Neutral Products Desorption from DNA Thin Films
Induced by Low-Energy Electrons (0.5-20 eV)
Omar Boulanouar, Lionel Amiaud, Michel Fromm, Cécile Sicard-Roselli, Léon Sanche, Anne Lafosse

To cite this version:
Omar Boulanouar, Lionel Amiaud, Michel Fromm, Cécile Sicard-Roselli, Léon Sanche, et al.. Neutral Products Desorption from DNA Thin Films Induced by Low-Energy Electrons (0.5-20 eV). 1st Nano-IBCT conference 2011, Radiation damage of Biological Systems: Nano-scale Insights into Ion Beam Cancer Therapy, Oct 2011, Caen, France. <hal-00862327>
Low-energy electrons (LEEs) are produced in great amount in the biological medium, when submitted to high-energy irradiations. They have the ability to induce strand breaks in the DNA duplex, as proven by electrophoresis analysis of irradiated dry deposits [1]. LEE interactions with target molecules induce the formation of different species such as anions, cations, radicals and neutrals. The desorption of anionic species from oligonucleotides and DNA under LEEs irradiation has been intensively explored [2,3]. The involved mechanisms and sites were successfully identified, including the resonant formation of transient negative ions (TNI) below 15 eV. However, the desorption of neutral products was less explored [4], due to their difficult detection. Exploring this aspect would provide additional information and complete the picture of the dissociating pathways followed by TNI.

Materials and methods

We used electron ionization quadrupole mass spectrometry (QMS at 70 eV) to analyze neutral products, desorbing from DNA-diamine thin films (10 nm) under (0.5–20 eV) electron irradiation. We quantified DNA damages after irradiation by electrophoresis analysis.

Target preparation [2]

2. Deposition of a DNA plasmid (~3 kb) by complexation with Diaminopropene dichlorohydrate (Dap) without buffer.

Target characterisation by AFM and electrophoresis gel

Conclusion

Exposure the DNA-Dap thin films to LEEs shows:

• The desorption of neutral species from DNA-Dap complex to be the result of deposit damaging (result confirmed by electrophoresis gel analysis).
• These first investigations confirm the presence of resonant structures at low energy (below 6 eV) associated to the dissociative decay of TNIs. [3,4]
• Resonant (broad structure around 13 eV) and non resonant dissociative channels contribute to the neutral yields above 6 eV. The contribution of electron multiple scattering cannot be excluded.

O.B thanks gratefully the RTRA Triangle de la Physique for financial support. This work has been partly performed within the frame of the ECOCL Cost action CM0601 (Electron and Positron Induced Chemistry), Framework V).

Prospects

Some points remain to be improved such as:
• measurement of the incident flux (nA,cm²)
• determination of the Dap contribution to the desorption yields and evaluation of the impact of the DNA close-environment on its sensitivity to LEEs (using DNA lyophilised deposit)
• identification of responsible sites for the desorption of neutral species.

References