N

N
N

HAL

open science

A Semantic Web Approach for Geodata Discovery

Helbert Arenas, Benjamin Harbelot, Christophe Cruz

» To cite this version:

Helbert Arenas, Benjamin Harbelot, Christophe Cruz. A Semantic Web Approach for Geodata Dis-
covery. 7th International Workshop on Semantic and Conceptual Issues in GIS (SeCoGIS 2013), Nov

2013, Hong Kong, France. hal-00861230

HAL Id: hal-00861230
https://hal.science/hal-00861230

Submitted on 12 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00861230
https://hal.archives-ouvertes.fr

A Semantic Web Approach for Geodata
Discovery

Helbert Arenas, Benjamin Harbelot, and Christophe Cruz

Laboratoire Le2i, UMR-6302 CNRS,Departement Informatique , University of
Burgundy, 7 Boulevard Docteur Petitjean, 21078 Dijon, France,
helbert.arenas@checksem. fr
benjamin.harbelot@checksem.fr
christophe.cruz@u-bourgogne.fr
WWW home page:
http://checksem.u-bourgogne.fr/www/

Abstract. Currently, vast amounts of geospatial information are offered
through OGC’s services. However this information has limited formal se-
mantics. The most common method to search for a dataset consists in
matching keywords to metadata elements. By adding semantics to avail-
able descriptions we could use modern inference and reasoning mecha-
nisms currently available in the Semantic Web. In this paper we present a
novel architecture currently in development in which we use state of the
art triplestores as the backend of a CSW service. In our approach, each
metadata record is considered an instance of a given class in a domain
ontology. Our architecture also adds a spatial dataset of features with
toponym values. These additions allow us to provide advance searches
based on 1) Instance to class matching, 2) Class to class subsuming rela-
tionships, 3) Spatial relationships resulting from comparing the bounding
box of a metadata record with our toponym spatial dataset.

Keywords: Semantic Web,ontologies, geodata discovery, catalogues,OGC
services

1 Introduction

Currently there is a vast amount of spatial information available on the web
though services such as WFS, WMS or SOS to mention some. This information
allows scientists to perform complex analysis. Goodwin (2005) used the term
smart queries to describe analysis that combine heterogeneous datasources in
order to solve complex problems [1]. Our field of interest is the use of hetero-
geneous datasources to perform spatio-temporal smart queries using Semantic
Web tools. In previous work [2] we presented our research on spatio-temporal
operators, using local data repositories. The next logical step in the evolution of
our work is to integrate it to the SDI (Spatial Data Infrastracture). The term
SDI was first introduced by the U.S. National Research Council in 1993. It refers
to a set of technologies, policies and agreements designed to allow the sharing



of spatial information and resources between institutions [3]. The Spatial Data
Infrastructure has a service oriented architecture. In such infrastructure, func-
tionalities such as storage and data search are carried out through Web services.
The typical work flow involves: 1) The discovery of a data source, 2) The down-
load of relevant geo spatial data, 3) The use of appropriate analytical methods
and 4) The visualization of the results on a suitable map.

In order to integrate our work with the SDI we need to find and retrieve
pertinent online datasets. OGC has introduced a standard for catalogue services
called CSW. A server implementing this standard has access to a metadata
repository. It allows the search of spatial data or web services using open criteria
(i.e. free text as a search in a search engine) or using more specific criteria (title,
coordinate system, data type, etc.). Servers implementing CSW are also able to:
synchronize their content with other catalogues, add, modify or delete metadata
records. They are also able to harvest metadata from other OGC services [4]. Like
other OGC standards CSW implements OWS Common, which describes basic
features shared by all of them. These common elements are basic parameters
and data structures used in the request or response from web service operations.
The standardization proposed through OWS Common serves as support for the
interoperability of OGC web services [5].

Our broad goal is to implement smart queries using data repositories avail-
able in the SDI. The use of the different services involved in a SDI raise several
semantic challenges. Most semantic problems arise due to the lack of significant
content descriptions. As a consequence the resulting ambiguities are then prop-
agated throughout the process of data [6]. The discovery of datasets is currently
done though OGC CSW. However the search of records is done using a string
matching process, not considering the semantics of the metadata information
[7]. Greatly improved results would be obtained if catalogue services are able
to use the hierarchical relationships between elements and concepts achieving in
this way semantic interoperability [8]. Fortunately, nowadays there are tools in
the field of semantic web, like Sesame, Jena, SPARQL/GeoSPARQL and diverse
triplestores, that offer storage, query and retrieval capabilities of information
with semantic annotations. In this paper we present our work on the storage
and retrieval of metadata records using a triplestore. We developed a proof of
concept CSW service that is able to retrieve metadata records by mapping a
subset of CQL operators to SPARQL/GeoSPARQL. In section 2 we describe
other works in this field. In section 3 we describe our implementation. Finally
we present our conclusions and future work in section 4.

2 Related Research

Catalogues are a core component of the Spatial Data Infrastructure. The most
used catalogue specification is the one proposed by the OGC: CSW. A service im-
plementing CSW handles descriptions of datasets and services, formatted as ISO
19115:2003. The descriptions include information regarding the extent, quality,
spatial and temporal characteristics as well as the distribution rights of a given



dataset. A CSW service handles its requests and responses using the HTTP
protocol using the GET and POST method [8].

Previous researchers have identified limitations on traditional CSW services.
The string matching process as the only query option is mentioned in [9] [7] and
[8]. In these works authors explore options to add semantic capabilities to CSW
overcoming this limitation.

In [8] the author describes the CSW limitations by evaluating GeoNetwork,
a popular open source CSW implementation. The author identifies three ways in
which it is possible to add semantic annotations to the CSW: 1) By associating
keywords to concepts using the getCapabilities response. 2) By adding a link
in the GeoNetwork client interface to a ontology browser. In this way the user
instead of using keywords, would be able to utilize the hierarchical structure
to identify the topic that best suits her interest. 3) Adding ontologies as an
extension package using ebRIM. The author concludes that the third option is
the most suitable.

Yue et al. (2006) extend the ebRIM CSW specification by: 1) adding new
classes based on existing ebRIM classes; and 2) adding Slots to existing classes,
thus creating new attributes. As a result they are able to store richer metadata
records in the catalogue. The authors identified two possible options to imple-
ment a search functionality: 1) create an external component without further
modification of the CSW schemas; 2) modify the CSW adding semantic func-
tionalities to the existing CSW schemas. In this research they choose for the first
option [9]. Yue et al. (2011) extends this work, adding further development in
the field of geoservices [7].

A different approach is used by [10]. In this research the goal is to provide
access to data stored in CSW as Linked Data. In order to achieve this goal
the authors developed CSW2LD, a middle layer on top of a conventional CSW
based server. It allows the server to mimic other Linked Data sources and publish
metadata records. CSW2LD wraps the following CSW requests: GetCapabilities,
GetRecords and GetRecordByld.

A very interesting work in progress is described in [11]. This is a website
describing a proposal by a team from the GeoNetwork developer community.
The authors intend to perform a major change in GeoNetwork, allowing it to
store metadata as RDF facts stored in a RDF repository. They intent to use
SPARQL/GeoSPARQL to retrieve data. The website describe technical char-
acteristics of GeoNetwork and mentions fields that require work in order to
implement the project. Currently the constraints that filter the search are en-
coded using an OGC standard based on CQL [12][13]. As indicated in [11] a
CSW implementation that uses a triplestore needs to map the constraints to
SPARQL/GeoSPARQL which are current W3C recommendations [14][15]. How-
ever there is scarce research on this topic. By the time we wrote this paper, there
was no further development in this project and the website was last updated by
the end of October of 2012.

In the next section we describe how we deal with some of the challenges
already identified by previous researchers.



3 Implementation

A)
e

Triple “ Csw .
Servlet 0 alient

; SPARQL
harvesting B
0GC endpoint 0 client

Services

Fig. 1. A)Proposed CSW architecture (The triple store works as a metadata reposi-
tory). B)Dummy domain class ontology.

The complete implementation of the CSW standard is not a trivial task.
By implementing the whole standard, a CSW would be able to manage a wide
range of elements for metadata records and respond to the queries using multiple
formats. However the number of queryable elements that must be implemented
in a service of this nature is small. A CSW must implement query operations
to at least the 15 classic Dublin Core metadata terms. It should also be able to
respond to queries using the csw:SummaryRecord format [16].

In order to provide semantic capabilities to catalogue, we decided to de-
velop a proof of concept CSW implementation using only the minimum ele-
ments and operations. Figure 1A depicts the architecture we are using. We use
a Parliament triplestore as our data repository connected to a Java servlet.
Our servlet transforms 1) requests from clients into queries processable by the
triplestore, and 2) the triplestore response into a xml document that follows the
csw:SummaryRecord format.

Our goal is to implement a CSW able to:1) Retrieve records based on an
ontology class taxonomy; and 2) Retrieve records based on spatial relationships
with elements with toponym values (For instance records located within the
element known as “Burgundy”).

In order to take advantage of the spatial capabilities of our triplestore we
must use geo:SpatialObject as a superclass and geo:Feature as its immediate sub-
class. Then we are able to use spatial operators in all the instances of the class
geo:Feature and its subclasses [15]. In our implementation we create two main
subclasses of geo:Feature: MetadataRecord and ToponymUnit. All the required
Dublin core elements are associated with the class MetadataRecord. Additional
elements are linked to dc:Publisher and dc:Description. The class ToponymU-
nit represents spatial elements with toponymic values in our ontology. Both
ToponymUnit and MetadataRecord implement the property geo:hasGeometry
which links to a geometry element, which itself can be linked to a WKT spatial
representation (sf:wktliteral) with the property geo:asWKT. Figure 2 depicts the
created classes, properties and relationships.



asldentifie!

hasTitle

)

hasCreator,

dc:creator

hasProviderName N
abc:ProviderName

‘
3

hasSubject
hasContactindvName —
. abc:ContactindividualName
hasPublisher dc:publisher

hasContactPosName o
abc:ContactPositionName

hasDescriptio
i dc:description hasTypeName

s
6

abc:TypeName
hasContributor

dc:contributor hasAbstract

s
|

abc:Abstract

hasModified W hasKeyword
—>‘.abc:ke word
hasType Y
—>. hasDefaultSRS
- abc:DefaultSRS
% hasForma
2 hasGetFeaturesURL
2 > abcGetFeaturesURL
5 - abc:GetFeaturesURL
P
sy
= hasLangua
d guage
“literal”An “literal”An hasRelatiog m
sf:wktliteral sf:wktliteral d n
S P > gerghs
geof:relationships hasBB
ows:BoundingBox
tu:name Domain
“literal”An Ontology

xsd:string

Classes

Fig. 2. Proposed ontology and relationship with external domain ontologies.

Knowledge stored in domain ontologies can be used by creating subclasses
of MetadataRecord. The knowledge represented in the relationships between the
classes can easily be added to the queries. We propose to map each metadata
record as an instance of a given domain ontology class. To achieve this goal, we
plan to harvest keywords from existing metadata elements, such as keywords,
abstract, title, etc, and use this information to find the most suitable class based
on specifications of the domain ontology. We propose to use a method based
on research conducted by Werner et al. (2012) [17]. This part of the system is
still in development. Figure 1B depicts a dummy ontology with a taxonomy of
classes. Using the dummy ontology, if the user requests for metadata records of

class C| due to the class relationship, the system would also return instances of
classes E, F, and G.

The metadata records in our research were created by harvesting a set WFS
services. We use a custom made tool, developed with Java. Our tool submits
a GetCapabilities request to a WFS, and parses the response in order to iden-
tify relevant elements. Currently we harvest the following elements: a) provider
Name, b) contact individual name, c¢) contact position name, d) type Name, e)
abstract, f) keywords, g) default spatial representation system, h) the URL of
the GetFeatures request, and i) the bounding box of the dataset. Being this a
proof of concept application we considered these to be enough elements.

To feed our ontology with toponymic elements we are importing datasets
available in vector format. We want to use global datasets of administrative



units (Countries, provinces, states, etc.). Brigham et al.(2011) evaluated three
global datasets: 1) GAUL, developed by FAO and the European Commision,
2) GADM, developed by the University of California, Berkeley and the Inter-
national Rice Research Institute, and 3) UNSALB, developed by the United
Nations Geographic Information Group. They concluded that GAUL showed
better completeness and accuracy|[18]. We intended to use the GAUL dataset for
evaluation purposes. However, by the time of writing this paper, our request was
still on process. In the meantime we are using an alternative provided by Esri
and DeLorme Publishing Company, Inc. under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. This dataset depicts the
subnational and national boundaries updated with 2011 information [19]. We
plan to update our toponym dataset as soon as a better dataset is available.

The most used CSW request is GetRecords. A typical request includes a set
of pairs of the form (parameter=value). The CSW server filters out results that
do not meet the criteria specified in the parameter constraint. These constraints
are encoded using OGC compliant syntax based on CQL.

In our implementation we submit GetRecords requests. Our server application
parses the request and extracts the value for the constraint. We encode our con-
straint using a subset of the OGC specification, to which we have added elements
to describe instanceOf relationships. The user can link multiple constraints us-
ing the operator AND. We also allow the use of an optional boolean element
NOT, to indicate that elements matching certain criteria, should be removed
from query results. Our servlet reads the constraint and maps it to suitable
SPARQL/GeoSPARQL syntax. The mapping is done using a Java application
developed by us. Currently our application supports the following predicates:

— PropertylsInstanceOf To constrain the class membership. This is a custom
property, not included in the OGC specification.

— PropertylsEqualTo To compare queryable metadata elements to text strings.

— PropertylsLike To make partial comparisons between queryable metadata
elements and text strings.

— Within To specify that the bounding box of the metadata record must be
inside a given toponym unit.

— Intersect The bounding box of the metadata record should intersect the
geometry of the toponym unit.

— DWithin To define a buffer zone around a given toponym unit and compare
it with the bounding box of a metadata record.

Currently, we are using Parliament as our triplestore. We decided to use Par-
liament due to its good performace, supported capabilities and its open source
nature. Parliament support for GeoSPARQL includes multiple functions and
operators allowing users to perform complex spatial queries. Once installed it
allows users to access it though an HTTP SPARQL endpoint [20] [21]. Our
implementation interacts with Parliament using Java with Jena libraries.

Next we show examples of constraints.The original constraints follow the
OGC XML filter specification, however they are not fully compliant because



of our add ons (InstanceOf, ToponymUnit). The constraints are mapped to
SPARQL/GeoSPARQL using a java application.

Ezample 1. Metadata records corresponding to ontology domain class A.

<PropertyIsInstance0f>
<PropertyName>a</PropertyName>
<OntClass>xyz:A</OntClass>

</PropertyIsInstance0f>

SELECT ?metadatarecord

WHERE {

?metadataRecord a abc:MetadataRecord.
?metadataRecord a xyz:A. }

The namespace abe: links to our implemented ontology. Class zyz:A is part of our
Dummy ontology, and is a subclass of abc:MetadataRecord. The results of this
query will include the instances of zyz:A as well as instances of all its subclasses.

Ezample 2. Metadata records corresponding to ontology domain class B, that
include the word water among their keywords.

<and>
<PropertyIsInstance0f>
<PropertyName>a</PropertyName>
<OntClass>xyz:B</OntClass>
</PropertyIsInstance0Of>
<PropertyIsLike wildCard="x*" singleChar="#" escapeChar="!">
<PropertyName>abc : keyword</PropertyName>
<Literal>water</Literal>
</PropertyIsLike>
</and>

SELECT 7metadatarecord

WHERE {

?metadataRecord a abc:MetadataRecord.
?metadataRecord a xyz:B.

?metadataRecord abc:hasDescription 7description.
?description abc:haskeyword 7element_keyword.
7element_keyword abc:hasLiteral 7literal_keyword.
FILTER(regex(7literal_keyword,"water","i")) }

The maping of the second condition requires further processing. abc:MetadataRecord
is linked to dc:description by the property abc:hasDescription, which itself is
linked to abc:keyword through the property abc:haskeyword. This element itself

is linked to a literal that contains the string containing the keyword. We use the
function regex() to search for the word water as a substring of the keywords.



Example 3. Retrieve metadata records that are members of ontology domain
class C.The bounding boxes of the records should be located within the toponym
unit France.

<and>
<PropertyIsInstance0f>
<PropertyName>a</PropertyName>
<OntClass>xyz:C</0OntClass>
</PropertyIsInstance0f>
<Within>
<PropertyName>geo:asWKT</PropertyName>
<ToponymUnit>tu:France</ToponymUnit>
</Within>
</and>

SELECT 7metadatarecord

WHERE {

?metadataRecord a abc:MetadataRecord.

?metadataRecord a xyz:C.

?metadataRecord geo:hasGeometry 7boundingbox.
?boundingbox geo:asWKT 7boundingbox_wkt.

tu:France geo:hasGeometry 7France_geometry.
?France_geometry geo:asWKT 7France_wkt.

FILTER(geof :sfWithin(?boundingbox_wkt, ?France_wkt)) }

We use geo:asWKT to represent the geometry of the selected metadata records.
The namespace tu: links to an ontology containing our toponym elements. The
filter Within is interpreted by the servlet as an spatial operation between the
bounding box of the metadata record and the geometry of toponym unit. After
obtaining the wkt literal representation of the geometry, the spatial comparisons
are obtained using the funtion geof:sfWithin inside the FILTER.

Ezample 4. Retrieve metadata records whose bounding boxes are located within
100km from France, overlaping Germany.

<and>
<DWithin>
<PropertyName>geo:asWKT</PropertyName>
<ToponymUnit>tu:France</ToponymUnit>
<Distance unit="http://www.uomdict.com/uom.html#meters">
100000</Distance>
</DWithin>
<Intersect>
<PropertyName>geo:asWKT</PropertyName>
<ToponymUnit>tu:Germany</ToponymUnit>
</Intersect>
</and>



SELECT 7metadatarecord

WHERE {

?metadataRecord a abc:MetadataRecord.

?metadataRecord geo:hasGeometry 7boundingbox.

7boundingbox geo:asWKT 7boundingbox_wkt.

tu:France geo:hasGeometry 7France_geometry.

?France_geometry geo:asWKT 7France_wkt.

tu:Germany geo:hasGeometry 7Germany_geometry.
?Germany_geometry geo:asWKT 7Germany_wkt.

BIND(geof :buffer(France_wkt,100000,units:m) as France_buff_wkt)
FILTER(geof :sfIntersects(?boundingbox_wkt,?France_buff_wkt))
FILTER(geof :sfIntersects(?boundingbox_wkt,?Germany_wkt)) }

In this example we use a buffer function available in our triplestore. The operator
DWithin indicates the servlet that it needs create a new wkt literal using the
parameter values with the function geof:buffer. The resulting literal is added to
the query using the BIND form. This query uses two filters, one for each spatial
constraint.

4 Conclusions

In this paper we are implementing a basic catalogue, so we are not dealing
with the real spatial features (streets, roads, etc.). However by using an external
domain ontology and having the URL of the WFS GetFeatures request, we are
able to easily identify a dataset and add it to a smart query.

Our research shows that mapping between OGC filter specification and SPARQL
is not complicated. However, in order to take advantage of additional elements
such as a domain ontology and toponym units, it would be necessary to develop
a graphic interface on the client application, to reduce syntax errors.

The triple store implements its own SPARQL endpoint allowing users to
directly access the metadata information bypassing the CSW. However, most of
the human users would prefer a CSW interface.

We implemented a proof of concept CSW. Our results look promising. How-
ever, further research in this field should consider collaborating with larger open
source efforts such as GeoNetwork. Particularly interesting for us, is the project
proposed in [11].

Our SPARQL/GeoSPARQL queries are not optimized, further research is
necessary to improve performance for automatically created queries.

Acknowledgements

This research is supported by: 1) Conseil régional de Bourgogne. 2) Direction
Générale de I’Armement, see: http://www.defense.gouv.fr/dga/



10

References

S ot W

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

. Goodwin, J.: What have ontologies ever done for us - potential applications at a

national mapping agency. In: OWL: Experiences and Directions (OWLED). (2005)
Harbelot, B., Arenas, H., Cruz, C.: The spatio-temporal semantics from a per-
durantism perspective. In: Proceedings of the Fifth International Conference on
Advanced Geographic Information Systems, Applications, and Services GEOPro-
cessing. (February-March 2013)

ESRI: GIS Best Practices: Spatial Data Infrastructure (SDI) (2010)

Nebert, D., Whiteside, A., Vetranos, P.: Catalogue services specification (2007)
Whiteside, A.: Web services common specification (2005)

Janowicz, K., Schade, S., Broring, A., Kebler, C., Maue, P., Stasch, C.: Semantic
enablement for spatial data infrastructures. Transactions in GIS 14(2) (2010)
111-129

Yue, P., Gong, J., Di, L., He, L., Wei, Y.: Integrating semantic web technologies
and geospatial catalog services for geospatial information discovery and processing
in cyberinfrastructure. Geolnformatica 15 (2011) 273-303 10.1007/s10707-009-
0096-1.

Gwenzi, J.: Enhancing spatial web seach with semantic web technology and meta-
data visualization (2010)

. Yue, P, Di, L., Yang, W., Yu, G., Zhao, P.: Path planning for chaining geospa-

tial web services. In: Proceedings of the 6th international conference on Web
and Wireless Geographical Information Systems. W2GIS’06, Berlin, Heidelberg,
Springer-Verlag (2006) 214-226

Lopez-Pellicer, F.J., Florczyk, A., Renteria-Aguaviva, W., Nogueras-Iso, J., Muro-
Medrano, P.R.: CSW2LD: a Linked Data frontend for CSW. (2010)

Pigot, S.: Using rdf as metadata storage.
http://trac.osgeo.org/geonetwork /wiki/rdfstore (2012) Accessed on May 2013.
OSGeo: CQL. http://docs.geotools.org/latest /userguide/library /cql/cql.html
(2012) Accessed on November 2012.

Vretanos, P.A.: Filter encoding implementation specification. online (2005) Ac-
cessed on May 2013.

DuCharme, B.: Learning SPARQL. O’Reilly Media, Inc. (July 2011)

Kolas, D., Batle, R.: GeoSPARQL user guide.
http://ontolog.cim3.net /file/work /SOCoP /Educational /GeoSPARQL User
Guide.docx (2012) Accessed on May 2013.

OGC: Make a really basic catalog service for the web (csw).

http://www.ogcnetwork.net /node/630 (2011) Accessed on May 2013.

Werner, D., Cruz, C., Nicolle, C.: Ontology-based recommender system of economic
articles. In: WEBIST. (2012) 725-728

Brighman, C., Gilbert, S., Xu, Q.: Open Geospatial Data: An Assesment of Global
Boundary Datasets. http://maps.worldbank.org/content/article/open-geospatial-
data-assessment-global-boundary-datasets (2011) Accessed on May 2013.

ESRI, D.: World administrative units. http://resources.arcgis.com/content/data-
maps/10.0/world (2011) Accessed on May 2013.

Emmons, I.: Parliament User Guide. Raytheon BBN Technologies. (2012)
Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and
GeoSPARQL. Semantic Web (2012)



