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Simulation is a useful tool for the evaluation of a Master Production/Distribution Schedule (MPS). The goal of this paper is to 

propose a new approach to designing a simulation model by reducing its complexity. According to the theory of constraints, a reduced 
model is built using bottlenecks and a neural network exclusively. This paper focuses on one step of the network model design: 
determining the structure of the network. This task may be performed by using the constructive or pruning approaches. The main 
contribution of this paper is twofold; it first pro poses a new pruning algorithm based on an analysis of the variance of the sensitivity of 
all parameters of the network, and then uses this algorithm to reduce the simulation model of a sawmill supply chain. 

In the first step, the proposed pruning algorithm is tested with two simulation examples and compared with three classical pruning 
algorithms from the literature. In the second step, these four algorithms are used to determine the optimal structure of the network used 
for the complexity-reduction design procedure of the simulation model of a sawmill supply chain. 
 

Index Terms— multilayer perceptron, pruning, reduced model, simulation. 
 

I. INTRODUCTION 

Simulation is a useful tool for the evaluation of planning or 
scheduling scenarios [1]. Indeed, simulation highlights the 
evolution of the machine states, WIP (work in process) and 
queues. This information is useful for “predictive scheduling” 
[1] or rescheduling. Considering the theory of constraints [2], 
the optimization of production processes requires maximizing 
the utilization rate of the bottlenecks. This is the main 
indicator for evaluating a Master Production/Distribution 
Schedule (MPS). For this, a useful technique is simulating 
dynamic discrete events of the material flow [3]. 

In fact, simulation models of actual industrial cases are 
often very complex and modelers encounter problems of scale 
[4]. In addition, many works use the simplest 
(reduced/aggregated) models of simulation [5]–[8]. 

Neural networks can extract performing models from 
experimental data [9]. Consequently, the use of neural 
networks has been proposed in order to reduce simulation 
models [8][10]. To build a neural model, an important issue is 
determining the structure of the network. The main techniques 
used to control the complexity of the network are architecture 
selection, regularization [11] [12], early stopping [13] and 
training with noise [14]; the last three are closely related 
[14][15]. This paper focuses on architecture selection. To 
determine the optimal structure of the network, two 
approaches can be used. The first is constructive, where the 
hidden neurons are added one after another [16]–[19]. The 
second approach exploits a structure with too many hidden 
neurons, and then prunes the least significant ones [20]–[25]. 

In addition, it is necessary to determine the optimal input 
data set in order to make a model. This set of data must be as 
small as possible in order to avoid the overfitting problem, but 

must contain all the explicative inputs [26]. Different 
approaches can be used to perform feature selection, for 
example principal component analysis [27], curves component 
analysis [28] and random features ranking [29][30]. Other 
methods have been designed to perform feature selection only 
with neural networks [31]–[34]. Only some of these allow 
simultaneous feature selection and spurious parameter pruning 
[20][35][36]. 

The goals of this paper are dual. The first one is to present a 
reduction approach of simulation model using neural network. 
The second one is to deal with the optimal neural network 
structure determination by using pruning procedure.  

This paper presents a new pruning algorithm that allows the 
selection of the input neurons and the number of hidden 
neurons. This algorithm, based on one proposed by 
Engelbrecht [36], is investigated and compared with three 
existing algorithms: Engelbrecht [36], Setiono and Leow [35] 
and Hassibi and Stork [20]. These algorithms are used for the 
structural determination of the neural network used in the 
reduced model of a sawmill flow shop.  

In the next section, the topics of model reduction and 
multilayer perceptron are presented. The third section presents 
the pruning algorithms, including the proposed algorithm and 
the three comparison algorithms. Two simulation examples are 
then presented and the results obtained with the four 
algorithms are investigated. Section V presents the industrial 
application. The reduced model of the sawmill supply chain 
and the structure of the neural networks obtained using the 
different algorithms are investigated in section VI. The final 
section enumerates our conclusions.  



 

II. THE MODEL REDUCTION  

A. The algorithm 

Zeigler [37] was the first to deal with the problem of model 
reduction when he stated that the complexity of a model is 
related to the number of elements, connections and model 
calculations. He distinguished three methods to simplify a 
discrete simulation model: replacing part of the model with a 
random variable, degrading the range of values taken by a 
variable, and grouping parts of a model together. 

Innis et al. [38] listed 17 simplification techniques for 
general modeling. Their approach comprises four steps: 
hypothesizing (identifying the important parts of the system), 
formulation (specifying the model), coding (building the 
model) and experimentation. Leachman [39] proposed a model 
that considers cycle times in production planning, especially 
for the semiconductor industry, which uses cycle time as an 
indicator. Brooks and Tobias [6] suggest a “simplification of 
models” approach for cases where the indicators to be 
followed are the average throughput rates. Other cases have 
been studied in [40] and [41].  

The reduction algorithm proposed in this paper is an 
extension of those presented by Thomas and Charpentier [3]. It 
is presented in Figure 1 and its principal steps are summarized 
as follows. 

1. Identify the structural bottleneck (the work center (WC) 
that has been constrained in capacity for several years). 

2. Identify the conjunctural bottleneck for the bundle of 
manufacturing orders (MOs) of the MPS under 
consideration. 

3. Among the WCs not listed in 1 and 2, identify one (the 
synchronization WC) that satisfied two conditions: 

- it is present in at least one of the MOs that has a 
bottleneck; 

- it is widely used in the MOs. 
4. If all MOs have been considered, go to step 5; otherwise 

repeat step 3. 
5. Use neural networks to model the intervals between the 

WCs found during the previous steps. 
As example, in the considered application (part VI), there 

are three WC: "Canter line" (figure 3), "Kockums line" (figure 
5) and "Trimmer line" (figure 6). Only one of these WC is a 
bottleneck, in our case, this is the "Trimmer line". 

The WCs remaining in the model are conjunctural 
bottlenecks, structural bottlenecks, or WCs that are vital to the 
synchronization of the MO. All other WCs are incorporated 
into “aggregated blocks” upstream or downstream of the 
bottlenecks. 

A “conjunctural bottleneck” is a WC that is saturated for the 
particular MPS and predictive schedule in question, and 
therefore uses all available capacity. A “structural bottleneck” 
is a WC that has often been in such a condition in the past. 
Actually, for one specific portfolio (one specific MPS) there is 
only one bottleneck—the most loaded WC—but this WC can 
be different from the traditional bottlenecks.  

“Synchronization work centers” are resources used jointly 

with bottlenecks for at least one MO and for the planning of 
different MOs that do not have a bottleneck. The number of 
these “synchronization work centers” must be minimized. To 
achieve this, WCs must be found that (a) are most common 
among the bundle of MOs using no bottleneck, and (b) figure 
in the routing of at least one MO using bottlenecks. 
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Figure 1. Algorithm used 

 

B. The multilayer perceptron 

The work of Cybenko [42] and Funahashi [43] has proved 
that a multilayer neural network with only one hidden layer 
(using a sigmoidal activation function) and an output layer 
(using a linear activation function) can approximate all 
nonlinear functions with any desired accuracy. These results 
explain the great interest in this type of neural network, which 
is called a multilayer perceptron (MLP). In this research work, 
it is assumed that a part of the modeled production system can 
be approximated with a nonlinear function obtained from an 
MLP. 

The structure of the MLP is discussed here. Its architecture 
is shown in Figure 2. The neurons of the first (or input) layer 

distribute the 0n  inputs { }0
n

0
1 0

x,,x �  of the MLP to the 

neurons of the next layer (hidden layer). A special input 
neuron (depicted by a square in Figure 2) represents a constant 
input (equal to one) that is used for the representation of the 
biases or thresholds of the hidden layer. 



 

The ith neuron (i = 1 … n1) in the hidden layer receives the 

0n  inputs { }0
n

0
1 0

x,,x �  from the input layer with associated 

weights { }1
in

1
1i 0

w,,w � . This neuron first computes the 

weighted sum of the 0n  inputs: 
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where 1
ib  is the bias or threshold term of the ith hidden neuron. 

The output of this neuron is given by a so-called activation 
function of the sum in (1): 
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where g(.) is chosen as a hyperbolic tangent: 
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Lastly, the outputs of the hidden neurons { }1
n

1
1 1

x,,x �  are 

distributed with associated weights { }2
n

2
1 1

w,,w �  to the unique 

neuron of the last (or output) layer. 
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Figure 2. Architecture of the multilayer perceptron 

 
As in the input layer, a particular hidden neuron (depicted 

by a square in Figure 2) represents a constant input equal to 
one that is used for the representation of the bias or threshold 
of the output layer. 

The neuron of the last layer simply performs the following 
sum, its activation function being chosen to be linear: 
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where 2
iw  are the weights connecting the outputs of the 

hidden neurons to the output neuron, and b is the threshold of 
the output neuron.  

Thus, only the number of hidden neurons is always 
unknown. To find this, a pruning algorithm may be used.  

III.  PRUNING ALGORITHM 

Pruning algorithms have been classified into two broad 
groups [44][45]: during learning pruning and post-learning 
pruning.  

The “during learning pruning” methods add terms to the 
objective function that reward the network for choosing an 
efficient solution. These methods are also known as “weight 
decay” methods. 

The “post-learning pruning” methods estimate the 
sensitivity of the error function to the removal of an element. 
The element with the least effect is then removed. Pruning 
continues until the effect of every element is deemed 
significant. 

In this paper, only “post-learning pruning” methods are 
considered. This group can be divided into two subgroups 
[15]: weight saliencies pruning and output sensitivity analysis 
pruning. 

Weight saliencies pruning considers the change in the error 
function due to small changes in the values of the weights. A 
measure of the relative effect of the different weights, or 
saliency, can be computed. The weights with low saliencies are 
deleted. The Optimal Brain Damage (OBD) [46] and Optimal 
Brain Surgeon (OBS) [20] algorithms, and all algorithms 
derived from them [22][47][48], use a second-order Taylor 
expansion of the error function to estimate how the training 
error will change as the weights are perturbed. Tang et al. [49] 
have proposed another method based on the use of an 
improved Extended Kalman Filter. In this approach, they use 
the error covariance matrix obtained during the learning in a 
similar way to the Hessian matrix in the OBS algorithm. 
Another approach is to use an approximation of the Fisher 
information matrix to determine the optimal number of hidden 
neurons [21]. 

The output sensitivity analysis method is based on a 
variance analysis of sensitivity information, given by the 
derivative of the neural network output with respect to the 
parameters [36]. It is a powerful method because the neural 
network structure inherently contains all the information to 
compute these derivatives efficiently [50]. Sabo and Yu [51] 
have proposed restricting the comparison of one parameter to 
those from the same hidden neuron. Zeng and Yeung [24] 
insert an input perturbation and study its effect on the output 
sensitivity. Chandrasekaran et al. [52] propose a sensitivity-
based method utilizing linear unit models. These methods can 
be grouped with the so-called “local methods” of Sensitivity 
Analysis of Model Output (SAMO) approaches [53]. There 
exists a second Sensitivity Analysis (SA) algorithm, the global 
SAMO. In this approach, the space of the parameters (also 



 

called factors or input factors in the SA terminology) is 
explored within a finite region, and the variation of the output 
induced by a factor is measured globally. Within this 
framework, Lauret et al. [15] proposed using the extended 
Fourier amplitude test to quantify the relevance of the hidden 
neurons. 

Other algorithms use different approaches. Some methods, 
such as Neural Network Pruning for Function Approximation 
(“N2PFA”), attempt to remove units directly [35]. Some 
authors have proposed using genetic algorithms for pruning 
[45][54]. Liang [25] proposed using an orthogonal projection 
to determine the importance of hidden neurons. 

In the following sections, the algorithm proposed by 
Engelbrecht will be discussed. Then, the modification of this 
algorithm will be presented and, finally, two other algorithms 
(OBS and “N2PFA”) used for the comparison will be 
summarized.  

A. The Engelbrecht algorithm  

This algorithm uses the variance nullity measure (VNM) 
[55][56], where the variance of the sensitivy of an input or an 
output of a hidden neuron is measured for the different 
patterns. If this variance is not significantly different from 
zero, and if the average sensitivity is small, the input or the 
hidden neuron under consideration has no effect on the output 
of the network. Therefore, the VNM can be used in hypothesis 
testing to determine if an input or a hidden neuron has a 
statistical impact on the network using the χ2 distribution. If 
not, it must be pruned. 

To determine if a hidden neuron i must be pruned, the VNM 

of the weight 2
iw  (i=1…n1) that connects this hidden neuron 

to the output neuron must be calculated. For this, knowledge 

of the sensitivity of the network output z to the parameter 2
iw  

is necessary. This sensitivity corresponds to the contribution of 
this parameter to the error at the output of the network. This 
contribution is determined by the partial derivative of the 

network output z with respect to the parameter 2
iw  being 

considered: 
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where P is the number of data patterns from the learning 
database. 

Similarly, the sensitivity of the network output z to the input 
0
hx  (h=1…n0) is obtained by performing the partial derivative 

of the output with respect to the input 0hx  under consideration: 
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The sensitivity of the network output to a hidden neuron or 

to an input can be explained with a unified notation using 
)p(S

kθ  (p=1…P and k=1…K=n0+n1), with θk corresponding 

to 0
hx  if the input h is considered, or corresponding to 2

iw  if 

the hidden neuron i is considered. The notation )p(S
kθ  is 

given by equation (5) or (6) according to the considered case. 

The VNM is the unknown variance 2
kθσ of the parameter θk. 

An estimator of this variance can be given by: 
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where 
k

Sθ  is the mean of the sensitivity of the output to θk: 

 

P

)p(S

S

P

1p
k

k

�
=

θ

θ = . (8) 

 
Using the VNM, the null hypothesis (that the variance in 

parameter sensitivity is approximately zero) is tested, where 

the null hypothesis 0�  and its alternative 1�  are: 
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and where 2
0σ  is a small positive real. 

Using the fact that, under the null hypothesis, the relation 
 

2
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has a χ2(�) distribution with � = P – 1 degrees of freedom in 
the case of P patterns, the test (9) is performed by comparing 
the relation (10) with the critical value Γc obtained from χ2 
distribution tables: 



 

 

)1,(2
c α−χ=Γ � , (11) 

 
where � = P – 1 degrees of freedom, and α is the significance 
level of the test. If ck

Γ<Γθ , the hidden neuron or the input 

under consideration must be pruned. 

The value of 2
0σ  is crucial to the success of this algorithm. 

If 2
0σ  is too small, no parameters will be pruned. On the other 

hand, if 2
0σ  is too large, too many inputs or hidden neurons 

will be pruned. The algorithm therefore starts with a small 

value of 2
0σ  (0.001) and multiplies this value by 10 if nothing 

is pruned, until 2
0σ  equals 0.1 [36]. In this paper, this 

algorithm is denoted “Engel”.  

B. The proposed algorithm 

The previous algorithm allows the simultaneous pruning of 
spurious hidden neurons and feature selection. However, the 
pruning is approximate because the input variable may be 
either pruned or conserved; in the latter case, the input under 
consideration is distributed to all hidden neurons without 
distinction. 

An input variable may be useful for the evaluation of the 
output of one hidden neuron and spurious for the evaluation of 
another. In this case, the algorithm “Engel” may have two 
extreme behaviors: 

- pruning of a partially used variable, which implies a 
loss of information; 

- retention of spurious parameters, which can cause 
perturbations and overfitting. 

Therefore, the proposed approach decides whether to keep 
or prune each parameter individually, and does not consider all 
parameters related to an input together. 

In the “Engel” algorithm, two different categories of 
elements θk (inputs and hidden neurons) may be eliminated. 
Now, three categories must be considered: 

- weights connecting the input to the hidden neurons 
1
ihw ; 

- the bias of the hidden neurons 1
ib ; and 

- weights connecting the hidden neurons to the output 

neuron 2
iw . 

The sensitivity of the output network to the bias b of the 
output neuron is constant and is equal to one, so this algorithm 
(and the “Engel” algorithm) may not prune this parameter if 
required. 

For each type of parameter, the sensitivity of the network 

output to the parameters is needed. For the weight 2
iw  

connecting the hidden neuron i to the output neuron, this 
sensitivity is given by (5). 

For the bias 1
ib  of the hidden neurons, the sensitivity 

corresponds to the contribution of this parameter to the global 
error of the output of the network. This contribution is 
determined by the partial derivative of the output of the 

network z with respect to the bias 1
ib  being considered: 
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Similarly, the sensitivity for the weights 1ihw  connecting the 

input neurons to the hidden neurons is given by: 
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As for the previous algorithm, the sensitivity of the output to 

a parameter is )p(S
kθ  (p=1…P and k=1…K=(n0+2).n1), with 

θk corresponding to: 

- 1
ihw  if the weight connecting the input h to the 

hidden neuron i is considered; 

- 1
ib  if the bias of the hidden neuron i is considered; 

or 

- 2
iw  if the weight connecting the hidden neuron i to 

the output neuron is considered. 
The notation )p(S

kθ  is then given by equations (13), (12) 

or (5) according to the considered case. 
The following part of the algorithm is identical to the 

previous part. The hypothesis test is described by (9), which 
leads to a comparison between the value (10) and the threshold 
(11). The determination of (10) requires the calculation of the 
VNM using (7) and (8). The choice of the significance level α 

and the parameter 2
0σ  are the same as for the “Engel” 

algorithm, in order to allow the comparison of these two 
algorithms. In the following sections, this algorithm will be 
denoted “Engel_mod”. 

C. The comparison algorithms 

The proposed algorithm will be compared with three 
classical ones, the "Engel" one which has been presented in 
section III.A and two others, the OBS [20] and “N2PFA” [35] 



 

algorithms. These two algorithms are summarized here.  
1) Optimal Brain Surgeon (OBS) 

This algorithm minimizes the sensitivity of the error 
criterion subject to the constraint of nullity of a weight. This 
nullity constraint expresses the deletion of this weight. The 
criterion considered is generally a quadratic criterion: 
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where θ is a vector grouping all the weights and biases of the 
network, z is the network output and y is the desired output. 

The sensitivity )(V θδ  of the criterion V(θ) is approximated 

by a Taylor expansion around θ  of order two: 
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Because the gradient V’(θ) is null after convergence, the 

first term in (15) vanishes, leading to: 
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which involves only the Hessian H. Vector eq can be defined 
as a canonical vector selecting the qth component of θ 

( [ ]00100eT
q ��= ). The deletion of the weight θq (i.e., 

( ) 0eT
q =θ+δθ ) must lead to a minimal increase of the 

criterion. The following Lagrangian may thus be written: 
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Minimizing this leads to: 
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where 1
qqH−  is the qth diagonal term of H–1. The weight to be 

deleted is that which minimizes (15). Equation (18) allows the 
qth weight to be forced to zero, and can update the remaining 
weights without retraining. It can nevertheless be useful to 
retrain the network after each pruning of a weight in order to 
compensate for the approximation introduced by the Taylor 
expansion (15). The main difficulty with this algorithm is the 
choice of the optimal structure, because no stop criterion is 
included. Different criteria may be used to evaluate the 
different structures. The two adopted here are the mean sum 
square error (MSSE) criterion, using the validation data set, 
and the final prediction error (FPE) criterion, which is used on 
the learning data set and accounts for the number of 

parameters [57]. The algorithm used for the experiment was 
programmed by Norgaard [47] and allows a relearning phase 
between each deletion of a parameter. The results presented 
are those obtained with or without these additional learning 
phases, so four different names are used for this algorithm: 

- “OBS_L_FPE”: FPE criterion with additional 
relearning; 

- “OBS_L_MSSE”: MSSE criterion with additional 
relearning; 

- “OBS_WL_FPE”: FPE criterion without additional 
relearning; and 

- “OBS_WL_MSSE”: MSSE criterion without 
additional relearning. 

2) Neural Network Pruning for Function Approximation 
(“N2PFA”) 

This algorithm uses the mean absolute deviation (MAD) to 
measure the performance of the neural network. Two MAD 
values are calculated: MADT, which is based on the learning 
data set, and MADV, which is based on the validation data set 
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where subscript T represents the learning data set, subscript V 
represents the validation data set, and P and y are the number 
of data points and given data set, respectively. The values 
MADT and MADV are used to stop the pruning. 

The “N2PFA” algorithm starts with an oversized neural 
network, and its parameters are then learned. The initialization 
of the algorithm is performed by calculating MT and MV (19) 

and by initializing the memories T
best
T MM =  and 

V
best
V MM = , and a threshold { }best

V
best
Tmax M,MmaxEr = .  

The algorithm then proceeds as two steps: 
Step 1: Deletion of hidden neurons 

- Set 0w2
i =  and calculate the MAD values MT(i) 

(i=1…n1). 
- Find the minimum MT(ind)=min(MT(i), i=1…n1). 

- Set 0w2
ind = , and relearn the network. 

- Update the MAD values MT and MV. 
- If )1(ErM maxT β+≤  and )1(ErM maxV β+≤ : 

o prune the hidden neuron ind; 

o ( )T
best
T

best
T M,MminM = ; 

o ( )V
best
V

best
V M,MminM = ; 

o { }best
V

best
Tmax M,MmaxEr = ; 

o repeat step 1 with the new structure. 
- Otherwise, restore the old weights and go to the next 



 

step. 
Step 2: Deletion of inputs 

- Set )i(0w1
ih ∀=  and calculate the MAD values 

MT(h) (h=1…n0). 
- Find the minimum MT(ind)=min(MT(h), h=1…n0). 

- Set )i(0w1
ind,i ∀= , and relearn the network. 

- Update the MAD values MT and MV. 
- If )1(ErM maxT β+≤  and )1(ErM maxV β+≤ : 

o prune the input ind; 

o ( )T
best
T

best
T M,MminM = ; 

o ( )V
best
V

best
V M,MminM = ; 

o { }best
V

best
Tmax M,MmaxEr = ; 

o repeat step 2 with the new structure. 
- Otherwise, end the algorithm. 

The value β  is used to avoid an early halt of the pruning 
algorithm [35]. It is tuned to 0.025. In the following sections, 
this algorithm will be named “N2PFA”.  

IV.  THE SIMULATION EXAMPLE  

To test and evaluate the proposed pruning algorithm, two 
simulation examples were constructed. 

A. Modeling a static system 

The nonlinear simulation system to be modeled is based on 
a simple one-hidden-layer perceptron structure with three 
inputs and one output. This system, supposedly unknown, is 
chosen to avoid problems related to the differences between 
the form of the ‘true’ model and that of the fitted model. The 
system is described by: 
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where e(t) is an additive Gaussian noise whose mean is 0 and 
variance is 0.2. 

Two data sets of 500 points are created, the first for model 
learning and the second for test or validation. These two data 
sets include five input variables (x1, x2 and x3 used here and 
two supplementary ones). The five inputs are sequences of 
steps of random length and amplitude. To give each input a 
different influence, the input ranges are [–1; 1], [0; 1.5],  
[–1; 1.5], [0; 0.5] and [–1; 0]. The learning algorithm is from 
Levenberg–Marquardt [47]. 

The initial learning is carried out with a neural network 
comprising five inputs, eight hidden neurons and one output 
(i.e., 57 parameters), for a maximum of 50,000 iterations. Fifty 
sets of initial parameters were constructed using a modified 
Nguyen–Widrow algorithm [58]. The four pruning algorithms 
use the same set of initial parameters. 

All the results obtained from the first system were grouped 
and synthesized in Table 1. The first column presents the 
number of inputs retained by the algorithms and the second 

column gives the number of hidden neurons retained. The third 
column gives the number of parameters (weights and biases) in 
the resulting models. The last column presents the time spent 
to complete the algorithms. For each column, the minimum, 
maximum and mean values of the parameters under 
consideration are noted for the different algorithms using the 
50 sets of initial weights. For each column, two percentages 
are indicated. The first indicates the percentage of initial 
weight sets that yield values lower than the mean value. The 
second indicates the percentage of initial weight sets that yield 
values higher than the mean value. The lines correspond to the 
different tested algorithms. 

Recall the optimal structure of the neural model (the 
objective of the different pruning algorithms). This structure 
comprises three inputs and two hidden neurons and is 
comprised of eight parameters as shown in (20). 

First, the number of inputs remaining in the models with the 
different algorithms is studied. No algorithm prunes the two 
spurious inputs. Only the algorithms “Engel”, “N2PFA” and 
OBS (using the MSSE criterion with and without relearning, 
i.e., “OBS_L_MSSE” and “OBS_WL_MSSE”) prune one of 
the two spurious inputs. The percentages and the mean values 
show that the “N2PFA” algorithm gives the best results, before 
the OBS algorithm with relearning (when no relearning is 
performed, the performances of the algorithm deteriorates) and 
the “Engel” algorithm, which deletes one spurious input in 
42% of the cases. 

Next, the numbers of hidden neurons remaining in the 
models are compared for the different algorithms. The results 
are more dispersed than for the previous study. However, only 
the algorithms “Engel_mod”, “N2PFA”, “OBS_L_MSSE” and 
“OBS_WL_MSSE” reach a satisfactory number of hidden 
neurons (two). The algorithms “Engel_mod”, “N2PFA”, 
“OBS_L_MSSE” give similar results for mean values (3.63, 
3.58 and 3.78, respectively), the percentage of results obtained 
that are lower than the mean values (46%, 56% and 58%, 
respectively) and maximal values (6, 8 and 8, respectively). 
When no relearning is performed with the OBS algorithms, the 
results deteriorate greatly. 

At this point, the “N2PFA” algorithm seems to give the best 
results. This stance must be moderated when considering the 
number of parameters comprising the models. Only the OBS 
algorithm (using the MSSE criterion with and without 
relearning, i.e., “OBS_L_MSSE” or “OBS_WL_MSSE”) finds 
eight parameters of the optimal structure. However, for these 
considered structures, some spurious parameters have been 
retained, to the detriment of others that were incorrectly 
pruned. In particular, one spurious input remains. Unlike the 
OBS algorithm, the “Engel_mod” and “N2PFA” algorithms 
reach structures close to optimal without pruning useful 
connections and retaining at best 11 and 13 parameters, 
respectively. The analysis of the percentages and of the mean 
and maximum values shows that these two algorithms give 
similar results. 

 



 

 
 

TABLE 1: RESULTS OBTAINED ON THE SYSTEM 1 

val % val % val % val %
min 4 42% 5 52% 31 40% 3.10E-02 26%
mean 4.6 <  > 7.2 <  > 47.9 <  > 4.70E-02 <  >
max 5 58% 8 48% 57 60% 6.30E-02 74%
min 5 2 46% 11 46% 0.11 50%
mean 5 <  > 3.68 <  > 24.4 <  > 0.35 <  >
max 5 6 54% 43 54% 0.61 50%
min 4 98% 2 56% 13 56% 1.07 52%
mean 4.02 <  > 3.58 <  > 22.6 <  > 1.6 <  >
max 5 2% 8 44% 49 44% 2.27 48%
min 5 5 2% 25 44% 13.4 56%
mean 5 <  > 7.9 <  > 50.1 <  > 20 <  >
max 5 8 98% 57 56% 26.1 44%
min 4 80% 2 58% 8 76% 13.4 56%
mean 4.2 <  > 3.78 <  > 14.4 <  > 20 <  >
max 5 20% 8 42% 57 24% 26.1 44%
min 5 8 47 32% 7.56 56%
mean 5 <  > 8 <  > 55.4 <  > 9.85 <  >
max 5 8 57 68% 11.9 44%
min 4 8% 2 18% 9 26% 7.56 56%
mean 4.9 <  > 7.5 <  > 49.8 <  > 9.85 <  >
max 5 92% 8 82% 57 74% 11.9 44%

duration

Engel

Nb_I  Nb_H Nb_θ

OBS_WL_FPE

OBS_WL_MSSE

Engel_mod

N2PFA

OBS_L_FPE

OBS_L_MSSE

 
 

TABLE 2: RESULTS OBTAINED ON THE SYSTEM 2 

val % val % val % val %
min 8 14% 7 38% 71 42% 3.10E-02 66%
mean 9.84 <  > 9.44 <  > 112.9 <  > 5.00E-02 <  >
max 10 89% 10 62% 121 58% 9.40E-02 34%
min 10 2 70% 22 48% 0.22 62%
mean 10 <  > 3.14 <  > 36.8 <  > 0.7 <  >
max 10 6 30% 64 52% 1.03 38%
min 4 70% 2 52% 13 60% 3.49 48%
mean 5.52 <  > 3.92 <  > 32.7 <  > 5.74 <  >
max 10 30% 10 48% 97 40% 8.11 52%
min 4 48% 2 46% 8 52% 142.1 52%
mean 5.72 <  > 4.7 <  > 17 <  > 160.4 <  >
max 9 52% 9 54% 32 46% 180 48%

OBS_L_MSSE

engel

engel_mod

N2PFA

durationNb_I Nb_H NB_θ

 
 

Finally, consider the time spent to complete the algorithms. 
The algorithm OBS is slower than the other three, even if no 
relearning occurs. The “Engel_mod” algorithm is faster than 
its rival (“N2PFA”) with an average ratio of four between the 
duration of the “Engel_mod” algorithm (0.35 s), and the 
duration of “N2PFA” algorithm (1.60 s). This difference is 
due, in particular, to the relearning used in the “N2PFA” 
algorithm and not used in the “Engel_mod” algorithm. 

A. Modeling a dynamic system 

The second system model is also based on a single hidden 
layer perceptron, but this time using delayed inputs. This 
system is described by: 
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, (21) 

 
where e(t) is an additive Gaussian noise whose mean is zero 
and variance is 0.2. The delayed inputs x1 and x2 are sequences 
of steps of random length and amplitude. The duration of the 
steps of input x1 (respectively x2) is randomly chosen between 
5 and 10 (respectively 8 and 15). The amplitude of x1 
(respectively x2) is randomly chosen between –1 and 1 
(respectively 0 and 1.5). 

Two data sets of 500 points were created, the first for model 
learning and the second for testing or validation. The input 
vector used for the learning is comprised of the two inputs x1 
and x2 and their respective delays t, t–1, t–2, t–3 and t–4.  
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Figure 3. The canter line 

This leads to 10 input neurons for the initial structure of the 
neural network. 

The initial learning is carried out with a neural network 
comprising 10 inputs, eight hidden neurons and one output 
(i.e., 97 parameters), for a maximum of 50,000 iterations. Fifty 
sets of initial parameters were constructed using a modified 
Nguyen–Widrow algorithm. The four tested pruning 
algorithms used the same set of initial parameters. 

All results obtained on the second system are grouped and 
synthesized in Table 2. The optimal structure of the neural 
model (the objective of the different pruning algorithms) 
comprises four inputs and two hidden neurons and is 
comprised of eight parameters, as shown in (21). 

For this example, the OBS algorithm is tested using only the 
MSSE criterion and relearning phases. As in the previous 
example, the OBS algorithm prunes useful parameters. The 
algorithms “N2PFA” and “Engel_mod” perform best and give 
similar results. In particular, no other algorithm finds the 
optimal number of hidden neurons (two). The “N2PFA” 
algorithm reaches a satisfactory four; however, it is slower 
than the “Engel_mod” algorithm and takes eight times the 
execution time. 

The results obtained from these two examples show that the 
OBS algorithm gives the worst results, so this algorithm will 
not be used for the industrial application. 

I. INDUSTRIAL APPLICATION  

At the time of the study, the sawmill had a capacity of 
270,000 m3/year, a turnover of 52 million euros and 300 
employees. 

The internal supply chain can be described from a process 
point of view, and so the physical industrial production system 
can be broken down into three main parts. To understand the 

functioning of the process, the course of a log will be 
described, from its admission into the process to its exit in 
plank form. 

The first part of the process corresponds to the canter line, 
which is presented in Figure 3. The product flow is 
represented by dashed arrows. The log is taken into the 
process by using conveyors RQM1, RQM2 and RQM3. 
Depending on its characteristics (scanner MS), the log is 
driven to RQM4 or RQM5, which are used as input inventory 
for the canter line. Next, the log goes on to the first canter’s 
machine, and later the CSMK saw transforms the log into a 
parallelepiped, the square in Figure 4. 

Main products
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Main products

Secondary products
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Smaller diameter of the log
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Figure 4. The cutting plan 

This first step, which gives the two first sides of the 
parallelepiped, produces two planks (called secondary 
products) that are taken out of the canter line using the BT4 
and BT5 conveyors. The log is then driven on the RQM6 
conveyor, rotated 90° and stored in RQM7 to wait for its 
second passage to the CSMK saw. After the second passage, 
the squaring is complete and two other secondary products are 
taken out of the canter line (using the BT4 and BT5 
conveyors) toward the second part of the process, the kockums 
line.  



 

 

QM9

Entrance secondary products
(Canter line)

Convoying Secondary products
(trimmer)

BT5BT5

BT4BT4

Convoying
planks

(stacker)

Centrors

Press
Rolls

Plank saw

Output conveyor
Plank

transfert

Alignment table

Rising
Degrange

coveyor

little
strip

Plank
truck

Ejector

Alignment
rolls

Wedge

Centring
table

KOCKUMS

Input of Kockums

Traps

Plank conveyor

QM11

QM9

Entrance secondary products
(Canter line)

Convoying Secondary products
(trimmer)

BT5BT5

BT4BT4

Convoying
planks

(stacker)

Centrors

Press
Rolls

Plank saw

Output conveyor
Plank

transfert

Alignment table

Rising
Degrange

coveyor

little
strip

Plank
truck

Ejector

Alignment
rolls

Wedge

Centring
table

KOCKUMS

Input of Kockums

Traps

Plank conveyor

QM11

 

Figure 5. The Kockums line 
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Figure 6. The trimmer line 

The square is cut into three planks (called main products) on 
the MKV saw. These main products are driven to the third part 
of the process, the trimmer line. The cutting of the log into 
main and secondary products is described by the cutting plan 
(Figure 4). 

Figure 5 shows the second part of the process, where the 
main machine is the kockums saw. Only secondary products 
are driven onto this part of the process. The secondary 

products are taken into the line using the BT4 and BT5 
conveyors. They are then sawn up using the QM11 saw before 
reaching the kockums saw, which optimizes the plank 
depending on the needed products. The alignment table is used 
for the input inventory of the kockums saw. Finally, the 
secondary products are sent to the third part of the process 
using the exit conveyor. 
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Figure 7. The complete model 

 

 
Figure 8. The reduced model 

The third part of the process is the trimmer line, which is 
presented in Figure 6. This line performs the final operation: 
cross cutting, or cutting products to length. The inputs of the 
line are two collectors (1 and 2), which are used to collect 
secondary and main products from the kockums line and the 
canter line, respectively. Saw 1 is used to perform a default 
bleeding. Saw 2 cuts products to length. 

Previous work [3] has shown that the trimmer saw is the 
bottleneck of the entire process. 

I. THE REDUCED MODEL  

A. The complete model 

The complete model of the sawmill process was constructed 
in previous work [3]. This model is presented in Figure 7 and 
is composed of different modules. The first module is used to 
model the log arrival, which follows a homogeneous Poisson 
process. In this module, the characteristics of the log are 
measured using the scanner (Figure 3) and associated with the 
log. 

A second module, the “input sorter”, directs the log to 

RQM4 or RQM5 depending on its characteristics. It may also 
eject the log from the process if it is machine-gunned or if its 
dimensions are out of range. The logs go to the next module, 
which models the RQM4 and RQM5 queues. Conveyors 
RQM4, RQM5 and RQM7 are used as input inventory for the 
canter line. Two other modules are used for the simulation of 
the canter line and the passage of the square in RQM7. The 
canter line model uses two submodels for the management of 
main and secondary products. The canter line has three 
outputs, which lead to the kockums line for the secondary 
products and to the trimmer line for the main products. 

The other modules, which correspond to the core of the 
process, are simpler. They are used to model the kockums and 
trimmer lines and to model the sorting of products into 
different racks. The different submodels make the model 
presented in Figure 7 more complex than represented here. In 
particular, constructing the submodel to manage the priority 
rules for selecting the input inventory for the canter line is 
difficult. 



 

B. The reduced model 

The design of a complete model for the simulation of a 
workshop is a difficult task that leads to a complex model. The 
bottleneck of this line is the trimmer. According to the theory 
of constraints [2], the main industrial objective is to optimize 
the use of bottlenecks.  

Within this framework, modeling the dependencies of 
inventories RQM4, RQM5 and RQM7, the canter line and the 
kockums line is unnecessary. In addition, all parts surrounded 
by the gray dashed line in Figure 7 give no direct or useful 
information for the evaluation of an MPS. Actually, only the 
arrival times of the products in the trimmer queue are useful 
for simulating the load of this bottleneck. This is why a 
multilayer perceptron is used to replace all parts surrounded by 
the gray dashed line in Figure 7. The neural network then uses 
the available shop floor information. This network will 
transform the information given by the “log arrivals” and 
“input sorter” modules into the arrival times of products at the 
entrance of the trimmer. It does not require the path used by 
the product or the transformations undergone by the product. 

The reduced model is therefore obtained, where a large part 
of the model comprises a multilayer perceptron (Figure 8). The 
structure of this network must be determined. 

C. Database and initial learning 

For this, the available input data of the process are required 
[8]. First, each log is scanned at the input of the canter line. 
This information relates to the product dimension, with length 
(Lg) and three values for timber diameter (diaPB, diaGB and 
diaMOY). These variables are used to control the path of the 
log to the RQM4 or RQM5 queue. This choice is an additional 
information (RQM). 

In addition to this dimensional information, the process 
variables must be characterized at the time of the log’s arrival, 
so the input stock of the trimmer (Q_trim), the utilization rate 
of the trimmer (U_trim) and the number of logs present in the 
process between the inputs of RQM4 or RQM5 and the exit of 
the canter line (Q_RQM) must be measured.  

The last type of information is related to the cutting plan of 
the logs. In fact, each log will be cut into n main or secondary 
products. In our application, the cutting plan (Figure 4) divides 
the log into seven products: 

- two secondary products resulting from the first step 
of the cutting process on the CSMK saw of the canter 
line; 

- two secondary products resulting from the second 
step of the cutting process on the CSMK saw of the 
canter line after staying in the RQM7 queue; 

- three main products resulting from the third step of 
the cutting process on the MKV saw of the canter 
line. 

These two saws (CSMK and MKV) belong to the canter 
line. These seven products can be classified into three 
categories according to the location (CSMK or MKV) and to 
the stage in the cutting process (first or second cutting). This 
information is given by the variable “type_piece”. The last 

information is the thickness (in mm) of the product, which is 
also the reference. In this case, only two references are 
considered: main products are 75 mm and secondary products 
are 25 mm (ref). Consequently, the neural networks input 
variables are Lg, diaGB, diaMOY, diaPB, ref, type_piece, 
Q_trim, U_trim, Q_RQM and RQM. In this application, 
12,775 products were simulated. 

The objective is to estimate the delay (∆T) corresponding to 
the throughput time for the 12,775 products, between the 
process input time and the trimmer queue input time. In 
practice, ∆T is the output of the neural network: 
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The learning of the network is supervised, so it is necessary 

to divide the database into learning and validation data sets. 
Previous work [8][10] using the OBS algorithm has shown that 
24 hidden neurons are sufficient for modeling the system, so 
the initial network structure uses 25 hidden neurons. The 
initial learning is therefore carried out with a neural network 
comprising 10 inputs, 25 hidden neurons and one output (i.e., 
301 parameters), for a maximum of 50,000 iterations. To take 
into account that the learning algorithm performs a local 
search of the minimum, 50 sets of initial parameters have been 
constructed using a modified Nguyen–Widrow algorithm [58]. 

D. Comparison of pruning algorithms 

The three pruning algorithms use the same set of initial 
parameters. The algorithms under consideration are “N2PFA”, 
“Engel” and “Engel_mod”. All the results obtained on the 
industrial case are grouped and synthesized in Table 3. The 
first line presents the number of inputs retained by the 
algorithms, and the second line gives the number of hidden 
neurons retained. The third line gives the number of 
parameters (weights and biases) of the resulting models. Lines 
4 and 5 give values of the sum square error (MSSE), obtained 
for the three algorithms using the learning and validation data 
sets, respectively. The last line presents the time spent to 
complete the algorithms. 

For each line, the minimum, maximum and mean values of 
the parameters under consideration are noted for the different 
algorithms using the 50 initial weight sets. For each line, two 
percentages are shown. The first indicates the percentage of 
initial weight sets that give values lower than the mean value. 
The second is the percentage of initial weight sets that give 
values higher than the mean value. The columns correspond to 
the different tested algorithms. 

First, the number of inputs remaining in the model is 
studied. The three algorithms give very different results. If the 
“Engel_mod” algorithm retains all the inputs, then the “Engel” 
algorithm may prune all the inputs in some cases. The 
“N2PFA” algorithm has a more realistic behavior for the 
pruning of input variables. 

 



 

TABLE 3: COMPARISON OF THE 3 ALGORITHMS ON THE INDUSTRIAL CASE 

min mean max min mean max min mean max
val 0 8.14 10 10 10 10 5 8.62 10
% 62% <  > 38% <  > 38% <  > 62%
val 0 2.26 5 2 2.8 5 2 18.82 25
% 72% <  > 28% 48% <  > 52% 40% <  > 60%
val 1 25.08 61 24 34.2 61 21 202 301
% 72% <  > 28% 48% <  > 52% 42% <  > 58%
val 268250 381138 538740 264590 367401 509920 154610 248417424620
% 58% <  > 42% 58% <  > 42% 64% <  > 36%
val 265350 407081 639370 285100 393779 575600 175810 266351502580
% 58% <  > 42% 58% <  > 42% 68% <  > 32%
val 12.45 104.51 519.31 53.53 150.58 512.42 167.74 457.74 1570.6
% 64% <  > 36% 76% <  > 24% 56% <  > 44%

duration

Nb_H

Nb_θ

NSSE_ID

NSSE_val

Engel Engel_mod N2PFA

Nb_I

 
 
Next, the number of hidden neurons remaining in the 

models is studied for the different algorithms. Considering the 
previous results obtained with the OBS algorithm [8], it was 
expected that most hidden neurons would have been retained. 
Yet, if the “Engel” algorithm performs the pruning of all 
hidden neurons in some cases, then in most cases the three 
algorithms converge toward the optimal two hidden neurons. 
However, this optimum number of hidden neurons is not found 
very often for the “N2PFA” algorithm, compared with the two 
other algorithms. The number of hidden neurons for the 
“Engel_mod” algorithm has a mean value of 2.8, a minimum 
value of 2 and a maximum value of 5 when the “N2PFA” 
algorithm finds the two hidden neurons in only 6% of cases 
and prunes no hidden neurons in 28% of cases. 

The number of parameters remaining in the models is now 
considered. The “Engel_mod” algorithm finds the smallest 
structure (the results for “Engel” are biased by the absurd 
cases where all parameters are pruned). This is because of the 
number of hidden neurons that are retained and because the 
parameters are pruned one by one. Therefore, even if the 
“Engel_mod” algorithm cannot prune an input completely, it 
prunes many parameters connecting the inputs and the hidden 
neurons. 

The values of NSSE obtained for the learning and the 
validation data sets are used to confirm or invalidate a choice 
of structure. These values are very difficult to compare 
between algorithms, because “N2PFA” relearns for 50 
iterations after each pruning of an input or a hidden neuron, 
while the two other algorithms do not perform this relearning 
process. 

For the three algorithms, the structures that retain only two 
hidden neurons give the best values of NSSE. This fact 
confirms the choice of a structure using two hidden neurons. 

The last line of Table 3 gives the time spent to complete the 
three algorithms. The “Engel” and “Engel_mod” algorithms 
take very similar computing times, but the “N2PFA” algorithm 
requires three times the computing time, so it can take up to 
half an hour. 

In summary, the “Engel” algorithm leads to an absurd 
structure without input or hidden neurons in 18% of cases. The 

“N2PFA” algorithm is the only one that can select the input 
variables. However, it retains fewer than six hidden neurons in 
only 14% of the cases. Moreover, this algorithm is three times 
slower than the other two. Finally, even if the “Engel_mod” 
algorithm cannot perform the variable selection, it does allow 
the rapid calculation of an acceptable number of hidden 
neurons for inclusion into the network. 

A. Association of the “N2PFA” and “Engel_mod” 
algorithms 

When considering the previous results, it is interesting to 
consider the association of the two algorithms, “N2PFA” and 
“Engel_mod”, in order to determine the structure of the 
network. 

The “Engel_mod” algorithm, which is the fastest, may be 
used on the initial structure to quickly determine a good 
number of hidden neurons. Then, the “N2PFA” algorithm may 
be applied on this smaller structure to determine the useful 
inputs. This approach should reduce the computing time. 

Table 4 groups the results obtained using the 50 different 
initial sets of parameters. 

 
TABLE 4: RESULTS OF THE ASSOCIATION 

min mean max
val 5 7.98 10
% 62% <  > 38%
val 1 2.16 3
% 72% <  > 28%
val 10 15.42 25
% 72% <  > 28%
val 179070 232323 463450
% 80% <  > 20%
val 189300 244752 487760
% 80% <  > 20%
val 2.28E-11 5.94 272.69
% 98% <  > 0.02
val 423.2 478.5974 680.82
% 80% <  > 20%
val 0.02 14.22 270.79
% 84% <  > 16%
val 435.06 490.69 698.31
% 80% <  > 20%
val 502.58 629.18 1189.5
% 68% <  > 32%

NSSE_ID

NSSE_val

duration

mean
error_ID
standard deviation
error_ID
mean
error_val
standard deviation
error_val 

Engel_mod + N2PFA

Nb_I

Nb_H

Nb_θ

 



 

The first three lines present the number of inputs, the 
number of hidden neurons and the number of parameters 
comprising the resulting model, respectively. The next two 
lines show the NSSE values for the learning and the validation 
data sets, respectively. The next four lines present the mean 
and the standard deviation of the residuals obtained on the 
learning and validation data sets, respectively. The last line 
shows the computing time. 

The computing time is well reduced, compared with the 
computing time required for the “N2PFA” algorithm used 
alone. However, all pruning phases take more than 10 minutes 
on average. 

In most cases, the number of retained hidden neurons tends 
toward two. The mean number of inputs retained in the model 
is eight. 

To determine the best structure, the preferred structure is 
that which gives the smallest mean values of the residuals for 
the learning and validation data sets, and the lowest values of 
NSSE. The selected structure includes eight inputs and two 
hidden neurons and therefore has 21 parameters. With this 
structure, the mean errors obtained on the learning (1.9 × 10–9) 
and the validation (0.018) data sets are close to zero. 
Moreover, the standard deviation of the residual obtained with 
this structure is among the smallest (437.56 for learning and 
456.17 for validation). 

Most of the tests evolve to this considered structure. 
Figure 9 presents the selected structure. 

DiaGB

DiaMOY

DiaPB

Type_piece

Q_ébouteur

U_ébouteur

Q_RQM

RQM

∆T

DiaGB

DiaMOY

DiaPB

Type_piece

Q_ébouteur

U_ébouteur

Q_RQM

RQM

∆T

 
Figure 9. Structure of the network 

Of the 10 initial inputs presented to the network, two have 
been pruned. These two inputs are the length of the log (Lg) 
and the type of product (ref). For this last variable, deletion 
could be predicted because the variable “type_piece” includes 
the information held by this variable. These two variables are 
strongly correlated, and the variable “type_piece” holds more 
information. 

B. Results of the reduced model 

The neural network is included in the reduced model. The 
performances of the reduced model and the complete model 
are investigated in this section. 

Figure 10 shows the evolution of the input inventory of the 
trimmer as a function of the time (in seconds). This 
comparison is performed with two different data sets obtained 
under the same conditions. Figure 10 shows that the two 
models present the same type of queue evolution. 
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Figure 10. Input queue of the trimmer (black: complete model 

– grey: reduced model) 

The differences between the two evolutions of the queues 
are due to the stochastic nature of the two models. The log 
arrival for the two models follows a homogeneous Poisson 
process with a mean of 20 seconds. The initialization of the 
models can produce an edge effect, which explains these 
differences in evolution of the two models [59][60]. 
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Figure 11. Utilisation rate of the trimmer (black: complete 

model – grey: reduced model) 

Figure 11 shows the utilization rate of the trimmer as a 
function of the time (in seconds) for the two models (complete 
in black and reduced in gray). The two models present a 
similar evolution of the utilization rate and converge to the 
same value. 

II. CONCLUSION 

A new approach for simulation model reduction has been 
presented. This approach uses a neural network and, more 
specifically, a multilayer perceptron. The aim was to model the 
functioning of the part of a process that is not constrained in 
capacity. 

This paper focused on one step of the network model 



 

design: the determination of the structure of the network. In 
the first stage, a new pruning algorithm was proposed and 
compared with three others using two simulation examples. 

Next, these pruning algorithms were applied to the reduction 
of a model of a sawmill’s internal supply chain. The simulation 
examples and industrial case have highlighted the results of the 
different pruning algorithms. 

The proposed algorithm allows rapid determination of a 
satisfactory number of hidden neurons, while the “N2PFA” 
algorithm is efficient for the determination of the useful inputs. 
Therefore, these two algorithms are associated and benefit 
from their different behaviors. 

The results obtained for the industrial case have proved the 
good results of the pruning approach and the capacity to 
reduce the simulation model by using a neural network. 

Future work could validate this approach using different 
application cases. One particular application could consider 
several external supply chains where at least one enterprise 
belongs to different supply chains. 
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