mfeatmorph.7 0.524 | 0.398 | - - 74.47 - 1.64
mfeatmorph8 0.682| 0943 | R 4434.20 | 74.47 90.45 | 1.64
mfeatmorph9 0.389 | 0.456 | R 10504 74.47 | 248.09 | 1.64
glassl 0.465| 0403 | R 1005.50 | 195.97 | 18.55 | 1.64
glass2 0.212 | 0.229 | R 1397.60 | 19597 | 28.80 | 1.64
glass3 0.179| 0.064 | R 143.56 | 195.97 | -2.33 | 1.64
glass5 0.964| 0498 | R 109.14 | 19597 | -3.25 | 1.64
glass7 0.308| 0.813 | R 314.42 | 195.97 2.74 | 1.64

Table B.8: Details for Mardia’s multivariate skewness aoddsis statistical test, reported with the MCC
values of Gauss classifier and OCRF; M is the Mardia’s testitiedds the result for the skewness test,
Hk for the kurtosis tests (the hypothesis of multi-nornyabteither rejected (R) or accepted (A)), Ms the
statistical value for Mardia’s skewness test, Mk the mea$oir Mardia’s kurtosis test, CVs the critical
value for the skewness test and CVk for the kurtosis testsiMisvalues are indicated with an hyphen;
they are related to computational issues due to singul@&n@g-covariance matrix.
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