
HAL Id: hal-00862091
https://hal.science/hal-00862091

Submitted on 16 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variance sensitivity analysis of parameters for pruning
of a multilayer perceptron: application to a sawmill

supply chain simulation model
Philippe Thomas, Marie-Christine Suhner, André Thomas

To cite this version:
Philippe Thomas, Marie-Christine Suhner, André Thomas. Variance sensitivity analysis of parameters
for pruning of a multilayer perceptron: application to a sawmill supply chain simulation model. Ad-
vances in Artificial Neural Systems, 2013, 2013, pp.ID 284570. �10.1155/2013/284570�. �hal-00862091�

https://hal.science/hal-00862091
https://hal.archives-ouvertes.fr

Variance Sensitivity Analysis of Parameters for Pruning of a
Multilayer Perceptron:

Application to a Sawmill Supply Chain Simulation Model

Philippe Thomas, Marie-Christine Suhner and André Thomas

Centre de Recherche en Automatique de Nancy (CRAN-UMR 7039), Nancy-University, CNRS
philippe.thomas@cran.uhp-nancy.fr

Simulation is a useful tool for the evaluation of a Master Production/Distribution Schedule (MPS). The goal of this paper is to

propose a new approach to designing a simulation model by reducing its complexity. According to the theory of constraints, a reduced
model is built using bottlenecks and a neural network exclusively. This paper focuses on one step of the network model design:
determining the structure of the network. This task may be performed by using the constructive or pruning approaches. The main
contribution of this paper is twofold; it first pro poses a new pruning algorithm based on an analysis of the variance of the sensitivity of
all parameters of the network, and then uses this algorithm to reduce the simulation model of a sawmill supply chain.

In the first step, the proposed pruning algorithm is tested with two simulation examples and compared with three classical pruning
algorithms from the literature. In the second step, these four algorithms are used to determine the optimal structure of the network used
for the complexity-reduction design procedure of the simulation model of a sawmill supply chain.

Index Terms— multilayer perceptron, pruning, reduced model, simulation.

I. INTRODUCTION

Simulation is a useful tool for the evaluation of planning or
scheduling scenarios [1]. Indeed, simulation highlights the
evolution of the machine states, WIP (work in process) and
queues. This information is useful for “predictive scheduling”
[1] or rescheduling. Considering the theory of constraints [2],
the optimization of production processes requires maximizing
the utilization rate of the bottlenecks. This is the main
indicator for evaluating a Master Production/Distribution
Schedule (MPS). For this, a useful technique is simulating
dynamic discrete events of the material flow [3].

In fact, simulation models of actual industrial cases are
often very complex and modelers encounter problems of scale
[4]. In addition, many works use the simplest
(reduced/aggregated) models of simulation [5]–[8].

Neural networks can extract performing models from
experimental data [9]. Consequently, the use of neural
networks has been proposed in order to reduce simulation
models [8][10]. To build a neural model, an important issue is
determining the structure of the network. The main techniques
used to control the complexity of the network are architecture
selection, regularization [11] [12], early stopping [13] and
training with noise [14]; the last three are closely related
[14][15]. This paper focuses on architecture selection. To
determine the optimal structure of the network, two
approaches can be used. The first is constructive, where the
hidden neurons are added one after another [16]–[19]. The
second approach exploits a structure with too many hidden
neurons, and then prunes the least significant ones [20]–[25].

In addition, it is necessary to determine the optimal input
data set in order to make a model. This set of data must be as
small as possible in order to avoid the overfitting problem, but

must contain all the explicative inputs [26]. Different
approaches can be used to perform feature selection, for
example principal component analysis [27], curves component
analysis [28] and random features ranking [29][30]. Other
methods have been designed to perform feature selection only
with neural networks [31]–[34]. Only some of these allow
simultaneous feature selection and spurious parameter pruning
[20][35][36].

The goals of this paper are dual. The first one is to present a
reduction approach of simulation model using neural network.
The second one is to deal with the optimal neural network
structure determination by using pruning procedure.

This paper presents a new pruning algorithm that allows the
selection of the input neurons and the number of hidden
neurons. This algorithm, based on one proposed by
Engelbrecht [36], is investigated and compared with three
existing algorithms: Engelbrecht [36], Setiono and Leow [35]
and Hassibi and Stork [20]. These algorithms are used for the
structural determination of the neural network used in the
reduced model of a sawmill flow shop.

In the next section, the topics of model reduction and
multilayer perceptron are presented. The third section presents
the pruning algorithms, including the proposed algorithm and
the three comparison algorithms. Two simulation examples are
then presented and the results obtained with the four
algorithms are investigated. Section V presents the industrial
application. The reduced model of the sawmill supply chain
and the structure of the neural networks obtained using the
different algorithms are investigated in section VI. The final
section enumerates our conclusions.

II. THE MODEL REDUCTION

A. The algorithm

Zeigler [37] was the first to deal with the problem of model
reduction when he stated that the complexity of a model is
related to the number of elements, connections and model
calculations. He distinguished three methods to simplify a
discrete simulation model: replacing part of the model with a
random variable, degrading the range of values taken by a
variable, and grouping parts of a model together.

Innis et al. [38] listed 17 simplification techniques for
general modeling. Their approach comprises four steps:
hypothesizing (identifying the important parts of the system),
formulation (specifying the model), coding (building the
model) and experimentation. Leachman [39] proposed a model
that considers cycle times in production planning, especially
for the semiconductor industry, which uses cycle time as an
indicator. Brooks and Tobias [6] suggest a “simplification of
models” approach for cases where the indicators to be
followed are the average throughput rates. Other cases have
been studied in [40] and [41].

The reduction algorithm proposed in this paper is an
extension of those presented by Thomas and Charpentier [3]. It
is presented in Figure 1 and its principal steps are summarized
as follows.

1. Identify the structural bottleneck (the work center (WC)
that has been constrained in capacity for several years).

2. Identify the conjunctural bottleneck for the bundle of
manufacturing orders (MOs) of the MPS under
consideration.

3. Among the WCs not listed in 1 and 2, identify one (the
synchronization WC) that satisfied two conditions:

- it is present in at least one of the MOs that has a
bottleneck;

- it is widely used in the MOs.
4. If all MOs have been considered, go to step 5; otherwise

repeat step 3.
5. Use neural networks to model the intervals between the

WCs found during the previous steps.
As example, in the considered application (part VI), there

are three WC: "Canter line" (figure 3), "Kockums line" (figure
5) and "Trimmer line" (figure 6). Only one of these WC is a
bottleneck, in our case, this is the "Trimmer line".

The WCs remaining in the model are conjunctural
bottlenecks, structural bottlenecks, or WCs that are vital to the
synchronization of the MO. All other WCs are incorporated
into “aggregated blocks” upstream or downstream of the
bottlenecks.

A “conjunctural bottleneck” is a WC that is saturated for the
particular MPS and predictive schedule in question, and
therefore uses all available capacity. A “structural bottleneck”
is a WC that has often been in such a condition in the past.
Actually, for one specific portfolio (one specific MPS) there is
only one bottleneck—the most loaded WC—but this WC can
be different from the traditional bottlenecks.

“Synchronization work centers” are resources used jointly

with bottlenecks for at least one MO and for the planning of
different MOs that do not have a bottleneck. The number of
these “synchronization work centers” must be minimized. To
achieve this, WCs must be found that (a) are most common
among the bundle of MOs using no bottleneck, and (b) figure
in the routing of at least one MO using bottlenecks.

Is a structural bottleneck?

Add to structural
bottlenecks list

First work center (WC)

Next WC

Is the last? Next WC

first WC

Add to conjunctural
bottlenecks list

Is a conjunctural bottleneck?Next WC

Is the last? Next WC

first WC

WC associated
to a bottleneck in one MO?

Add to
synchonisation list

Next WC

Is the last? Next WC

Replace WC not listed
above by NN model

no no

nono

no no

no

no

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

Is the last?

Is the last?

Is the last?

WC is widely used
Considering whole MO?

no
no

yes

Is the last?

yes

Is a structural bottleneck?

Add to structural
bottlenecks list

First work center (WC)

Next WC

Is the last? Next WC

first WC

Add to conjunctural
bottlenecks list

Is a conjunctural bottleneck?Next WC

Is the last? Next WC

first WC

WC associated
to a bottleneck in one MO?

Add to
synchonisation list

Next WC

Is the last? Next WC

Replace WC not listed
above by NN model

no no

nono

no no

no

no

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

Is the last?

Is the last?

Is the last?

WC is widely used
Considering whole MO?

no
no

yes

Is the last?

yes

Figure 1. Algorithm used

B. The multilayer perceptron

The work of Cybenko [42] and Funahashi [43] has proved
that a multilayer neural network with only one hidden layer
(using a sigmoidal activation function) and an output layer
(using a linear activation function) can approximate all
nonlinear functions with any desired accuracy. These results
explain the great interest in this type of neural network, which
is called a multilayer perceptron (MLP). In this research work,
it is assumed that a part of the modeled production system can
be approximated with a nonlinear function obtained from an
MLP.

The structure of the MLP is discussed here. Its architecture
is shown in Figure 2. The neurons of the first (or input) layer

distribute the 0n inputs { }0
n

0
1 0

x,,x � of the MLP to the

neurons of the next layer (hidden layer). A special input
neuron (depicted by a square in Figure 2) represents a constant
input (equal to one) that is used for the representation of the
biases or thresholds of the hidden layer.

The ith neuron (i = 1 … n1) in the hidden layer receives the

0n inputs { }0
n

0
1 0

x,,x � from the input layer with associated

weights { }1
in

1
1i 0

w,,w � . This neuron first computes the

weighted sum of the 0n inputs:

�
=

+=
0n

1h

1
i

0
h

1
ih

1
i bx.wz , (1)

where 1
ib is the bias or threshold term of the ith hidden neuron.

The output of this neuron is given by a so-called activation
function of the sum in (1):

()1
i

1
i zgx = , (2)

where g(.) is chosen as a hyperbolic tangent:

x2

x2

x2 e1

e1
1

e1

2
)x(g −

−

− +
−=−

+
= . (3)

Lastly, the outputs of the hidden neurons { }1
n

1
1 1

x,,x � are

distributed with associated weights { }2
n

2
1 1

w,,w � to the unique

neuron of the last (or output) layer.

input
layer

hidden
layer

output
layer

1

x 1
0

x h
0

x
n 0

0

x 1
1

x i
1

x
n 1

1

z 1
1

z i
1

z
n 1

1

w h1
1

w ih
1

w n h1

1

w 1
2

w i
2

w
n 1

2

1

b i
1

b
2

z

input
layer

hidden
layer

output
layer

11

x 1
0

x 1
0

x h
0

x h
0

x
n 0

0
x

n 0

0

x 1
1

x 1
1

x i
1

x i
1

x
n 1

1
x

n 1

1

z 1
1

z 1
1

z i
1

z i
1

z
n 1

1
z

n 1

1

w h1
1

w h1
1

w ih
1

w ih
1

w n h1

1
w n h1

1

w 1
2

w 1
2

w i
2

w i
2

w
n 1

2
w

n 1

2

11

b i
1

b i
1

b
2

b
2

z

Figure 2. Architecture of the multilayer perceptron

As in the input layer, a particular hidden neuron (depicted

by a square in Figure 2) represents a constant input equal to
one that is used for the representation of the bias or threshold
of the output layer.

The neuron of the last layer simply performs the following
sum, its activation function being chosen to be linear:

�
=

+=
1n

1i

1
i

2
i bx.wz , (4)

where 2
iw are the weights connecting the outputs of the

hidden neurons to the output neuron, and b is the threshold of
the output neuron.

Thus, only the number of hidden neurons is always
unknown. To find this, a pruning algorithm may be used.

III. PRUNING ALGORITHM

Pruning algorithms have been classified into two broad
groups [44][45]: during learning pruning and post-learning
pruning.

The “during learning pruning” methods add terms to the
objective function that reward the network for choosing an
efficient solution. These methods are also known as “weight
decay” methods.

The “post-learning pruning” methods estimate the
sensitivity of the error function to the removal of an element.
The element with the least effect is then removed. Pruning
continues until the effect of every element is deemed
significant.

In this paper, only “post-learning pruning” methods are
considered. This group can be divided into two subgroups
[15]: weight saliencies pruning and output sensitivity analysis
pruning.

Weight saliencies pruning considers the change in the error
function due to small changes in the values of the weights. A
measure of the relative effect of the different weights, or
saliency, can be computed. The weights with low saliencies are
deleted. The Optimal Brain Damage (OBD) [46] and Optimal
Brain Surgeon (OBS) [20] algorithms, and all algorithms
derived from them [22][47][48], use a second-order Taylor
expansion of the error function to estimate how the training
error will change as the weights are perturbed. Tang et al. [49]
have proposed another method based on the use of an
improved Extended Kalman Filter. In this approach, they use
the error covariance matrix obtained during the learning in a
similar way to the Hessian matrix in the OBS algorithm.
Another approach is to use an approximation of the Fisher
information matrix to determine the optimal number of hidden
neurons [21].

The output sensitivity analysis method is based on a
variance analysis of sensitivity information, given by the
derivative of the neural network output with respect to the
parameters [36]. It is a powerful method because the neural
network structure inherently contains all the information to
compute these derivatives efficiently [50]. Sabo and Yu [51]
have proposed restricting the comparison of one parameter to
those from the same hidden neuron. Zeng and Yeung [24]
insert an input perturbation and study its effect on the output
sensitivity. Chandrasekaran et al. [52] propose a sensitivity-
based method utilizing linear unit models. These methods can
be grouped with the so-called “local methods” of Sensitivity
Analysis of Model Output (SAMO) approaches [53]. There
exists a second Sensitivity Analysis (SA) algorithm, the global
SAMO. In this approach, the space of the parameters (also

called factors or input factors in the SA terminology) is
explored within a finite region, and the variation of the output
induced by a factor is measured globally. Within this
framework, Lauret et al. [15] proposed using the extended
Fourier amplitude test to quantify the relevance of the hidden
neurons.

Other algorithms use different approaches. Some methods,
such as Neural Network Pruning for Function Approximation
(“N2PFA”), attempt to remove units directly [35]. Some
authors have proposed using genetic algorithms for pruning
[45][54]. Liang [25] proposed using an orthogonal projection
to determine the importance of hidden neurons.

In the following sections, the algorithm proposed by
Engelbrecht will be discussed. Then, the modification of this
algorithm will be presented and, finally, two other algorithms
(OBS and “N2PFA”) used for the comparison will be
summarized.

A. The Engelbrecht algorithm

This algorithm uses the variance nullity measure (VNM)
[55][56], where the variance of the sensitivy of an input or an
output of a hidden neuron is measured for the different
patterns. If this variance is not significantly different from
zero, and if the average sensitivity is small, the input or the
hidden neuron under consideration has no effect on the output
of the network. Therefore, the VNM can be used in hypothesis
testing to determine if an input or a hidden neuron has a
statistical impact on the network using the χ2 distribution. If
not, it must be pruned.

To determine if a hidden neuron i must be pruned, the VNM

of the weight 2
iw (i=1…n1) that connects this hidden neuron

to the output neuron must be calculated. For this, knowledge

of the sensitivity of the network output z to the parameter 2
iw

is necessary. This sensitivity corresponds to the contribution of
this parameter to the error at the output of the network. This
contribution is determined by the partial derivative of the

network output z with respect to the parameter 2
iw being

considered:

P1p)p(x
w

)p(z
)p(S 1

i2
i

w2
i

�==
∂

∂= , (5)

where P is the number of data patterns from the learning
database.

Similarly, the sensitivity of the network output z to the input
0
hx (h=1…n0) is obtained by performing the partial derivative

of the output with respect to the input 0hx under consideration:

()
() P...1pw.)p(x1.w

w.)p(z'g.w

)p(x

)p(z
.

)p(z

)p(x
.

)p(x

)p(z

)p(x

)p(z
)p(S

1
ih

21
i

n

1i

2
i

1
ih

1
i

n

1i

2
i

0
h

1
i

1
i

1
i

n

1i
1
i

0
h

x

1

1

1
0
h

=��
�

�
��
�

�
−=

=

∂

∂

∂

∂

∂

∂=
∂

∂=

�

�

�

=

=

=

. (6)

The sensitivity of the network output to a hidden neuron or

to an input can be explained with a unified notation using
)p(S

kθ (p=1…P and k=1…K=n0+n1), with θk corresponding

to 0
hx if the input h is considered, or corresponding to 2

iw if

the hidden neuron i is considered. The notation)p(S
kθ is

given by equation (5) or (6) according to the considered case.

The VNM is the unknown variance 2
kθσ of the parameter θk.

An estimator of this variance can be given by:

()
1P

S)p(S

ˆ

P

1p

2

2
kk

k −

−

=σ
�
=

θθ

θ , (7)

where
k

Sθ is the mean of the sensitivity of the output to θk:

P

)p(S

S

P

1p
k

k

�
=

θ

θ = . (8)

Using the VNM, the null hypothesis (that the variance in

parameter sensitivity is approximately zero) is tested, where

the null hypothesis 0� and its alternative 1� are:

�
	

�
A

B

σ<σ

σ=σ

θ

θ
2
0

2
1

2
0

2
0

k

k

:

:

�

�

 (9)

and where 2
0σ is a small positive real.

Using the fact that, under the null hypothesis, the relation

2
0

2
k

k

ˆ).1P(

σ

σ−
=Γ θ

θ (10)

has a χ2(�) distribution with � = P – 1 degrees of freedom in
the case of P patterns, the test (9) is performed by comparing
the relation (10) with the critical value Γc obtained from χ2
distribution tables:

)1,(2
c α−χ=Γ � , (11)

where � = P – 1 degrees of freedom, and α is the significance
level of the test. If ck

Γ<Γθ , the hidden neuron or the input

under consideration must be pruned.

The value of 2
0σ is crucial to the success of this algorithm.

If 2
0σ is too small, no parameters will be pruned. On the other

hand, if 2
0σ is too large, too many inputs or hidden neurons

will be pruned. The algorithm therefore starts with a small

value of 2
0σ (0.001) and multiplies this value by 10 if nothing

is pruned, until 2
0σ equals 0.1 [36]. In this paper, this

algorithm is denoted “Engel”.

B. The proposed algorithm

The previous algorithm allows the simultaneous pruning of
spurious hidden neurons and feature selection. However, the
pruning is approximate because the input variable may be
either pruned or conserved; in the latter case, the input under
consideration is distributed to all hidden neurons without
distinction.

An input variable may be useful for the evaluation of the
output of one hidden neuron and spurious for the evaluation of
another. In this case, the algorithm “Engel” may have two
extreme behaviors:

- pruning of a partially used variable, which implies a
loss of information;

- retention of spurious parameters, which can cause
perturbations and overfitting.

Therefore, the proposed approach decides whether to keep
or prune each parameter individually, and does not consider all
parameters related to an input together.

In the “Engel” algorithm, two different categories of
elements θk (inputs and hidden neurons) may be eliminated.
Now, three categories must be considered:

- weights connecting the input to the hidden neurons
1
ihw ;

- the bias of the hidden neurons 1
ib ; and

- weights connecting the hidden neurons to the output

neuron 2
iw .

The sensitivity of the output network to the bias b of the
output neuron is constant and is equal to one, so this algorithm
(and the “Engel” algorithm) may not prune this parameter if
required.

For each type of parameter, the sensitivity of the network

output to the parameters is needed. For the weight 2
iw

connecting the hidden neuron i to the output neuron, this
sensitivity is given by (5).

For the bias 1
ib of the hidden neurons, the sensitivity

corresponds to the contribution of this parameter to the global
error of the output of the network. This contribution is
determined by the partial derivative of the output of the

network z with respect to the bias 1
ib being considered:

()
() P1p)p(x1.w

1.)p(z'g.w

b

)p(z
.

)p(z

)p(x
.

)p(x

)p(z

b

)p(z
)p(S

21
i

2
i

1
i

2
i

1
i

1
i

1
i

1
i

1
i

1
i

b1
i

�=��
�

�
��
�

�
−=

=

∂

∂

∂

∂

∂

∂=
∂

∂=

. (12)

Similarly, the sensitivity for the weights 1ihw connecting the

input neurons to the hidden neurons is given by:

()
() P1p)p(x.)p(x1.w

)p(x.)p(z'g.w

w

)p(z
.

)p(z

)p(x
.

)p(x

)p(z

w

)p(z
)p(S

0
h

21
i

2
i

0
h

1
i

2
i

1
ih

1
i

1
i

1
i

1
i

1
ih

w1
ih

�=�
�

�
�
�

� −=

=

∂
∂

∂
∂

∂
∂=

∂
∂=

. (13)

As for the previous algorithm, the sensitivity of the output to

a parameter is)p(S
kθ (p=1…P and k=1…K=(n0+2).n1), with

θk corresponding to:

- 1
ihw if the weight connecting the input h to the

hidden neuron i is considered;

- 1
ib if the bias of the hidden neuron i is considered;

or

- 2
iw if the weight connecting the hidden neuron i to

the output neuron is considered.
The notation)p(S

kθ is then given by equations (13), (12)

or (5) according to the considered case.
The following part of the algorithm is identical to the

previous part. The hypothesis test is described by (9), which
leads to a comparison between the value (10) and the threshold
(11). The determination of (10) requires the calculation of the
VNM using (7) and (8). The choice of the significance level α

and the parameter 2
0σ are the same as for the “Engel”

algorithm, in order to allow the comparison of these two
algorithms. In the following sections, this algorithm will be
denoted “Engel_mod”.

C. The comparison algorithms

The proposed algorithm will be compared with three
classical ones, the "Engel" one which has been presented in
section III.A and two others, the OBS [20] and “N2PFA” [35]

algorithms. These two algorithms are summarized here.
1) Optimal Brain Surgeon (OBS)

This algorithm minimizes the sensitivity of the error
criterion subject to the constraint of nullity of a weight. This
nullity constraint expresses the deletion of this weight. The
criterion considered is generally a quadratic criterion:

()�
=

θ−=θ
P

1p

2),p(z)p(y
P

1
)(V , (14)

where θ is a vector grouping all the weights and biases of the
network, z is the network output and y is the desired output.

The sensitivity)(V θδ of the criterion V(θ) is approximated

by a Taylor expansion around θ of order two:

δθδθ+θδθ≈θδ .H.
2

1
)('V)(V TT . (15)

Because the gradient V’(θ) is null after convergence, the

first term in (15) vanishes, leading to:

δθδθ≈θδ .H.
2

1
)(V T , (16)

which involves only the Hessian H. Vector eq can be defined
as a canonical vector selecting the qth component of θ

([]00100eT
q ��=). The deletion of the weight θq (i.e.,

() 0eT
q =θ+δθ) must lead to a minimal increase of the

criterion. The following Lagrangian may thus be written:

()()θ+δθλ+δθδθ=δθ T
q

T e.H.
2

1
)(� . (17)

Minimizing this leads to:

q
1

1
qq

q
eH

H

−
−

θ
−=δθ , (18)

where 1
qqH− is the qth diagonal term of H–1. The weight to be

deleted is that which minimizes (15). Equation (18) allows the
qth weight to be forced to zero, and can update the remaining
weights without retraining. It can nevertheless be useful to
retrain the network after each pruning of a weight in order to
compensate for the approximation introduced by the Taylor
expansion (15). The main difficulty with this algorithm is the
choice of the optimal structure, because no stop criterion is
included. Different criteria may be used to evaluate the
different structures. The two adopted here are the mean sum
square error (MSSE) criterion, using the validation data set,
and the final prediction error (FPE) criterion, which is used on
the learning data set and accounts for the number of

parameters [57]. The algorithm used for the experiment was
programmed by Norgaard [47] and allows a relearning phase
between each deletion of a parameter. The results presented
are those obtained with or without these additional learning
phases, so four different names are used for this algorithm:

- “OBS_L_FPE”: FPE criterion with additional
relearning;

- “OBS_L_MSSE”: MSSE criterion with additional
relearning;

- “OBS_WL_FPE”: FPE criterion without additional
relearning; and

- “OBS_WL_MSSE”: MSSE criterion without
additional relearning.

2) Neural Network Pruning for Function Approximation
(“N2PFA”)

This algorithm uses the mean absolute deviation (MAD) to
measure the performance of the neural network. Two MAD
values are calculated: MADT, which is based on the learning
data set, and MADV, which is based on the validation data set

�

�

=

=

−==

−==

V

T

P

1p
V

V
VV

P

1p
T

T
TT

)p(z)p(y.
P

1
MMAD

)p(z)p(y.
P

1
MMAD

, (19)

where subscript T represents the learning data set, subscript V
represents the validation data set, and P and y are the number
of data points and given data set, respectively. The values
MADT and MADV are used to stop the pruning.

The “N2PFA” algorithm starts with an oversized neural
network, and its parameters are then learned. The initialization
of the algorithm is performed by calculating MT and MV (19)

and by initializing the memories T
best
T MM = and

V
best
V MM = , and a threshold { }best

V
best
Tmax M,MmaxEr = .

The algorithm then proceeds as two steps:
Step 1: Deletion of hidden neurons

- Set 0w2
i = and calculate the MAD values MT(i)

(i=1…n1).
- Find the minimum MT(ind)=min(MT(i), i=1…n1).

- Set 0w2
ind = , and relearn the network.

- Update the MAD values MT and MV.
- If)1(ErM maxT β+≤ and)1(ErM maxV β+≤ :

o prune the hidden neuron ind;

o ()T
best
T

best
T M,MminM = ;

o ()V
best
V

best
V M,MminM = ;

o { }best
V

best
Tmax M,MmaxEr = ;

o repeat step 1 with the new structure.
- Otherwise, restore the old weights and go to the next

step.
Step 2: Deletion of inputs

- Set)i(0w1
ih ∀= and calculate the MAD values

MT(h) (h=1…n0).
- Find the minimum MT(ind)=min(MT(h), h=1…n0).

- Set)i(0w1
ind,i ∀= , and relearn the network.

- Update the MAD values MT and MV.
- If)1(ErM maxT β+≤ and)1(ErM maxV β+≤ :

o prune the input ind;

o ()T
best
T

best
T M,MminM = ;

o ()V
best
V

best
V M,MminM = ;

o { }best
V

best
Tmax M,MmaxEr = ;

o repeat step 2 with the new structure.
- Otherwise, end the algorithm.

The value β is used to avoid an early halt of the pruning
algorithm [35]. It is tuned to 0.025. In the following sections,
this algorithm will be named “N2PFA”.

IV. THE SIMULATION EXAMPLE

To test and evaluate the proposed pruning algorithm, two
simulation examples were constructed.

A. Modeling a static system

The nonlinear simulation system to be modeled is based on
a simple one-hidden-layer perceptron structure with three
inputs and one output. This system, supposedly unknown, is
chosen to avoid problems related to the differences between
the form of the ‘true’ model and that of the fitted model. The
system is described by:

()

())t(e)t(x)t(xtanh

)t(x.3)t(x)t(x.2tanh1)t(y

12

321

+−+
+−+=

, (20)

where e(t) is an additive Gaussian noise whose mean is 0 and
variance is 0.2.

Two data sets of 500 points are created, the first for model
learning and the second for test or validation. These two data
sets include five input variables (x1, x2 and x3 used here and
two supplementary ones). The five inputs are sequences of
steps of random length and amplitude. To give each input a
different influence, the input ranges are [–1; 1], [0; 1.5],
[–1; 1.5], [0; 0.5] and [–1; 0]. The learning algorithm is from
Levenberg–Marquardt [47].

The initial learning is carried out with a neural network
comprising five inputs, eight hidden neurons and one output
(i.e., 57 parameters), for a maximum of 50,000 iterations. Fifty
sets of initial parameters were constructed using a modified
Nguyen–Widrow algorithm [58]. The four pruning algorithms
use the same set of initial parameters.

All the results obtained from the first system were grouped
and synthesized in Table 1. The first column presents the
number of inputs retained by the algorithms and the second

column gives the number of hidden neurons retained. The third
column gives the number of parameters (weights and biases) in
the resulting models. The last column presents the time spent
to complete the algorithms. For each column, the minimum,
maximum and mean values of the parameters under
consideration are noted for the different algorithms using the
50 sets of initial weights. For each column, two percentages
are indicated. The first indicates the percentage of initial
weight sets that yield values lower than the mean value. The
second indicates the percentage of initial weight sets that yield
values higher than the mean value. The lines correspond to the
different tested algorithms.

Recall the optimal structure of the neural model (the
objective of the different pruning algorithms). This structure
comprises three inputs and two hidden neurons and is
comprised of eight parameters as shown in (20).

First, the number of inputs remaining in the models with the
different algorithms is studied. No algorithm prunes the two
spurious inputs. Only the algorithms “Engel”, “N2PFA” and
OBS (using the MSSE criterion with and without relearning,
i.e., “OBS_L_MSSE” and “OBS_WL_MSSE”) prune one of
the two spurious inputs. The percentages and the mean values
show that the “N2PFA” algorithm gives the best results, before
the OBS algorithm with relearning (when no relearning is
performed, the performances of the algorithm deteriorates) and
the “Engel” algorithm, which deletes one spurious input in
42% of the cases.

Next, the numbers of hidden neurons remaining in the
models are compared for the different algorithms. The results
are more dispersed than for the previous study. However, only
the algorithms “Engel_mod”, “N2PFA”, “OBS_L_MSSE” and
“OBS_WL_MSSE” reach a satisfactory number of hidden
neurons (two). The algorithms “Engel_mod”, “N2PFA”,
“OBS_L_MSSE” give similar results for mean values (3.63,
3.58 and 3.78, respectively), the percentage of results obtained
that are lower than the mean values (46%, 56% and 58%,
respectively) and maximal values (6, 8 and 8, respectively).
When no relearning is performed with the OBS algorithms, the
results deteriorate greatly.

At this point, the “N2PFA” algorithm seems to give the best
results. This stance must be moderated when considering the
number of parameters comprising the models. Only the OBS
algorithm (using the MSSE criterion with and without
relearning, i.e., “OBS_L_MSSE” or “OBS_WL_MSSE”) finds
eight parameters of the optimal structure. However, for these
considered structures, some spurious parameters have been
retained, to the detriment of others that were incorrectly
pruned. In particular, one spurious input remains. Unlike the
OBS algorithm, the “Engel_mod” and “N2PFA” algorithms
reach structures close to optimal without pruning useful
connections and retaining at best 11 and 13 parameters,
respectively. The analysis of the percentages and of the mean
and maximum values shows that these two algorithms give
similar results.

TABLE 1: RESULTS OBTAINED ON THE SYSTEM 1

val % val % val % val %
min 4 42% 5 52% 31 40% 3.10E-02 26%
mean 4.6 < > 7.2 < > 47.9 < > 4.70E-02 < >
max 5 58% 8 48% 57 60% 6.30E-02 74%
min 5 2 46% 11 46% 0.11 50%
mean 5 < > 3.68 < > 24.4 < > 0.35 < >
max 5 6 54% 43 54% 0.61 50%
min 4 98% 2 56% 13 56% 1.07 52%
mean 4.02 < > 3.58 < > 22.6 < > 1.6 < >
max 5 2% 8 44% 49 44% 2.27 48%
min 5 5 2% 25 44% 13.4 56%
mean 5 < > 7.9 < > 50.1 < > 20 < >
max 5 8 98% 57 56% 26.1 44%
min 4 80% 2 58% 8 76% 13.4 56%
mean 4.2 < > 3.78 < > 14.4 < > 20 < >
max 5 20% 8 42% 57 24% 26.1 44%
min 5 8 47 32% 7.56 56%
mean 5 < > 8 < > 55.4 < > 9.85 < >
max 5 8 57 68% 11.9 44%
min 4 8% 2 18% 9 26% 7.56 56%
mean 4.9 < > 7.5 < > 49.8 < > 9.85 < >
max 5 92% 8 82% 57 74% 11.9 44%

duration

Engel

Nb_I Nb_H Nb_θ

OBS_WL_FPE

OBS_WL_MSSE

Engel_mod

N2PFA

OBS_L_FPE

OBS_L_MSSE

TABLE 2: RESULTS OBTAINED ON THE SYSTEM 2

val % val % val % val %
min 8 14% 7 38% 71 42% 3.10E-02 66%
mean 9.84 < > 9.44 < > 112.9 < > 5.00E-02 < >
max 10 89% 10 62% 121 58% 9.40E-02 34%
min 10 2 70% 22 48% 0.22 62%
mean 10 < > 3.14 < > 36.8 < > 0.7 < >
max 10 6 30% 64 52% 1.03 38%
min 4 70% 2 52% 13 60% 3.49 48%
mean 5.52 < > 3.92 < > 32.7 < > 5.74 < >
max 10 30% 10 48% 97 40% 8.11 52%
min 4 48% 2 46% 8 52% 142.1 52%
mean 5.72 < > 4.7 < > 17 < > 160.4 < >
max 9 52% 9 54% 32 46% 180 48%

OBS_L_MSSE

engel

engel_mod

N2PFA

durationNb_I Nb_H NB_θ

Finally, consider the time spent to complete the algorithms.
The algorithm OBS is slower than the other three, even if no
relearning occurs. The “Engel_mod” algorithm is faster than
its rival (“N2PFA”) with an average ratio of four between the
duration of the “Engel_mod” algorithm (0.35 s), and the
duration of “N2PFA” algorithm (1.60 s). This difference is
due, in particular, to the relearning used in the “N2PFA”
algorithm and not used in the “Engel_mod” algorithm.

A. Modeling a dynamic system

The second system model is also based on a single hidden
layer perceptron, but this time using delayed inputs. This
system is described by:

()

())t(e)2t(x)2t(xtanh

)1t(x.3)t(x)2t(xtanh1)t(y

21

221

+−−−+
−+−−+=

, (21)

where e(t) is an additive Gaussian noise whose mean is zero
and variance is 0.2. The delayed inputs x1 and x2 are sequences
of steps of random length and amplitude. The duration of the
steps of input x1 (respectively x2) is randomly chosen between
5 and 10 (respectively 8 and 15). The amplitude of x1
(respectively x2) is randomly chosen between –1 and 1
(respectively 0 and 1.5).

Two data sets of 500 points were created, the first for model
learning and the second for testing or validation. The input
vector used for the learning is comprised of the two inputs x1
and x2 and their respective delays t, t–1, t–2, t–3 and t–4.

Main products conveying

RQM1

RQM2

RQM3

MS (scanner)

RQM4A

RQM4B

RQM5A

CSMKMKV

BT4BT4

BT5BT5

Secondary products conveying
(kockums saw)

RQM7

BT2BT2

RQM6

(Trimmer)

Log Arrival
(lifting apparatus)

Secondary products conveying
(kockums saw)

Main products conveying

RQM1

RQM2

RQM3

MS (scanner)

RQM4A

RQM4B

RQM5A

CSMKMKV

BT4BT4

BT5BT5

Secondary products conveying
(kockums saw)

RQM7

BT2BT2

RQM6

(Trimmer)

Log Arrival
(lifting apparatus)

Secondary products conveying
(kockums saw)

Figure 3. The canter line

This leads to 10 input neurons for the initial structure of the
neural network.

The initial learning is carried out with a neural network
comprising 10 inputs, eight hidden neurons and one output
(i.e., 97 parameters), for a maximum of 50,000 iterations. Fifty
sets of initial parameters were constructed using a modified
Nguyen–Widrow algorithm. The four tested pruning
algorithms used the same set of initial parameters.

All results obtained on the second system are grouped and
synthesized in Table 2. The optimal structure of the neural
model (the objective of the different pruning algorithms)
comprises four inputs and two hidden neurons and is
comprised of eight parameters, as shown in (21).

For this example, the OBS algorithm is tested using only the
MSSE criterion and relearning phases. As in the previous
example, the OBS algorithm prunes useful parameters. The
algorithms “N2PFA” and “Engel_mod” perform best and give
similar results. In particular, no other algorithm finds the
optimal number of hidden neurons (two). The “N2PFA”
algorithm reaches a satisfactory four; however, it is slower
than the “Engel_mod” algorithm and takes eight times the
execution time.

The results obtained from these two examples show that the
OBS algorithm gives the worst results, so this algorithm will
not be used for the industrial application.

I. INDUSTRIAL APPLICATION

At the time of the study, the sawmill had a capacity of
270,000 m3/year, a turnover of 52 million euros and 300
employees.

The internal supply chain can be described from a process
point of view, and so the physical industrial production system
can be broken down into three main parts. To understand the

functioning of the process, the course of a log will be
described, from its admission into the process to its exit in
plank form.

The first part of the process corresponds to the canter line,
which is presented in Figure 3. The product flow is
represented by dashed arrows. The log is taken into the
process by using conveyors RQM1, RQM2 and RQM3.
Depending on its characteristics (scanner MS), the log is
driven to RQM4 or RQM5, which are used as input inventory
for the canter line. Next, the log goes on to the first canter’s
machine, and later the CSMK saw transforms the log into a
parallelepiped, the square in Figure 4.

Main products

Secondary products
(first and second passage)

Smaller diameter of the log

Larger diameter of the log

Main products

Secondary products
(first and second passage)

Smaller diameter of the log

Larger diameter of the log

Figure 4. The cutting plan

This first step, which gives the two first sides of the
parallelepiped, produces two planks (called secondary
products) that are taken out of the canter line using the BT4
and BT5 conveyors. The log is then driven on the RQM6
conveyor, rotated 90° and stored in RQM7 to wait for its
second passage to the CSMK saw. After the second passage,
the squaring is complete and two other secondary products are
taken out of the canter line (using the BT4 and BT5
conveyors) toward the second part of the process, the kockums
line.

QM9

Entrance secondary products
(Canter line)

Convoying Secondary products
(trimmer)

BT5BT5

BT4BT4

Convoying
planks

(stacker)

Centrors

Press
Rolls

Plank saw

Output conveyor
Plank

transfert

Alignment table

Rising
Degrange

coveyor

little
strip

Plank
truck

Ejector

Alignment
rolls

Wedge

Centring
table

KOCKUMS

Input of Kockums

Traps

Plank conveyor

QM11

QM9

Entrance secondary products
(Canter line)

Convoying Secondary products
(trimmer)

BT5BT5

BT4BT4

Convoying
planks

(stacker)

Centrors

Press
Rolls

Plank saw

Output conveyor
Plank

transfert

Alignment table

Rising
Degrange

coveyor

little
strip

Plank
truck

Ejector

Alignment
rolls

Wedge

Centring
table

KOCKUMS

Input of Kockums

Traps

Plank conveyor

QM11

Figure 5. The Kockums line

Grande Bande

Scraps
conveying
(crusher)

Entrance
Main products

(Canter line)

products
conveyor
(sorter)

Tr
ap

s

Al
gn

m
en

t r
ol

ls
3

Sa
w

1

st
rip

D
ea

le
r

D
is

en
ta

ng
le

1

D
is

en
ta

ng
le

2

dr
um

Al
ig

nm
en

t r
ol

ls
2

Al
ig

nm
en

t r
ol

ls
1

W
ed

ge
s

co
nv

ey
or

sa
w

2

C
ol

le
ct

or
2

C
ol

le
ct

or
1

Entrance
Secondary products

(KOCKUMS)

Grande Bande

Scraps
conveying
(crusher)

Entrance
Main products

(Canter line)

products
conveyor
(sorter)

Tr
ap

s

Al
gn

m
en

t r
ol

ls
3

Sa
w

1

st
rip

D
ea

le
r

D
is

en
ta

ng
le

1

D
is

en
ta

ng
le

2

dr
um

Al
ig

nm
en

t r
ol

ls
2

Al
ig

nm
en

t r
ol

ls
1

W
ed

ge
s

co
nv

ey
or

sa
w

2

C
ol

le
ct

or
2

C
ol

le
ct

or
1

Entrance
Secondary products

(KOCKUMS)

Entrance
Secondary products

(KOCKUMS)

Figure 6. The trimmer line

The square is cut into three planks (called main products) on
the MKV saw. These main products are driven to the third part
of the process, the trimmer line. The cutting of the log into
main and secondary products is described by the cutting plan
(Figure 4).

Figure 5 shows the second part of the process, where the
main machine is the kockums saw. Only secondary products
are driven onto this part of the process. The secondary

products are taken into the line using the BT4 and BT5
conveyors. They are then sawn up using the QM11 saw before
reaching the kockums saw, which optimizes the plank
depending on the needed products. The alignment table is used
for the input inventory of the kockums saw. Finally, the
secondary products are sent to the third part of the process
using the exit conveyor.

Log
arrival

Input sorter

Canter line

Kockums saw Trimmer

Sorter

Log
arrival

Input sorter

Canter line

Kockums saw Trimmer

Sorter

Figure 7. The complete model

Figure 8. The reduced model

The third part of the process is the trimmer line, which is
presented in Figure 6. This line performs the final operation:
cross cutting, or cutting products to length. The inputs of the
line are two collectors (1 and 2), which are used to collect
secondary and main products from the kockums line and the
canter line, respectively. Saw 1 is used to perform a default
bleeding. Saw 2 cuts products to length.

Previous work [3] has shown that the trimmer saw is the
bottleneck of the entire process.

I. THE REDUCED MODEL

A. The complete model

The complete model of the sawmill process was constructed
in previous work [3]. This model is presented in Figure 7 and
is composed of different modules. The first module is used to
model the log arrival, which follows a homogeneous Poisson
process. In this module, the characteristics of the log are
measured using the scanner (Figure 3) and associated with the
log.

A second module, the “input sorter”, directs the log to

RQM4 or RQM5 depending on its characteristics. It may also
eject the log from the process if it is machine-gunned or if its
dimensions are out of range. The logs go to the next module,
which models the RQM4 and RQM5 queues. Conveyors
RQM4, RQM5 and RQM7 are used as input inventory for the
canter line. Two other modules are used for the simulation of
the canter line and the passage of the square in RQM7. The
canter line model uses two submodels for the management of
main and secondary products. The canter line has three
outputs, which lead to the kockums line for the secondary
products and to the trimmer line for the main products.

The other modules, which correspond to the core of the
process, are simpler. They are used to model the kockums and
trimmer lines and to model the sorting of products into
different racks. The different submodels make the model
presented in Figure 7 more complex than represented here. In
particular, constructing the submodel to manage the priority
rules for selecting the input inventory for the canter line is
difficult.

B. The reduced model

The design of a complete model for the simulation of a
workshop is a difficult task that leads to a complex model. The
bottleneck of this line is the trimmer. According to the theory
of constraints [2], the main industrial objective is to optimize
the use of bottlenecks.

Within this framework, modeling the dependencies of
inventories RQM4, RQM5 and RQM7, the canter line and the
kockums line is unnecessary. In addition, all parts surrounded
by the gray dashed line in Figure 7 give no direct or useful
information for the evaluation of an MPS. Actually, only the
arrival times of the products in the trimmer queue are useful
for simulating the load of this bottleneck. This is why a
multilayer perceptron is used to replace all parts surrounded by
the gray dashed line in Figure 7. The neural network then uses
the available shop floor information. This network will
transform the information given by the “log arrivals” and
“input sorter” modules into the arrival times of products at the
entrance of the trimmer. It does not require the path used by
the product or the transformations undergone by the product.

The reduced model is therefore obtained, where a large part
of the model comprises a multilayer perceptron (Figure 8). The
structure of this network must be determined.

C. Database and initial learning

For this, the available input data of the process are required
[8]. First, each log is scanned at the input of the canter line.
This information relates to the product dimension, with length
(Lg) and three values for timber diameter (diaPB, diaGB and
diaMOY). These variables are used to control the path of the
log to the RQM4 or RQM5 queue. This choice is an additional
information (RQM).

In addition to this dimensional information, the process
variables must be characterized at the time of the log’s arrival,
so the input stock of the trimmer (Q_trim), the utilization rate
of the trimmer (U_trim) and the number of logs present in the
process between the inputs of RQM4 or RQM5 and the exit of
the canter line (Q_RQM) must be measured.

The last type of information is related to the cutting plan of
the logs. In fact, each log will be cut into n main or secondary
products. In our application, the cutting plan (Figure 4) divides
the log into seven products:

- two secondary products resulting from the first step
of the cutting process on the CSMK saw of the canter
line;

- two secondary products resulting from the second
step of the cutting process on the CSMK saw of the
canter line after staying in the RQM7 queue;

- three main products resulting from the third step of
the cutting process on the MKV saw of the canter
line.

These two saws (CSMK and MKV) belong to the canter
line. These seven products can be classified into three
categories according to the location (CSMK or MKV) and to
the stage in the cutting process (first or second cutting). This
information is given by the variable “type_piece”. The last

information is the thickness (in mm) of the product, which is
also the reference. In this case, only two references are
considered: main products are 75 mm and secondary products
are 25 mm (ref). Consequently, the neural networks input
variables are Lg, diaGB, diaMOY, diaPB, ref, type_piece,
Q_trim, U_trim, Q_RQM and RQM. In this application,
12,775 products were simulated.

The objective is to estimate the delay (∆T) corresponding to
the throughput time for the 12,775 products, between the
process input time and the trimmer queue input time. In
practice, ∆T is the output of the neural network:

� �
= =

+
�
�

�

�

�
�

�

�
+=∆

1n

1i

10

1h

1
i

0
h

1
ih

2
i bbx.wg.wT . (22)

The learning of the network is supervised, so it is necessary

to divide the database into learning and validation data sets.
Previous work [8][10] using the OBS algorithm has shown that
24 hidden neurons are sufficient for modeling the system, so
the initial network structure uses 25 hidden neurons. The
initial learning is therefore carried out with a neural network
comprising 10 inputs, 25 hidden neurons and one output (i.e.,
301 parameters), for a maximum of 50,000 iterations. To take
into account that the learning algorithm performs a local
search of the minimum, 50 sets of initial parameters have been
constructed using a modified Nguyen–Widrow algorithm [58].

D. Comparison of pruning algorithms

The three pruning algorithms use the same set of initial
parameters. The algorithms under consideration are “N2PFA”,
“Engel” and “Engel_mod”. All the results obtained on the
industrial case are grouped and synthesized in Table 3. The
first line presents the number of inputs retained by the
algorithms, and the second line gives the number of hidden
neurons retained. The third line gives the number of
parameters (weights and biases) of the resulting models. Lines
4 and 5 give values of the sum square error (MSSE), obtained
for the three algorithms using the learning and validation data
sets, respectively. The last line presents the time spent to
complete the algorithms.

For each line, the minimum, maximum and mean values of
the parameters under consideration are noted for the different
algorithms using the 50 initial weight sets. For each line, two
percentages are shown. The first indicates the percentage of
initial weight sets that give values lower than the mean value.
The second is the percentage of initial weight sets that give
values higher than the mean value. The columns correspond to
the different tested algorithms.

First, the number of inputs remaining in the model is
studied. The three algorithms give very different results. If the
“Engel_mod” algorithm retains all the inputs, then the “Engel”
algorithm may prune all the inputs in some cases. The
“N2PFA” algorithm has a more realistic behavior for the
pruning of input variables.

TABLE 3: COMPARISON OF THE 3 ALGORITHMS ON THE INDUSTRIAL CASE

min mean max min mean max min mean max
val 0 8.14 10 10 10 10 5 8.62 10
% 62% < > 38% < > 38% < > 62%
val 0 2.26 5 2 2.8 5 2 18.82 25
% 72% < > 28% 48% < > 52% 40% < > 60%
val 1 25.08 61 24 34.2 61 21 202 301
% 72% < > 28% 48% < > 52% 42% < > 58%
val 268250 381138 538740 264590 367401 509920 154610 248417424620
% 58% < > 42% 58% < > 42% 64% < > 36%
val 265350 407081 639370 285100 393779 575600 175810 266351502580
% 58% < > 42% 58% < > 42% 68% < > 32%
val 12.45 104.51 519.31 53.53 150.58 512.42 167.74 457.74 1570.6
% 64% < > 36% 76% < > 24% 56% < > 44%

duration

Nb_H

Nb_θ

NSSE_ID

NSSE_val

Engel Engel_mod N2PFA

Nb_I

Next, the number of hidden neurons remaining in the

models is studied for the different algorithms. Considering the
previous results obtained with the OBS algorithm [8], it was
expected that most hidden neurons would have been retained.
Yet, if the “Engel” algorithm performs the pruning of all
hidden neurons in some cases, then in most cases the three
algorithms converge toward the optimal two hidden neurons.
However, this optimum number of hidden neurons is not found
very often for the “N2PFA” algorithm, compared with the two
other algorithms. The number of hidden neurons for the
“Engel_mod” algorithm has a mean value of 2.8, a minimum
value of 2 and a maximum value of 5 when the “N2PFA”
algorithm finds the two hidden neurons in only 6% of cases
and prunes no hidden neurons in 28% of cases.

The number of parameters remaining in the models is now
considered. The “Engel_mod” algorithm finds the smallest
structure (the results for “Engel” are biased by the absurd
cases where all parameters are pruned). This is because of the
number of hidden neurons that are retained and because the
parameters are pruned one by one. Therefore, even if the
“Engel_mod” algorithm cannot prune an input completely, it
prunes many parameters connecting the inputs and the hidden
neurons.

The values of NSSE obtained for the learning and the
validation data sets are used to confirm or invalidate a choice
of structure. These values are very difficult to compare
between algorithms, because “N2PFA” relearns for 50
iterations after each pruning of an input or a hidden neuron,
while the two other algorithms do not perform this relearning
process.

For the three algorithms, the structures that retain only two
hidden neurons give the best values of NSSE. This fact
confirms the choice of a structure using two hidden neurons.

The last line of Table 3 gives the time spent to complete the
three algorithms. The “Engel” and “Engel_mod” algorithms
take very similar computing times, but the “N2PFA” algorithm
requires three times the computing time, so it can take up to
half an hour.

In summary, the “Engel” algorithm leads to an absurd
structure without input or hidden neurons in 18% of cases. The

“N2PFA” algorithm is the only one that can select the input
variables. However, it retains fewer than six hidden neurons in
only 14% of the cases. Moreover, this algorithm is three times
slower than the other two. Finally, even if the “Engel_mod”
algorithm cannot perform the variable selection, it does allow
the rapid calculation of an acceptable number of hidden
neurons for inclusion into the network.

A. Association of the “N2PFA” and “Engel_mod”
algorithms

When considering the previous results, it is interesting to
consider the association of the two algorithms, “N2PFA” and
“Engel_mod”, in order to determine the structure of the
network.

The “Engel_mod” algorithm, which is the fastest, may be
used on the initial structure to quickly determine a good
number of hidden neurons. Then, the “N2PFA” algorithm may
be applied on this smaller structure to determine the useful
inputs. This approach should reduce the computing time.

Table 4 groups the results obtained using the 50 different
initial sets of parameters.

TABLE 4: RESULTS OF THE ASSOCIATION

min mean max
val 5 7.98 10
% 62% < > 38%
val 1 2.16 3
% 72% < > 28%
val 10 15.42 25
% 72% < > 28%
val 179070 232323 463450
% 80% < > 20%
val 189300 244752 487760
% 80% < > 20%
val 2.28E-11 5.94 272.69
% 98% < > 0.02
val 423.2 478.5974 680.82
% 80% < > 20%
val 0.02 14.22 270.79
% 84% < > 16%
val 435.06 490.69 698.31
% 80% < > 20%
val 502.58 629.18 1189.5
% 68% < > 32%

NSSE_ID

NSSE_val

duration

mean
error_ID
standard deviation
error_ID
mean
error_val
standard deviation
error_val

Engel_mod + N2PFA

Nb_I

Nb_H

Nb_θ

The first three lines present the number of inputs, the
number of hidden neurons and the number of parameters
comprising the resulting model, respectively. The next two
lines show the NSSE values for the learning and the validation
data sets, respectively. The next four lines present the mean
and the standard deviation of the residuals obtained on the
learning and validation data sets, respectively. The last line
shows the computing time.

The computing time is well reduced, compared with the
computing time required for the “N2PFA” algorithm used
alone. However, all pruning phases take more than 10 minutes
on average.

In most cases, the number of retained hidden neurons tends
toward two. The mean number of inputs retained in the model
is eight.

To determine the best structure, the preferred structure is
that which gives the smallest mean values of the residuals for
the learning and validation data sets, and the lowest values of
NSSE. The selected structure includes eight inputs and two
hidden neurons and therefore has 21 parameters. With this
structure, the mean errors obtained on the learning (1.9 × 10–9)
and the validation (0.018) data sets are close to zero.
Moreover, the standard deviation of the residual obtained with
this structure is among the smallest (437.56 for learning and
456.17 for validation).

Most of the tests evolve to this considered structure.
Figure 9 presents the selected structure.

DiaGB

DiaMOY

DiaPB

Type_piece

Q_ébouteur

U_ébouteur

Q_RQM

RQM

∆T

DiaGB

DiaMOY

DiaPB

Type_piece

Q_ébouteur

U_ébouteur

Q_RQM

RQM

∆T

Figure 9. Structure of the network

Of the 10 initial inputs presented to the network, two have
been pruned. These two inputs are the length of the log (Lg)
and the type of product (ref). For this last variable, deletion
could be predicted because the variable “type_piece” includes
the information held by this variable. These two variables are
strongly correlated, and the variable “type_piece” holds more
information.

B. Results of the reduced model

The neural network is included in the reduced model. The
performances of the reduced model and the complete model
are investigated in this section.

Figure 10 shows the evolution of the input inventory of the
trimmer as a function of the time (in seconds). This
comparison is performed with two different data sets obtained
under the same conditions. Figure 10 shows that the two
models present the same type of queue evolution.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

Figure 10. Input queue of the trimmer (black: complete model

– grey: reduced model)

The differences between the two evolutions of the queues
are due to the stochastic nature of the two models. The log
arrival for the two models follows a homogeneous Poisson
process with a mean of 20 seconds. The initialization of the
models can produce an edge effect, which explains these
differences in evolution of the two models [59][60].

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 11. Utilisation rate of the trimmer (black: complete

model – grey: reduced model)

Figure 11 shows the utilization rate of the trimmer as a
function of the time (in seconds) for the two models (complete
in black and reduced in gray). The two models present a
similar evolution of the utilization rate and converge to the
same value.

II. CONCLUSION

A new approach for simulation model reduction has been
presented. This approach uses a neural network and, more
specifically, a multilayer perceptron. The aim was to model the
functioning of the part of a process that is not constrained in
capacity.

This paper focused on one step of the network model

design: the determination of the structure of the network. In
the first stage, a new pruning algorithm was proposed and
compared with three others using two simulation examples.

Next, these pruning algorithms were applied to the reduction
of a model of a sawmill’s internal supply chain. The simulation
examples and industrial case have highlighted the results of the
different pruning algorithms.

The proposed algorithm allows rapid determination of a
satisfactory number of hidden neurons, while the “N2PFA”
algorithm is efficient for the determination of the useful inputs.
Therefore, these two algorithms are associated and benefit
from their different behaviors.

The results obtained for the industrial case have proved the
good results of the pruning approach and the capacity to
reduce the simulation model by using a neural network.

Future work could validate this approach using different
application cases. One particular application could consider
several external supply chains where at least one enterprise
belongs to different supply chains.

REFERENCES

[1] P. Lopez, and F. Roubellat, Ordonnancement de la production, Hermès,
Paris, 2001.

[2] E. Goldratt, and J. Cox, The goal: A process of ongoing improvement,
North River Press; 2nd revised edition, Great Barrington, USA, 1992.

[3] A. Thomas, and P. Charpentier, “Reducing simulation models for
scheduling manufacturing facilities”, European Journal of Operational
Research, vol. 161(1), pp. 111–125, 2005.

[4] E.H. Page, D.M. Nicol, O. Balci, R.M. Fujimoto, P.A. Fishwick, P.
L’Ecuyer, and R. Smith, “An aggregate production planning framework
for the evaluation of volume flexibility”, Proc. of the 1999 Winter
Simulation Conference, pp. 1509–1520, 1999.

[5] S.C. Ward, “Argument for constructively simple models”, Journal of
the Operational Research Society, vol. 40(2), pp. 141–153, 1989.

[6] R.J. Brooks, and A.M. Tobias, “Simplification in the simulation of
manufacturing systems”, International Journal Production Research,
vol. 38(5), pp. 1009–1027, 2000.

[7] L. Chwif, R.J. Paul, and M.R. Pereira Barretto, “Discrete event
simulation model reduction: A causal approach”, Simulation Modelling
Practice and Theory, vol. 14, pp. 930–944, 2006.

[8] P. Thomas, and A. Thomas, “Expérimentation de la reduction d’un
modèle de simulation par réseau de neurones: cas d’une scierie”, 7ème
Conf. Int. de MOdélisation et de SIMulation MOSIM’08, Paris, France,
30 March to 2 April, 2008.

[9] P. Thomas, G. Bloch, F. Sirou, and V. Eustache, “Neural modeling of an
induction furnace using robust learning criteria”, Journal of Integrated
Computer Aided Engineering, vol. 6(1), pp. 5–23, 1999.

[10] P. Thomas, D. Choffel, and A. Thomas, “Simulation reduction models
approach using neural network”, 10th Int. Conf. on Computer Modelling
and Simulation EUROSIM’08, Cambridge, UK, 1 to 3 April, 2008.

[11] P.L. Bartlett, “For valid generalization, the size of the weights is more
important than the size of the network”, Neural Information Processing
Systems, vol. 9, pp134-140, 1997.

[12] G.C. Cawley, and N.L.C. Talbot, “Preventing over-fitting during model
selection via Bayesian regularisation of the hyper-parameters”, Journal
of Machine Learning Research, vol. 8, pp. 841–861, 2007.

[13] H. Drucker, “Effect of pruning and early stopping on performance of a
boosting ensemble”, Computational Statistics and Data Analysis, vol.
38, pp. 393–406, 2002.

[14] C.M. Bishop, Neural network for pattern recognition, Oxford Univ.
Press, Oxford, UK, 1995.

[15] P. Lauret, E. Fock, and T.A. Mara, “A node pruning algorithm based on
a Fourier amplitude sensitivity test method”, IEEE Transaction on
Neural Networks, vol. 17(2), pp. 273–293, 2006.

[16] R. Chentouf, and C. Jutten, “Combining sigmoids and radial basis
function in evolutive neural architecture”, European Symp. on Artificial
Neural Network ESANN’96, Bruges, Belgium, pp. 129–134, 1996.

[17] R. Setiono, “Feedforward neural network construction using cross-
validation”, Neural Computation, vol. 13(11), pp. 2865–2877, 2001.

[18] I. Rivals, and L. Personnaz, “Neural network construction and selection
in nonlinear modeling”, IEEE Transaction on Neural Networks, vol.
14(4), pp. 804–819, 2003.

[19] L. Ma, and K. Khorasani, “New training strategies for constructive
neural networks with application to regression problems”, Neural
Network, vol. 17, pp. 589–609, 2004.

[20] B. Hassibi, and D.G. Stork, “Second order derivatives for network
pruning: optimal brain surgeon”, Advances in Neural Information
Processing Systems, S.H. Hanson, J.D. Cowan and C.L. Gilles (Eds.),
Morgan Kaufmann, San Mateo, CA, pp. 164–171, 1993.

[21] M. Cottrell, B. Girard, Y. Girard, M. Mangeas, and C. Muller, “Neural
modelling for time series: a statistical stepwise method for weight
elimination”, IEEE Transaction on Neural Networks, vol. 6(6), pp.
1355–1264, 1995.

[22] P. Thomas, and G. Bloch, “Robust pruning for multilayer perceptrons”,
IMACS/IEEE Multiconference on Computational Engineering in
Systems Applications CESA’98, Nabeul-Hammamet, Tunisia, pp. 17–
22, 1998.

[23] J. Xu, and D.W.C. Ho, “A new training and pruning algorithm based on
node dependence and Jacobian rank deficiency”, Neurocomputing, vol.
70, pp. 544–558, 2006.

[24] X. Zeng, and D.S. Yeung, “Hidden neuron pruning of multilayer
perceptrons using a quantified sensitivity measure”, Neurocomputing,
vol. 69, pp. 825–837, 2006.

[25] X. Liang, “Removal of hidden neurons in MLP by orthogonal projection
and weight crosswise propagation”, Neural Computing and
Applications, vol. 16, pp. 57–68, 2007.

[26] E. Romero, and J.M. Sopena, “Performing feature selection with
multilayer perceptron”, IEEE Transaction on Neural Network, vol.
19(3), pp. 431–441, 2008.

[27] I.T. Jollife, Principal component analysis, Springer, New-York, 1986.
[28] P. Demartines, Analyse de données par réseaux de neurones auto-

organisés, Ph.D. dissertation, Institut National Polytechnique de
Grenoble, France, 1995.

[29] G. Dreyfus, J.M. Martinez, M. Samuelides, M.B. Gordon, F. Badran, S.
Thiria, and L. Hérault, Réseaux de neurones: méthodologies et
applications, Editions Eyrolles, Paris, 2002.

[30] H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar, “Ranking a
random feature for variable and feature selection”, Journal of Machine
Learning Research, vol.3, pp. 1399–1414, 2003.

[31] T. Cibas, F. Fogelman Soulié, P. Gallinari and S. Raudys, “Variable
selection with neural networks”, Neurocomputing, vol. 12, pp. 223–248,
1996.

[32] P. Leray, and P. Gallinari, “Feature selection with neural networks”,
Behaviometrika, vol. 26(1), pp. 145–166, 1999.

[33] G. Castellano, and A.M. Fanelli, “Variable selection using neural
network models”, Neurocomputing, vol. 31, pp. 1–13, 2000.

[34] S. Gadat, and L. Younes, “A stochastic algorithm for feature selection in
pattern recognition”, Journal of Machine Learning Research, vol. 8, pp.
509–547, 2007.

[35] R. Setiono, and W.K. Leow, “Pruned neural networks for regression”,
6th Pacific RIM Int. Conf. on Artificial Intelligence PRICAI’00,
Melbourne, Australia, pp. 500–509, 2000.

[36] A.P. Engelbrecht, “A new pruning heuristic based on variance analysis
of sensitivity information”, IEEE Transaction on Neural Networks, vol.
12(6), pp. 1386–1399, 2001.

[37] B.P. Zeigler, Theory of modeling and simulation, Wiley, New York,
1976.

[38] G.S. Innis, and E. Rexstad, “Simulation model simplification
techniques”, Simulation, vol. 41, pp. 7–15, 1983.

[39] R.C. Leachman, Preliminary design and development of a corporate
level production planning system for the semi conductor industry, Eds
Optimization in industry, Chichester, UK, 1986.

[40] Y.F. Hung, and R.C. Leachman, “Reduced simulation models of wafer
fabrication facilities”, International Journal Production Research, vol.
37, pp. 2685–2701, 1999.

[41] J.S. Hwang, S. Hsieh, and H.C. Chou, “A Petri net based structure for
AS/RS operation modeling”, International Journal Production
Research, vol. 36, pp. 3323–3346, 1999.

[42] G. Cybenko, “Approximation by superposition of a sigmoidal function”,
Math. Control Systems Signals, vol. 2(4), pp. 303–314, 1989.

[43] K. Funahashi, “On the approximate realisation of continuous mapping
by neural networks”, Neural Networks, vol. 2, pp. 183–192, 1989.

[44] R. Reed, “Pruning algorithm – A survey”, IEEE Transaction on Neural
Network, vol. 4(5), pp. 740–747, 1993.

[45] C. Jutten, and O. Fambon, “Pruning methods: a review”, Proc. of
European Symp. on Artificial Neural Network ESANN’95, Brussels,
Belgium, pp. 129–140, 1995.

[46] Y. LeCun, J.S. Denker, and S.A. Solla, “Optimal brain damage”, Adv.
Neural Inf. Process. Syst., vol. 2, pp. 598–605, 1990.

[47] M. Norgaard, System identification and control with neural networks,
Ph.D. dissertation, Institute of Automation, Technical University of
Denmark, 1996.

[48] C.S. Leung, K.W. Wong, P.F. Sum, and L.W. Chan, “A pruning method
for the recursive least squared algorithm”, Neural Networks, vol. 14, pp.
147–174, 2001.

[49] H.S. Tang, S.T. Xue, R. Chen, and T. Sato, “H� Filtering method for
neural network training and pruning”, J. Comp. in Civ. Engineering,
vol. 21(1), pp. 47–58, 2007.

[50] M.E. Ricotti, and E. Zio, “Neural network approach to sensitivity and
uncertainty analysis”, Reliability Engineering and System Safety, vol.
64, pp. 59–71, 1999.

[51] D. Sabo, and X.H. Yu, “A new pruning algorithm for neural network
dimension analysis”, Proc. of the Int. Joint Conf. on Neural Network
IJCNN’08, Hong Kong, PRC, pp. 3313–3318, 2008

[52] H. Chandrasekaran, H.H. Chen, and M.T. Maury, “Pruning of basis
functions in nonlinear approximators”, Neurocomputing, vol. 34, pp.
29–53, 2000.

[53] A. Saltelli, K.S. Chan, and E.M. Scott, Sensitivity analysis, Wiley, New
York, 2000.

[54] F. Gruau, “A learning and pruning algorithm for genetic boolean neural
networks”, European Symp. on Artificial Neural Network ESANN’93,
pp. 57–63, 1993.

[55] D.W. Ruck, S.K. Rogers, and M. Kabrisky, “Feature selection using a
multilayer perceptron”, Neural Network Computing, vol. 2(2), pp. 40–
48, 1990.

[56] G. Tarr, Multilayered feedforward networks for image segmentation,
Ph.D. dissertation, Air Force Inst. Technol. Wright-Patterson AFB,
1991.

[57] L. Ljung, System identification: theory for the users, Prentice-Hall,
Englewood Cliffs, N.J., 1987.

[58] P. Thomas, and G. Bloch, “Initialization of one hidden layer feed-
forward neural networks for non-linear system identification”, Proc. of
the 15th IMACS World Congress on Scientific Computation, Modelling
and Applied Mathematics WC’97, Berlin, Germany, pp. 295–300, 1997.

[59] H. El Haouzi, Approche méthodologique pour l’intégration des
systèmes contrôlés par le produit dans un environnement de juste-à-
temps: Application à l’entreprise TRANE, Ph.D. dissertation, Université
Henri Poincaré Nancy 1, France, 2008.

[60] T. Klein, Le kanban actif pour assurer l’intéropérabilité décisionnelle
centralisé/distribué: Application à un industriel de l’ameublement,
Ph.D. dissertation, Université Henri Poincaré Nancy 1, France, 2008.

