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On the Dispersion of Solid Particles in a Liquid Agitated

by a Bubble Swarm

THOMAS BONOMETTI, JACQUES MAGNAUDET, and PASCAL GARDIN

This article deals with the dispersion of solid particles in a liquid agitated by a homogeneous
swarm of bubbles. The scale of interest lies between the plant scale (of the order of the tank) and
the microscale (less than the bubble diameter). The strategy consists in simulating both the two-
phase flow of deforming bubbles and the motion of solid particles. The evolution of the spatial
distribution of particles together with the encounter and entrainment phenomena is studied as a
function of the void fraction and the relative size and mass of particles. The influence of the
shape of the bubble and of the model of forces that govern the motion of particles is also

considered.

I. INTRODUCTION

THE capture of solid particles by bubbles in liquid
solutions is a phenomenon of importance in many
industrial practices such as mineral processing, petro-
chemical refining, paper manufacturing, and waste
water treatment. In addition, flotation can be used to
promote the suspension and dispersion of solids in the
liquid phase. When dispersed in a suspension, the
activity of solids increases; they are cither acting as a
catalyst or undergoing a chemical reaction. This is why
three-phase flows are also used in industrial catalytic
processes, biological waste water treatment, and bacte-
rial leaching processes.!?! In practice, it has been found
that flotation is a complex process affected by numerous
factors, such as particle-bubble surface chemistry,
particle-bubble size, hydrophilic and hydrophobic prop-
erties of surfaces, electrostatic interactions, and hydro-
dynamic conditions.

Two approaches are generally used to handle this
problem. The first of these is to consider the full system
and to study the influence of the global parameters
(liquid and gas flow rates, chemical composition, and
nature of particles) on the overall flotation efficiency.l* %
The other approach focuses on the simplified system of
one or few particles interacting with a single bubble.[ 14
The modeling of the flotation process is based on three
elementary microprocesses, namely, the bubble-particle
encounter collision,[ls_m the subsequent attach-

ment,'%2?2% and the detachment.'”?*2” The aim of
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the modeling of the flotation at this microprocess scale is
to predict the global efficiency probability that can be
used to size full plants.

The ultimate purpose of this study is to obtain a better
understanding of inclusion interaction with argon bub-
bles rising in liquid steel, taking into account interactions
of bubbles as they occur in many steelmaking processes,
such as ladle or continuous casting mould. The efficiency
of inclusion entrapment by argon bubbles was already
investigated by different authors.”®*! The main conclu-
sion is that an optimum bubble size could be obtained,
but studies are restricted to single spherical bubbles. In
the present study, the scale under consideration lies
between the macroscopic plant scale and the micropro-
cess scale. Our approach consists of investigating the
motion and dispersion of solid particles in a liquid
agitated by rising bubbles, which have spherical, sphe-
roidal, or spherical cap shapes. Figure 1 shows a sketch
of the situation investigated: in-line deforming bubbles
rise and modify the motion of smaller solid particles
present in the liquid. The bubble initial diameter is D and
the distance between two bubble centroids is H.

This numerical study consists of the simulation of a
two-dimensional axisymmetric homogeneous bubbles
suspension using a volume of fluid (VOF) method
together with the computation of solid particles by
means of Lagrangian tracking. We assume that the
particles (1) have no effect on the fluid (one-way
coupling), (2) are spherical, and (3) are small compared
to the bubbles. No model is introduced to take into
account possible particle collisions, and particles are
allowed to overlap. The methodology is as follows: we
first compute the rise of a homogeneous suspension of
bubbles, without any particle. The simulation is stopped
as soon as bubbles have reached a stationary shape and
velocity. Then we set up a uniform distribution of
monodisperse particles initially at rest and start the
simulation again by using the results of the first
computation as an initial flow field. Note that the
velocity of the suspension is constant within 5 pct
during the particle-bubble simulation.
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Fig. |—Computational domain and possible particle paths. The bub-
ble is at the center of the domain.

The fixed parameters are the physical properties of the
gas-liquid flow; i.e., the density ratio p;/p, = 17,000, the
V1scos1ty ratio ,u,/ug = 100, the Bond number Bo =
pgD’lc = 1, and the Morton number Mo = guj/
pio° = 5% 10 . In these expressions, p; and p, are the
density of the l1quid and gas, respectively; u; and yu, are
the corresponding dynamical viscosities; g denotes
gravity; D is the bubble diameter; and o is the surface
tension. These choices allow us to compute the rise of
ellipsoidal bubbles, the Reynolds number of which
(based on the terminal velocity) is O(100). Note that
most bubbles in continuous casting molds are ellipsoi-
dal.® The influence of the bubble shape will be
discussed in Section ITI-D. We vary the volume fraction
of the gas o = 2D*/3H° from 0.7 to 17 pct, the density
of the particles p, from 0.1p, to p; (for a prescribed
particle diameter), and the particle diameter d, (for a
prescr1bed pp), so that the partrculate Reynolds number
Re, = plp/— pg)gdp/l8u1 varies from 10~ to 5. The Re,
is calculated a priori by taking as characteristic veloc1ty
U,, the sedimentation velocity of a solid particle under
creeping flow conditions, i.e., U, = (p,—pp)gdﬁ/lf%,ul. We
choose this range of parameters in order to follow most
closely the industrial conditions used in metallurgical
flotation, as shown in Table I. Also shown in Table I
are the parameters used in the study of Zhang and
co-workers?” representlng typical spherical inclusions,
such as alumina in molten steel.

Table I. Comparison of the Parameters Investigated in the
Study of Zhang et al. and the Present Study
Present

Studies Zhang et al.* Study
Density ratio between the 4300 17,000

liquid and the gas, p;/pq
Density ratio between the 0.4 0.1to1

particles and the liquid, p,/p;
Flow Reynolds number, Re 100 to 3000 ~100
Particle Reynolds number, Re, 6 x 1077 to 0.6 10%to 5
Bond number, Bo 0.05to 5 1
Morton number, Mo ~1 x 10712 5% 1078

The computations allow us not only to follow the time
evolution of the particle distribution, but also to perform
statistics on the rate of elimination of particles. A first
statistic deals with the bubble-particle encounter inter-
action. Indeed, when a particle is located in a region in
which the local volume fraction of the gas is larger than
0.5, we arbitrarily denote this particle as “encountered”
(there is a collision). By counting the number of
encountered particles, we can build an ‘‘encounter
efficiency” E.o; equal to the ratio of the number of
encountered particles over the initial number of particles
in the domain. Note that E.. is different from the
classical collision efﬁciency,BO] because the latter makes
use as a denominator of the number of particles initially
located along the bubble trajectory. A second statistic
deals with particles that are driven by the liquid to the top
of the domain. When a particle crosses the upper
boundary, it is denoted as “entrained.” We then define
an “entrainment efficiency” E.,,, equal to the ratio of the
number of particles that cross the upper boundary over
the initial number of particles. The two efficiencies FE..y
and E., allow us to disentangle the contribution of the
bubble-particle encounter and that of the entrainment of
particles by the liquid in the overall flotation process.

II. EQUATIONS AND NUMERICAL
TREATMENT

A. Simulation of the Bubble Swarm

The bubble swarm is computed through a VOF
method without interface reconstruction. In particular,
we solve the one-fluid Navier—Stokes Eq. [1], assuming
the two fluids to be Newtonian and incompressible, with
uniform surface tension and no phase change.

1
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In Eq. [1], U, P, p, and u are the local velocity,
pressure, density, and dynamical viscosity in the flow,
respectively; g denotes gravity; and o is the surface
tension. The surface delta function §; is zero outside the
interface, the unit normal of which is denoted by n. The
position of the bubble surface is updated by solving the
transport Eq. [2], which governs the local volume
fraction of the gas.

%—C+U VC=0 2]

This volume fraction equals one (respectively, zero) in
cells filled with gas (respectively liquid) and takes
intermediate values in cells belonging to the transition
region. The local density and dynamical viscosity are
evaluated wusing a linear interpolation, namely,
p=Cp,+(1-C)p and p=Cu+(1-C)u. The
capillary force i 1s modeled using the continuum surface
force model.*!! Equations [1] and [2] are solved using



the JADIM code developed in our group. Briefly, the
momentum equations are discretized on a staggered
orthogonal grid using a finite volume approach. The
spatial discretization is performed using second-order
centered differences. Time advancement is achieved
through a third-order Runge-Kutta method for advec-
tive and source terms and a Crank—Nicolson method for
viscous stresses. Incompressibility is satisfied at the end
of each time-step through a projection method. The
overall algorithm is second-order accurate in both time
and space. Details on the spatial discretization and time-
advancement algorithm used in this code may be found
in Reference 32.

B. Particle Tracking

The hydrodynamic interaction between a particle and
a bubble is investigated by means of the following
extended Basset—Boussinesq—Oseen Eq. [3].

dv
my—- = prD IU VI(U = V) + (m, —my) g

DU dv DU
{meM —myCyr—- 7 } +m T

Here, m, and m, are the mass of the particle and the
mass of the same volume of liquid, respectively; V' is
the particle velocity; U is the velocity of the liquid at the
particle location; prand uyare the density and dynamical
viscosity of the liquid, respectively; C,sis the added
mass coefficient (here, Cy, = 1/2); and dp is the particle
diameter. In Eq [3] 2 U’p stands for the material

Wy U-vU whereas 97 is the
time derlvatwe of VV following the correspondmg parti-
cle. The drag force coeﬂiment is calculated using Schiller
and Nauman’s model:”®

24 U-V|
— (1+0.15 RY) with Re = 24UV

3]

derivative 2U | = x=x,

Cp=
[4]

We assume that lift and history effects are negligible
compared to drag and added mass effects. Nevertheless,
effects of the lift force will be discussed in the Appendix.

C. Numerical Setup

The computations are axisymmetric and are per-
formed within a cylindrical (r, z) domain 0.5 H X H
large. We use a regular grid spacmg in the - and
z-directions (Ar/D = Az/D = 1.107%). Free-slip bound-
ary conditions are imposed on the lateral boundaries;

the top and bottom boundaries are assumed to corre-
spond to periodic conditions. This choice is a key point
for the computation of an infinite chain of bubbles,
because it allows us to compute only one element of the
chain, ie., a domain containing only one bubble.
Table II indicates the grid resolution and the number
of particles used for the entire range of void fractions
(the number of particles per unit of volume is kept
constant). The void fraction is defined as the ratio
between the volume of gas inside the computational
domain over the volume of the computational domain.

D. Assumption of Axisymmetry

By performing axisymmetric computation, we assume
the particles’ trajectories to be restricted into radial
planes. To check whether this assumption is realistic, we
performed a fully three-dimensional computation of the
particular configuration corresponding to o = 17 pct,
p, = 0.36p, and Re, = 5. Figures 2(a) and (b) show
the bubble-particle distribution at a specific time and a
vertical view of the particles’ location at several times
(from #(g/D)"* = 0 to 0.9), respectively. Here, all the
boundaries are submitted to periodic conditions, so that
this computation reproduces the rise of a homogenous
swarm of bubbles. We can see from Figure 2(a) that
with this choice of parameters, the bubble has an oblate
spheroidal shape. It is clear from Figure 2(b) that
particle trajectories are confined to planes that are
mostly parallel to the local radial direction, at least far
from the outer boundaries. Note that during the time of
the simulation, the bubbles were rising straightly.
Axisymmetric computations are, therefore, relevant in
the case of a swarm that rises rectilinearly.

E. Preliminary Checking

This section focuses on some numerical tests aimed at
showing the sensitivity of the results to numerical
parameters. We first investigated whether the number
of particles used for the computation was sufficient to
obtain reliable results. For example, we performed three
computations, with 98, 392, and 882 particles. The other
parameters were « = 17 pct, p, = 0.36p;, and Re, = 5.
Figure 3 shows the evolution of E.uy, Ecpyr, and (Eeop +
E...). Time is scaled by Vy/D, Vi is the terminal
velocity of the bubble swarm, and D is the bubble
diameter (Table III for the values of V7). The terminal
velocity Vr is defined through

o - T B

where C is the gas volume fraction, e, is the unit vector
in the vertical direction, and © denotes the volume of the

Table II. Grid Resolution and Number of Particles Used in the Simulations
Void Fraction, o 0.7 pct 2.1 pet 6 pct 11 pet 17 pct
Grid resolution, n, X n, 225 x 450 160 x 320 115 x 230 95 x 190 80 x 160
Number of particles in the computational domain 800 392 200 128 98
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Fig. 2—(a) Bubble-particle distribution at a specific time and (b) vertical view of the particle location for several time-steps (from #(g/D)"? = 0

to 0.9).
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Fig. 3—Influence of the number of particles on efficiencies (o« = 17
pct, pp = 0.36p;, and Re, = 5). Time is scaled by V7/D. (——) 882
particles; (- - - - - - ) 392 particles; and (......) 98 particles. The effi-
ciencies are in indicated in percents.

Table III. Evolution of the Velocity of the Bubble Swarm
and of the Liquid Velocity with the Void Fraction; V), is the
Mean Vertical Velocity in the Liquid

o 0.7pct 2.1 pct 6 pct 11 pct 17 pct
V(gD)* 226 2.12 1.76 1.44 1.17
Vil Vr 0.002 0.007  0.030  0.074  0.118

entire computational domain. This scaling allows us to
compare the evolution of the statistics for a reference
displacement length of the bubble swarm. For example,
the bubbles have crossed a distance of 30 bubble
diameters at 1V 7/D = 30, whatever the velocity of the
swarm. The evolution of E.ojj, Eenir and (Econ + Eeng) 1S
mostly independent of the number of particles. This is
expected, because no collision is taken into account.
We then looked at the influence of the position of the
bubble in the domain at the beginning of the compu-
tation. Defining z, as the position of the bubble centroid
at ¢t = 0, we ran two simulations with zo/H = 0 and zo/
H = 0.5, respectively. The other parameters were
= 0.7 and 17 pct (the two limit cases), p, = 0.36p,,
and Re, = 5. Figure 4 shows the evolution of Ecojj, Eener

and (E.oy + Eene)- The comparison of E.yy, Eeny for
the two cases shows differences that are less than 4 pct.
The overall efficiency (E.on + Eeny) appears to be
independent of the initial position of the bubble.

III. RESULTS AND DISCUSSION

A. Influence of the Particle Size

In this section, we focus on the influence of the size of
the solid particles on their motion and on the flotation
process. Figure 5 shows the time evolution of the spatial
distribution of particles with two different sizes. The
Reynolds number of the partlcles shown in Figure 5(a)
is Re, = 5; for the particles in Figure 5(b), Re, = 1074
In the first case, particles quickly go away from the
bubble wake (0 < tV#/D < 21) and remain in the
lateral part of the domain (#V'7/D > 21). In the second
case, the number of particles in the bubble wake
decreases with time, but is nonzero (the last view in
Figures 5(a) and (b)). Particles are more dispersed in the
latter case. Therefore, the phenomenon observed in
Figure 5(a) appears to be an effect related to particle
inertia.

To confirm this point, we record the mean value of all
forces acting on the particles. For each particle, we
calculate the norm of the drag, gravitational, and added-
mass force and take the corresponding mean value over
the total number of particles. The gravitational force is
calculated using the difference between the particle
density and the density of the local fluid. The evolution
is plotted in Fi _§ure 6 for two sets of particles (Re, = 5
and Re, = 1077). After a few time-steps, the added -mass
force found for Re, = 5 increases to a mean value
about 20 pct higher than the drag and gravitational
forces (Figure 6(a), 0 < tVy/D < 10). It then decreases
to a value of the same order as the other two forces.
Note that between 1V /D = 10and tV /D = 20, all the
particles get away from the bubble wake. This suggests
that added-mass effects play a role in the migration of
the particles out of the bubble wake. The drag and
gravitational forces exhibit periodic oscillations around
the same constant mean value, which is about [p, — p/l/
pp» approximately. Note that we observe the same
oscillation in the evolution of the added-mass force. The
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Fig. 5—Effect of the size of particles on efficiencies: evolution of the spatial distribution of particles (¢ = 11 pct; p, = 0.36p)): (a) Re, = 5 and
(b) Re, = 107*. The time interval between successive views is 1V 7/D = 21.
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Fig. 6—Evolution of the forces acting on particles (x = 17 pct; p, = 0.36p)): (@) Re, = 5 and (b) Re, = 107, The forces are scaled by the
weight of a particle.



period of oscillation is found to be 1.54 D/V, which is
very close to the period of crossing of the domain by a
bubble the value of which is H/Vy = (2/30)' DV~
1.57D/V7, in the case of o = 17 pct (the difference
between the two periods is less than 2 pct). Figure 6(b)
shows the evolution of the forces in the case of small
particles (Re, = 107). The evolution is roughly the
same as that displayed in Figure 6(a), but the amplitude
of drag and added-mass oscillations is much larger. In
addition, the oscillation frequency is higher, about twice
the crossing frequency of the domain by the bubble.
This explains why the gravitational force does not
exhibit such oscillations since it is independent of the
liquid velocity. These oscillations enlighten the ability of
particles to adapt to the flow. Indeed, calculating the
particle Stokes number St = (p, + p;/2 df,VT/9,u1D, we
find St = 0.74 (respectively, 5.5 x 107") for particles
with Re, equal to 5 (respectively, 107%). Not unlikely, the
Stokes number is of O(1) in the case of big particles,
whereas it is much less than 1 in the case of small
particles. This explains why the big (respectively, small)
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Fig. 7—Influence of the size of particles on efficiencies (« = 11 pct,
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without symbols: Re, = 5. With symbols: Re, = 107*. The efficien-
cies are indicated in percents.
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particles are more sensitive to the slow (respectively,
rapid) timescales of the flow.

A quantitative effect of the particle size is plotted in
Figure 7, through the time evolution of E.yy, Een and
(Econ + Eenr) in the case where o = 11 pct and p, =
0.36p,. The first set (without symbols) corresponds to
big particles, while the second (with symbols) is for small
particles. A slight increase in the encounter efficiency
(roughly 5 pct) and a strong decrease in the entrainment
efficiency (roughly 20 pct) are observed when going
from high-Rep to low-Rep particles. Note, however, that
the time evolution is similar. The overall efficiency is
higher for large particles.

B. Influence of the Gas Volume Fraction

Figure 8 shows the temporal evolution of the encoun-
ter, entrainment, and overall efficiencies, depending on
the gas volume fraction (¢« = 0.7 to 17 pct), in the case
pp = 0.36p, and Re, = 5. The encounter efficiency
increases rapidly at early times and then becomes
constant at a time °°". This time decreases as the gas
volume fraction increases, because the distance to be
crossed by a given bubble to reach the initial position of
the preceding bubble (i.e., the bubble located just above
it) is smaller for a high volume fraction. Asymptotically,
" =0 for o = 1 and " = « for « = 0. In Fig-
ure 9, we plot the evolution of this characteristic
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Fig. 9—Evolution of 1*°"V;/D with . The solid line corresponds to
the fit flo) = (1 ,M)O.sz/xo_,xz‘
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Fig. 8—Influence of the void fraction on efficiencies: temporal evolution of (a) Econ and (b) Ecnes (€) (Econ + Eenw) (pp = 0.36p; Re, = 5). (—)
o= 0.7pct; (------ ) o = 2.1 pet; (===t ) o = 6 pct; () o = 11 pct; and (—) o = 17 pct. Efficiencies are indicated in percents.



encounter time /°"V;/D vs the volume fraction o. We
draw the function (1 — «)"/a”", and vary the exponent n
so as to fit the computational result. We find that /!
evolves as (1 — 0)®3?/a®32. At longer times (1 > °°"), the
encounter efficiency is constant. The final value of E_,;
grows with the volume fraction. For example, E . is
twice as high (29 instead of 13 pct) for &« = 17 pct than
for o = 0.7 pct. This result is due to the confinement
effects that prevent the particles from getting away from
the bubble surface. The variations of E.,; with the
volume fraction, the particulate Reynolds number, and
the ratio between the particle density and the liquid
density are discussed in Section I11-E.

The evolution of the entrainment efficiency F,,
shown in Figure 8(b) is quite different from the evolu-
tion of the encounter efficiency. Indeed, E.,,, is found to
increase regularly with time. It grows faster for a high
volume fraction at early times than for a low volume
fraction (0 < tV#/D < 20). Also, the increase of FEg; is
faster for a low value of o. For 20 < ¢V /D < 60, E.n
increases by 9 pct for o = 11 pct and by 22 pct for
o = 0.7 pct. This unexpected result can be explained by
looking at the particle dynamics at longer times (¢V/
D > 20). Figure 10 shows the distribution of the solid
particles at ¢Vy/D = 60 in cases o = 0.7 pct and
o = 11 pct. The closed (respectively, opened) circle is
assigned to rising (respectively, falling) particles. We
also plotted isovalues of the liquid vertical velocity,
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Fig. 10—Particles distribution at ¢V7/D = 60: (a) « = 0.7 pct and
(b) « = 11 pet (p, = 0.36p; Re, = 5). The bubble is at the center
of the picture and rises vertically. The solid lines are isovalues of U,/
U, (U, is the local vertical liquid velocity and U, is the sedimenta-
tion velocity of the particles). The particles corresponding to closed
(respectively, opened) circles are going up (respectively, down).

scaled by the sedimentation velocity of the particles
U, = (p - pg)gdﬁ/ 18u;. In both cases, the particles are
located outside the bubble wake, as was already
observed in Section IITI-A. In addition, we see in
Figure 10(a) that all particles are rising, whereas in
Figure 10(b), the particles located near the bubble
equator are falling down. Far from the bubble, the
motion of the particles mostly results from the compe-
tition between gravitational and drag forces. When
gravity is larger (respectively, lower) than drag, the
particles are rising (respectively, falling down). Fig-
ure 10(a) shows that U,~ —U, in the vicinity of the
lateral boundaries, whereas U;~ —-2U, in Figure 10(b),
because of confinement effects. In the latter case, the
drag force is about four times bigger (since the drag is
proportional to the square of the downward liquid
velocity U)), so that the gravitational force turns out to
be smaller than the drag force. As a consequence,
particles are falling down. This downward motion is
responsible for the average evolution of E,, and may
explain the larger increase of the efficiency at longer
times when the gas volume fraction is low.

The evolution of the overall efficiency (Econ + Eentr)
displayed in Figure 8(c) is a consequence of the contri-
bution of both encounter and entrainment effects. Thus,
(Econ T Ecny) 1s larger for a high gas volume fraction at
early times and turns to be larger for a low volume
fraction at longer times.

C. Influence of the Particle Density

To determine the influence of the particle density on
the flotation process, we keep the particle size constant
(Re, = 5) and vary the density p, from 0.1p; to p,.
Figure 11 shows the distribution of particles at 1V ;/
D = 65.7 for different sets of particles. In all cases, the
particles lie outside the bubble wake. By comparing
Figure 11 with Figure 5, we can conclude that the
migration of particles outside the bubble wake is mainly
due to the size of the particles rather than to their
density. In addition, the distribution of particles is
roughly the same for all sets of particles. Note that the
heavier particles lie closer to the bubble equator and are
more dispersed in the region separating the bubble wake
from the lateral boundaries. By looking at the average
efficiencies (Figure 12), we observe that E.. increases
with the particle density, and that E.,, and (E.y +
E.p) decrease when p, increases.
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Fig. 11—Influence of the particle density (1V'7/D = 65.7; « = 6 pct; and Re, = 5): (a) p, = 0.1p; (b) p, = 0.36p; (c) p, = 0.86p;; and (d) p, =

Pr-
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Fig. 12—Influence of the mass of particles on efficiencies: temporal evolution of (a) Econ; (b) Eenys (¢) (Econ + Eeny) (¢ = 6 pet; Re, = 5). (—)
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Fig. 13—Evolution of the spatial distribution of particles (¢« = 0.7 pct; p, = 0.36p; and Re, = 5). The time interval between two successive

views is tVy/D = 1.9.

D. Influence of the Bubble Shape

This section is aimed at describing some features that
characterize the influence of the bubble shape on the
motion of the particles. As mentioned earlier, big
particles get away from the bubble wake. We can
wonder whether this phenomenon is sensitive to the
bubble shape. We performed a computation of the
situation corresponding to o = 0.7 pct, Re, = 5, and
pp, = 0.36p, b;/ choosing the properties of the liquid so
that Bo = 10° and Mo = 107°. The expected shape of
an isolated bubble within the corresponding liquid is a
spherical cap, and the bubble Reynolds number based
on the rise velocity is of O(107%). Figure 13 shows the
particle distribution at various times. We see that no
migration of particles away from the bubble wake
occurs, at least at early times, in contrast to the case of
the spheroidal bubbles. Particles sitting behind the
bubble skirt are entrained at about the same velocity
as is the bubble. Figure 14 compares the wake structure
behind a spherical cap bubble with that behind a
spheroidal bubble. The difference observed in the
particle migration leads us to conclude that the bubble
shape and, therefore, the wake structure play a crucial
role in the migration process. Figure 15 compares the
temporal evolution of E oy, Eentr» and (Econt + Eeone). A
first noticeable point is the low value of the encounter
efficiency obtained with spherical cap bubbles. This
result can be explained by the observation of a thin
region in the liquid around the bubble surface where
there are no particles (Figure 13), even though the film
thickness decreases in time. A second important point is
the large increase of E., due to the motion of particles

Fig. 14—Bubble shape and streamlines in the liquid in a frame of
reference moving with the bubble: (¢) Bo = 1 and (b) Bo = 100.

in the spherical cap wake. Note that the bubble shape
does not reach a steady state, because the bubble
interacts with the wake induced by the preceding bubble.
Therefore, the rising speed of the bubble is not strictly
constant. Nevertheless, this example shows how sensi-
tive the motion of particles and, therefore, the flotation
process is to the shape of the collecting bubbles.

E. Encounter Efficiency: E.o.n = f(o, Rep, pp/pi)

We now discuss the dominant parameters controlling
the encounter phenomenon. We vary the void fraction,
and the size and density of particles. The evolution of
the encounter efficiency E.,; vs the gas volume fraction
is plotted in Figure 16. The E,; increases with the gas
volume fraction as o®2°. Figure 17 shows the evolution
of E_. with the particle density and size. We see that the
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Fig. l6—Evolution of the encounter efficiency (in percents) with the
gas volume fraction (p, = 0.36p; Re, = 5). The symbols refer to

. ! 25
numerical results; the line corresponds to E.o;= 1502, The error

bars are due to the influence of the initial position of the bubble
with respect to the upper boundary of the computational domain.

results nicely collapse when E.oy is normalized by o%2°.

The encounter efficiency is found to increase almost
linearly with the particle density. Its evolution with the
particle size is less straightforward. The efficiency is
found to increase slightly with Re, up to 1072 and to
decrease for higher Reynolds numbers.
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IV. CONCLUSIONS

This study dealt with the dispersion of small, solid
particles in a liquid the agitation of which is driven by
the rise of a homogeneous swarm of bubbles. We
simulated both the two-phase flow (with deforming
bubbles) and the motion of solid particles (through a
Lagrangian tracking procedure). The evolution of the
spatial distribution of particles, the encounter efficiency,
and the entrainment efficiency were determined as a
function of the gas volume fraction and of the relative
size and relative density of the particles. We investigated
a wide range of parameters, namely o = 0.7 through
17 pct, p, = 0.1p; through p;, and Re, = 10~ through
5. The influence of the bubble shape and the influence of
the model of forces driving the particle motion were also
considered. The main results may be summarized as
follows.

1. We observed a migration of particles away from the
bubble wake. This migration is typical of big parti-
cles for which inertial effects are significant.

2. The encounter efficiency increases with the gas vol-
ume fraction (as o®%°) and the particle density, but
decreases with the particle size, at least for particle
Reynolds numbers larger than 107>
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Fig. 17—Evolution of the encounter efficiency with (@) the relative mass of the particle and (b) the particle size. The symbols refer to numerical
results: (&) o = 0.7 pet, (X) & = 2.1 pet, (A) o = 6 pet, () a = 11 pet, and (O) « = 17 pet. The solid line is a linear fit.



3. The entrainment efficiency increases (respectively,
decreases) with the gas volume fraction at early
(respectively, long) times, and increases with the
particle size.

The shape and wake structure of the bubbles have
a crucial influence on the motion of small particles
and on the flotation process.

The shear-induced lift force has a weak influence on
the flotation process in the situation we considered
here (Appendix).

Overall, we believe that this work provides useful data
for the validation of models aimed at predicting the
collision and entrainment efficiencies for a wide range of
void fractions and sizes of particles. In addition, we
showed that the shape of large bubbles can have a
significant impact on flotation efficiencies. This suggests
that additional work is needed to take into account the
effect of the nonspherical shapes of large bubbles.

This work could be extended in the following ways:

1. by changing the shape of the bubbles; and

2. by considering nonhomogeneous bubble swarm
(i.e., performing fully three-dimensional computa-
tions), allowing us to take into account nonrectilin-
ear bubble trajectories and bubble break-up and
coalescence in the flotation process.

APPENDIX

Influence of added-mass and shear-induced lift forces

An important issue is to find out how the force models
on the right side of Eq. [3] influence the results involving
the particle motion and the efficiency statistics. Some
aspects of the role played by the gravity, drag, and
added-mass forces were already presented in Section
III-A. However, we can still question the influence of
the added-mass effects on the migration phenomenon.
Figure 18 compares the particles distribution when
added-mass effects are taken into account. When the
added-mass force is switched off, some particles remain
in the bubble wake (Figure 18(a)). In contrast, when
added-mass effects are taken into account, no particle
remains in the bubble wake (Figure 18(b)). Therefore, it
turns out that added-mass effects are part of the origin
of the migration phenomenon. We could also wonder
whether including the shear-induced lift force would
have changed the results. To check this point, we
performed a computation in which the lift force was
included (Figure 18(c)). Following McLaughlin’s theo-
retical result® valid for particles moving at a low but
finite Reynolds number in a pure shear flow, an extra
term F; should be added to the right side of Eq. [3],
namely

(b)

Fig. 18—Influence of added-mass and shear-induced lift forces on the particle distribution, () without both added-mass and shear-induced lift
and (b) with added-mass included but without shear-induced lift; and (¢) with both added-mass and shear-induced lift (¢V7/D = 28.5; « = 17

pet; p, = 0.36p; and Re, = 5).
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Fig. 19—Evolution of the averaged forces acting on particles (x = 17 pct; p, = 0.36p; and Re, = 5): (a) without shear-induced lift and (b)
including the shear-induced lift model of Egs. [5a] and [5b]. () Added-mass force; (—) drag; (- - - - - - ) Archimedes force; and (--+-"--- ) shear-

induced lift. All forces are normalized by the weight of the particle.



Fr= mCr(U—-V) x rot(U—V) [6a]
with
9 2255 Re,\ /2
Cp=—=—222 (1410222
b nz\/RepSr< Sr>
2R |rot(U—-7V)|

with Sr = [6b]

|U-Vl

Strictly speaking, this model for the shear-induced lift
force is only valid under the assumptions Re, < < 1and
(Sr/Re)"/? < < 1. However, extensive direct numerical
simulations®” revealed that it provides a reasonable
estimate of the shear-induced lift force up to Re, =~ 5.
Present computations indicate that the particle distri-
bution is very similar whether the shear-induced lift
force model is included or not (Figure 18). Figure 19
compares the evolution of the averaged forces acting on
the particles, in both cases. Clearly, the presence of the
shear-induced lift force only affects the added-mass
force at long times and leaves the other contributions
unchanged. Note that the intensity of the shear-induced
lift force is one order of magnitude smaller than that of
the other forces. Therefore, we can conclude that shear-
induced lift effects do not play a significant role in the
situation considered in this article.

NOMENCLATURE

P local density (kg/m?)

u local dynamic viscosity (kg/
m/s)

Cuy added mass coefficient (here,
Cy = 1/2)

D bubble diameter (m)

d, particle diameter (m)

E..n encounter efficiency

E .« entrainment efficiency

g gravitational acceleration
(m/s?)

H height of the computational
domain (m)

my mass of the liquid of same
volume as the particle (kg)

m, mass of the particle (kg)

n unit vector normal to the
interface

P pressure (Pa)

U local velocity (at the particle
location for Eq. [3], m/s)

U, local velocity in the liquid
(m/s)

V particle velocity (m/s)

Vr bubble terminal velocity (m/
s)

U dynamic viscosity of the gas
(kg/m/s)

W dynamic viscosity of the

liquid (kg/m/s)

Pg density of the gas (kg/m”)

p1 density of the liquid (kg/m?®)

Py density of the particles (kg/
m’)

a surface tension between the
gas and the liquid (N/m)

o7 surface delta function

o = 2D°/3H° volume fraction

Bo = pgD’lo
Mo = gui/po
UP

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

Bond number

Morton number

Stokes sedimentation
velocity of a solid particle

= (p1— pp)eda/18uy
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