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FULL GROUPS OF MINIMAL HOMEOMORPHISMS AND BAIRE
CATEGORY METHODS

TOMÁS IBARLUCÍA AND JULIEN MELLERAY

ABSTRACT. We study full groups of minimal actions of countable groups by home-
omorphisms on a Cantor space X, showing that these groups do not admit a com-
patible Polish group topology and, in the case of Z-actions, are coanalytic non-
Borel inside Homeo(X). We point out that the full group of a minimal homeomor-
phism is topologically simple. We also study some properties of the closure of the
full group of a minimal homeomorphism inside Homeo(X).

1. INTRODUCTION

When studying a mathematical structure, one is often led to consider the prop-
erties of its automorphism group, and then it is tempting to ask to what extent
the group characterizes the structure. A particularly striking example is provided
by a theorem of Dye ([D1], [D2]) in ergodic theory: assume that two countable
groups Γ, ∆ act on the unit interval [0, 1] by measure-preserving automorphisms,
without any non-trivial invariant sets (i.e. the actions are ergodic), and consider the
groups [Γ] (resp. [∆]) made up of all measurable bijections that map each Γ-orbit
(resp. ∆-orbit) onto itself. Then the groups [Γ] and [∆] are isomorphic if, and only
if, there exists a measure-preserving bijection of [0, 1] which maps Γ-orbits onto
∆-orbits. One then says that the relations are orbit equivalent; [Γ] is called the full
group of the action. Using this language, Dye’s theorem says that the full group of
an ergodic action of a countable group on a standard probability space completely
remembers the associated equivalence relation up to orbit equivalence.

This result was the motivation for an intensive study of full groups in ergodic
theory, for which we point to [K2] as a general reference. More recently, it came to
light, initially via the work of Giordano–Putnam–Skau, that a similar phenomenon
takes place in topological dynamics. In that context, one still considers actions of
countable groups, replacing probability-measure-preserving actions with actions
by homeomorphisms of a Cantor space. The two settings are related: for instance,
when Γ is a countable group, one could consider the Bernoulli shift action of Γ on
{0, 1}Γ as a measure-preserving action (say, for the (1/2, 1/2)-Bernoulli measure)
or as an action by homeomorphisms. As in the measure-theoretic setting, one can
define the full group of an action of a countable group Γ on a Cantor space X:
this time, it is made up of all homeomorphisms of X which map Γ-orbits onto
themselves. The counterpart of ergodicity here is minimality, i.e. the assumption
that all the orbits of the action are dense; the analog of Dye’s theorem for minimal
group actions was proved by Giordano–Putnam–Skau [GPS2].

The measure-theoretic and topological settings may appear, at first glance, to be
very similar; however, there are deep differences, for instance all ergodic group ac-
tions of countable amenable groups are orbit equivalent (Connes–Feldman–Weiss

1
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[CFW]) while there exists a continuum of pairwise non-orbit equivalent actions of
Z by minimal homeomorphisms of a Cantor space. Still, it is interesting to inves-
tigate properties of full groups in topological dynamics, which has been done by
several authors over the last twenty years or so.

In both contexts discussed above, it is natural to consider the full group of an
action as a topological group, the topology being induced by the topology of the
ambient Polish group (measure-preserving bijections of [0, 1] in one case, homeo-
morphisms of the Cantor space in the other). The usefulness of this approach is
however limited by the fact that the full group of an ergodic group action, or a
minimal group action, is not closed in the ambient group; in the first case the full
group is dense, in the second it seems that the closure is currently only understood
for actions of Zd.

It then comes as a blessing that, in the measure-theoretic context, one can endow
the full group with a stronger topology which turns it into a Polish group: the uni-
form topology, induced by the distance given by d(g, h) = µ({x : g(x) 6= h(x)}).
This paper grew out of the following question: can one do the same thing in
the topological context? It is interesting to note that, shortly after the publication
of [GPS2], Bezyglyi and Kwiatkowski [BK] introduced an analog of the uniform
topology in the context of topological dynamics, which is however far from being
as nice as the uniform topology of ergodic theory. This provides further motiva-
tion for trying to understand whether a nice group topology exists at all.

Theorem. Let Γ be a countable group acting minimally by homeomorphisms on a Cantor
space X. Then any Hausdorff, Baire group topology on [Γ] must extend the topology of
pointwise convergence for the discrete topology on X. Consequently, there is no second
countable, Hausdorff, Baire group topology on [Γ].

This is bad news, but certainly not surprising —if a Polish group topology ex-
isted for that group, it would have been considered a long time ago. In the same
spirit, one can then wonder about the complexity of full groups inside the ambient
automorphism group; in ergodic theory, full groups are always fairly tame, in the
sense that they can be written as countable intersections of countable unions of
closed sets [W]. Yet again, the situation turns out to be more dire in topological
dynamics.

Theorem. The full group of a minimal homeomorphism of a Cantor space X is a coanalytic
non-Borel subset of Homeo(X).

This led us to study the closure of a full group inside the homeomorphism
group; this is a Polish group, and is also a complete invariant for orbit equiva-
lence if one is willing to restrict one’s attention to actions of Z, which we do in the
last sections of this article. It follows from a theorem of Glasner–Weiss [GW] that
the closure of the full group of a minimal homeomorphism ϕ coincides with the
group of homeomorphisms which preserve all ϕ-invariant measures. Using work
of Bezuglyi–Medynets and Grigorchuk–Medynets, we obtain the following result
1.

Theorem. The closure of the full group of a minimal homeomorphism of the Cantor space
is topologically simple (hence, the full group itself is also topologically simple).

1We originally proved this only for uniquely ergodic homeomorphisms; we thank K. Medynets for
explaining how to make the argument work in general.
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It is an open problem whether the full group of a minimal homeomorphism is
simple.

In the case of uniquely ergodic homeomorphisms, we also provide a criterion
for the existence of dense conjugacy classes in the closure of the full group (in
terms of the values taken by the unique invariant measure on clopen sets), and
use a Fraı̈ssé theoretic approach to recover a result of Akin which describes a class
of uniquely ergodic homeomorphisms with the property that the closure of their
full group admits a comeager conjugacy class.

Acknowledgements. The second author’s interest in the subject was kindled by
two meetings organized by D. Gaboriau and funded by the ANR Network AGORA,
and by lectures given by T. Giordano and K. Medynets at these meetings. We are
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suggestions. We are indebted to K. Medynets for valuable comments made after
reading an earlier version of this article, and to an anonymous referee for useful
remarks.

The second author’s research was partially funded by the ANR network AGORA,
NT09-461407 and ANR project GRUPOLOCO, ANR-11-JS01-008.

2. BACKGROUND AND TERMINOLOGY

We now go over some background material and discuss in more detail some
facts that were mentioned briefly in the introduction.

Recall that a Cantor space is a nonempty, zero-dimensional, perfect compact
metrizable space; any two Cantor spaces are homeomorphic. Given a Cantor space
X, we denote by Clop(X) the Boolean algebra of all clopen subsets of X, and by
Homeo(X) the group of homeomorphisms of X. This group can be endowed with
the topology whose basic open sets are of the form

{g ∈ Homeo(X) : ∀i ∈ {1, . . . , n} g(Ui) = Vi} ,

where n is an integer and Ui, Vi are clopen subsets of X. This turns Homeo(X)
into a topological group, namely the group operations (g, h) 7→ gh and g 7→ g−1 are
continuous with respect to this topology.

Definition 2.1. A Polish group is a topological group whose topology is induced
by a complete, separable metric.

Picking a compatible distance d on X, one can check that the topology defined
above on Homeo(X) is a Polish group topology, a compatible complete distance
being given by

d(g, h) = max
x∈X

d(g(x), h(x)) + max
y∈X

d(g−1(y), h−1(y)) .

It might be a bit surprising at first that the two topologies we defined coincide; ac-
tually, this is a hint of a more general phenomenon: the unique second–countable
group topologies on Homeo(X) are the coarse topology and the Polish group
topology we defined above (this follows from results of [A2], [G] and [RS]).

Polish groups form a fairly general class of groups, yet the combination of sep-
arability and the use of Baire category methods make them relatively tame. The
fact that the Baire category theorem holds in Polish groups is particularly impor-
tant; we recall that, whenever G is a topological group for which the Baire category
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theorem holds, H is a separable topological group and ϕ : G → H is a Borel homo-
morphism, then ϕ must actually be continuous (see e.g. [K1, Theorem 9.10]).

Definition 2.2. Let Γ be a countable group acting by homeomorphisms on a Cantor
space X. We denote by RΓ the associated equivalence relation and define its full
group as the group of all homeomorphisms of X which preserve each Γ-orbit; in
symbols,

[RΓ] = {g ∈ Homeo(X) : ∀x ∈ X∃γ ∈ Γ g(x) = γ · x} .

As is the case in ergodic theory, the full group of an action of a countable group
by homeomorphisms of a Cantor space X completely remembers the associated
equivalence relation, a fact made precise by the following definition and theorem.

Definition 2.3. Let Γ1, Γ2 be two countable groups acting by homeomorphisms on
a Cantor space X, and let RΓ1 , RΓ2 be the associated equivalence relations. We say
that RΓ1 and RΓ2 are orbit-equivalent if there is a homeomorphism g of X such that

∀x, y ∈ X
(
xRΓ1 y

)
⇔
(

g(x)RΓ2 g(y)
)

.

Theorem 2.4 ([GPS2], [M2]). Let Γ1, Γ2 be countable groups acting by homeomorphisms
on a Cantor space X; assume that all orbits for both actions have cardinality at least 3, and
for any nonempty U ∈ Clop(X) and i = 1, 2 there exists x ∈ U such that Γi · x intersects
U in at least two points.

Denote by RΓ1 and RΓ2 the associated equivalence relations, and suppose that there
exists an isomorphism Φ from

[
RΓ1

]
to
[
RΓ2

]
. Then there must exist g ∈ Homeo(X)

such that Φ(h) = ghg−1 for all h ∈
[
RΓ1

]
.

Consequently,
[
RΓ1

]
and

[
RΓ1

]
are isomorphic if, and only if, RΓ1 and RΓ2 are orbit

equivalent.

The above result was first proved by Giordano–Putnam–Skau [GPS2] for mini-
mal actions, which we define now, and then extended by Medynets [M2].

Definition 2.5. Let Γ be a countable group acting by homeomorphisms on a Cantor
space. We say that the action is minimal if every point has a dense orbit.

Minimal actions are particularly well-studied when Γ = Z. In that case the
action is simply induced by one homeomorphism ϕ; accordingly, we will use the
notation [ϕ] to denote the full group of the associated equivalence relation. Simi-
larly, when the Z-action associated to a homeomorphism ϕ is minimal we simply
say that ϕ is minimal. In the case of minimal actions of Z, a particular subgroup
plays an important role and is well understood, mainly thanks to work of Matui.

Definition 2.6. Let ϕ be a homeomorphism of a Cantor space X. Its topological full
group [[ϕ]] is the set of elements g ∈ Homeo(X) for which there is a finite clopen
partition U1, . . . , Un of X such that on each Ui g coincides with some power of ϕ.

The topological full group [[ϕ]] is a countable subgroup of [ϕ]; note that, if all
orbits of ϕ are infinite, then for any element g in [ϕ] there exists a unique nx ∈ Z
such that g(x) = ϕnx (x); the group [[ϕ]] is simply made up of all g for which the
associated cocycle x 7→ nx is continuous. Another equivalent (though apparently
weaker) definition is that [[ϕ]] is exactly the set of elements of [ϕ] for which the
map x 7→ nx has a finite range. Indeed, each set of the form {x ∈ X : g(x) =
ϕn(x)} is closed, and these sets cover X if g belongs to [ϕ], so if there are only
finitely many nonempty such sets then they are clopen and g belongs to [[ϕ]].
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Though it will not be featured prominently in this paper, the topological full
group plays an important part in the study of minimal homeomorphisms; it ap-
pears naturally as a subgroup of the C∗-algebra associated to (X, ϕ) (see for in-
stance [GPS1], [BT]), and topological full groups of two minimal homeomorphisms
ϕ1, ϕ2 are isomorphic if and only if the associated systems are flip-conjugate, i.e. ϕ1
is conjugate to ϕ2 or ϕ−1

2 (Boyle–Tomiyama [BT]). Recently, Juschenko–Monod
[JM] proved that topological full groups of minimal homeomorphisms of Can-
tor spaces are amenable, a result which had been conjectured by Grigorchuk–
Medynets [GM]; in conjunction with work of Matui [M1], this provided the first
example of simple, finitely generated, infinite amenable groups. For further in-
formation about these groups, we refer to de Cornulier’s thorough survey paper
[dC].

The next result elucidates the action of the full group of a minimal homeomor-
phism on the algebra of clopen sets. Before stating it we set some notation for the
sequel.

Notation. Let X be a Cantor space and ϕ a homeomorphism of X. A Borel prob-
ability measure µ on X is ϕ-invariant if µ(A) = µ(ϕ−1(A)) for any Borel subset
A ⊆ X (if this equality holds for clopen sets then it must hold for all Borel sets).
Given a homeomorphism ϕ, we denote byMϕ its set of invariant probability mea-
sures, which is a nonempty compact, convex subset of the space of all probability
measures on X.

Theorem 2.7 ([GW, Lemma 2.5 and Proposition 2.6]). Let ϕ be a minimal homeomor-
phism of a Cantor space X, and A, B be clopen subsets of X. Then the following facts
hold:

• If µ(A) < µ(B) for all µ ∈ Mϕ then there exists g ∈ [[ϕ]] such that g(A) ⊂ B.
•
(
∀µ ∈ Mϕ µ(A) = µ(B)

)
⇔ (∃g ∈ [ϕ] g(A) = B).

Remark 1. In both cases, one can add the assumption that g2 = 1 to the right-
hand statement. It is useful that in the first statement above, one can find g in the
topological full group and not merely in the full group; this is not always possible
when it comes to the second statement.

3. TOPOLOGIES ON FULL GROUPS.

Throughout this section we let Γ denote a countable group acting on a Cantor
space X, and R denote the associated equivalence relation, i.e. xRy if and only if
x = γ · y for some γ ∈ Γ. We make the following assumption on the action of Γ:
given any nonempty open U ⊆ X, there exist x 6= y ∈ U and γ ∈ Γ such that
γ · x = y. Equivalently, there exists no nonempty open subset U ⊆ X such that the
restriction of R to U is trivial.

Note that this assumption implies that, given any nonempty open U, there ex-
ists g ∈ [R] and a clopen V such that g2 = 1, g(V) and V are nonempty disjoint
clopen subsets of U and g coincides with the identity outside of V ∪ g(V). We now
point out a further consequence.

Lemma 3.1. The set Ω = {x ∈ X : x is an accumulation point of Γ · x} is dense Gδ in X.
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Proof. Fix a compatible metric d on X. Recall that x is an accumulation point of
Γ · x if, and only if, the following condition holds:

∀ε > 0∃γ ∈ Γ (γ · x 6= x and d(γ · x, x) < ε)

The condition between brackets is open, showing that Ω is indeed Gδ. By the
Baire category theorem, to check that Ω is dense we only need to prove that for
any ε > 0 the set {x : ∃γ ∈ Γ γ · x 6= x and d(γ · x, x) < ε} is dense, and this
follows immediately from our assumption on the action. �

For the next two lemmas and proposition, we let τ denote a group topology on
[R] which is Hausdorff and such that ([R] , τ) is a Baire space.

Lemma 3.2. For any nonempty clopen subset U of X, the set ∆U = {g ∈ [R] : g�U =
id�U} is τ-closed.

Proof. We claim that g ∈ [R] coincides with the identity on U if, and only if, gh =
hg for any h ∈ [R] whose support is contained in U. Each set {g : gh = hg} is
closed since τ is a Hausdorff group topology, hence if we prove this claim we can
conclude that ∆U is an intersection of closed subsets of [R] so ∆U is closed.

Now to the proof of the claim: one inclusion is obvious; to see the converse,
assume that there exists x ∈ U such that x 6= g(x). This gives us a clopen subset
W of U such that W and g(W) are disjoint. By assumption, there exists a clopen
subset V of W and an involution h ∈ [R] with support contained in W (hence in U)
and such that V and h(V) are disjoint subsets of W. Then hg(V) = g(V) is disjoint
from gh(V), showing that g and h do not commute. �

Lemma 3.3. For any clopen subset U of X, the set ΣU = {g ∈ [R] : g(U) = U} is
τ-closed.

Proof. We may assume that U is nonempty; also, since τ is a group topology and
(g(U) = U) ⇔ (g(U) ⊆ U and g−1(U) ⊆ U), we only need to show that {g ∈
[R] : g(U) ⊆ U} = Σ′U is closed in [R]. To that end, one can use the same strategy
as above: this time, we claim that g ∈ Σ′U if and only if, for any h which coincides
with the identity on U, g−1hg coincides with the identity on U. Proving this will
show that Σ′U is an intersection of closed sets (by Lemma 3.2), which gives the
result.

Again, one inclusion is obvious; to see the converse, we assume that g(U) is
not contained in U. Then there exists a nonempty clopen subset W of U such that
g(W) ∩U = ∅. One can find a nontrivial involution h with support in g(W). This
gives us a nonempty clopen V ⊆ U such that hg(V) and g(V) are disjoint, hence
g−1hg does not coincide with the identity on U. �

Proposition 3.4. The set {g ∈ [R] : g(x) = x} is τ-clopen for all x ∈ X.

Proof. The result of Lemma 3.3 shows that the natural inclusion map from ([R] , τ)
to Homeo(X) is Borel. Since τ is assumed to be Baire (this is the first time we are
using that assumption) and Homeo(X) is separable, the inclusion map must be
continuous, showing that each set {g ∈ [R] : g(x) = x} is τ-closed. Now, fix x ∈ X
and let H denote the permutation group of the countable set Γ · x, endowed with
its permutation group topology, which is the topology of pointwise convergence
on Γ · x considered as a discrete set.
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Since {g ∈ [R] : g(γ1 · x) = γ2 · x} is closed for all γ1, γ2 ∈ Γ, we see that the
natural homomorphism from ([R] , τ) to H (given by g 7→ (γ · x 7→ g(γ · x)) is
Borel. Thus this homomorphism must be continuous, and {g ∈ [R] : g(x) = x} is
τ-clopen. �

Let us sum up what we just proved.

Theorem 3.5. Let Γ be a countable group acting by homeomorphisms on a Cantor space
X. Assume that the restriction of the associated equivalence relation to a nonempty open
subset of X is never trivial.

Then any Hausdorff, Baire group topology on [R] must extend the topology of pointwise
convergence for the discrete topology on X. Consequently, there is no second countable,
Hausdorff, Baire group topology on [R].

Proof. The statement in the first sentence corresponds exactly to the result of Propo-
sition 3.4. To see why the second statement holds, let us proceed by contradiction
and assume that there exists a second countable, Hausdorff, Baire group topology
on [R].

We recall the result of Lemma 3.1: the set Ω made up of all x such that x is
an accumulation point of Γ · x is dense Gδ in X, thus in particular uncountable.
Assuming τ is second countable, the Lindelöff property implies that there exists a
sequence (xi)i<ω of elements of Ω such that

{g ∈ [R] : ∃x ∈ Ω g(x) = x} =
⋃

i<ω

{g ∈ [R] : g(xi) = xi} .

However, we claim that, for any countable subset {xi}i<ω of Ω and any x ∈ Ω \
{xi}i<ω, there exists g ∈ [R] such that g(x) = x and g(xi) 6= xi for all i ; granting
this, we obtain the desired contraditcion.

To conclude the proof, we briefly explain why the claim holds. Using the fact
that each xi is an accumulation point of Γ · xi, one can construct inductively a
sequence of clopen sets Uj and elements γj of Γ with the following properties:

• For all i xi ∈
⋃

j≤i(Uj ∪ γjUj).
• For all j, the diameter of Uj ∪ γjUj is less than 2−j, and γjUj ∩Uj = ∅.
• For all j 6= k, (Uj ∪ γjUj) ∩ (Uk ∪ γkUk) = ∅.
• For all j x 6∈ γjUj ∪Uj .

One can then define a bijection g of X by setting

g(y) =


γj(y) if y ∈ Uj for some j
γ−1

j (y) if y ∈ γj(Uj) for some j

y otherwise

.

The fact that the diameter of Uj ∪ γjUj vanishes ensures that g is continuous, so g
belongs to [R] and satisfies g(x) = x, g(xi) 6= xi for all i.

�

Remark 2. It is not clear whether the Hausdorfness assumption is really needed:
if [R] is a simple group, then a non-Hausdorff group topology is necessarily the
coarse topology; indeed, the elements that cannot be separated from 1 by an open
subset form a normal subgroup of [R]. So, if [R] is simple, then the above result
says that the unique Baire, second countable group topology on [R] is the coarse
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topology. However, it is an open question whether [R] is simple, even in the case
when R is induced by a minimal action of Z.

The techniques of this section are close to those employed by Rosendal in [R],
but it seems that his results do not cover the case studied here. It was pointed out
by the referee that the subgroups which appear in Lemma 3.2 were introduced by
Dye [D2] in the measurable context, and that he called them local subgroups.

4. BOREL COMPLEXITY OF THE FULL GROUP OF A MINIMAL HOMEOMORPHISM.

The following question was suggested to us by T. Tsankov: what is the com-
plexity (in the sense of descriptive set theory) of the full group of an equivalence
relation induced by a minimal action of a countable group on the Cantor space?
We answer that question for Γ = Z. Below we use standard results and notations
of descriptive set-theory, borrowed from Kechris’s book [K1].

In particular, we recall that if A is a countable set then a tree on A is a subset
T of the set A<ω of finite sequences of elements of A, closed under taking initial
segments (see [K1, Section 2] for information on descriptive-set-theoretic trees and
a detailed exposition of related notions). The set T of trees on A can be endowed
with a topology that turns it into a Cantor space, by setting as basic open sets all
sets of the form

{T ∈ T : ∀s ∈ S s ∈ T and ∀s′ ∈ S′ s′ 6∈ T} ,

where S and S′ are finite subsets of A<ω.
When s ∈ A<ω and a ∈ A, we denote by s a a the sequence of length length(s)+

1 obtained by appending a to s.
A tree T is said to be well-founded if it has no infinite branches; in this case one

can define inductively the rank of an element s of A<ω by setting

ρT(s) = sup{ρT(s a a) + 1 : s a a ∈ T} .

In particular, elements not in T and terminal nodes in T all have rank 0; then one
defines the rank ρ(T) of T as being equal to the supremum of all ρT(s) + 1 for
s ∈ A<ω; when T is nonempty, this supremum is equal to ρT(∅) + 1 .

All this being said, we can begin to work, which we do by pointing out the obvi-
ous: whenever Γ is a countable group acting by homeomomorphisms on a Cantor
space X, the full group of the associated equivalence relation R is a co-analytic
subset of the Polish group Homeo(X). This is simply due to the fact that each set
{(g, x) ∈ Homeo(X)× X : g(x) = γ · x} is closed, and for all g ∈ Homeo(X) one
has

g ∈ [R]⇔ ∀x ∈ X∃γ ∈ Γ g(x) = γ · x .
The above line shows that [R] is the co-projection of an Fσ subset of Homeo(X)×
X, hence is co-analytic.

One might expect that the descriptive complexity of [R] is not that high in the
Borel hierarchy. For instance, in the measure-preserving context, full groups are
always Borel of very low complexity: it is shown in [W] that the full group of an
aperiodic, probability-measure-preserving equivalence relation is a Π0

3-complete
subset of the group of measure-preserving automorphisms (that is, in that case the
full group is a countable intersection of countable unions of closed sets). Perhaps
surprisingly, it turns out that full groups of minimal homeomorphisms are not
Borel.
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Below, we denote by ϕ a minimal homeomorphism of a Cantor space X and
recall that [ϕ] denotes the full group of the associated equivalence relation. We
also denote by T the space of all trees on Clop(X), endowed with the topology
discussed above.

Definition 4.1. To each g ∈ Homeo(X) we associate a tree Tg on Clop(X) as fol-
lows: for any sequence (U0, . . . , Un) of clopen sets, (U0, . . . , Un) belongs to Tg iff
each Uj is nonempty, Uj+1 ⊆ Uj for all j ∈ {0, . . . , n− 1} and g(x) 6= ϕ±j(x) for all
x ∈ Uj.

Lemma 4.2. The map g 7→ Tg is a Borel mapping from Homeo(X) to T . For any
g ∈ Homeo(X), g belongs to [ϕ] if, and only if, Tg is well-founded.

Proof. We need to prove that for any finite sequence of nonempty clopen subsets
(U0, . . . , Un) the set {g ∈ Homeo(X) : (U0, . . . , Un) ∈ Tg} is Borel. For this, it is
enough to show that for any nonempty clopen subset U of X, the set {g : ∀x ∈
U g(x) 6= x} is Borel. The complement of this set is {g : ∃x ∈ U g(x) = x},
which is closed because U is clopen in X and thus compact: if gn is a sequence of
homeomorphisms of X such that for all n there exists xn ∈ U such that gn(xn) =
xn, and gn converges to g in Homeo(X), then up to some extraction we can assume
that xn converges to x ∈ U; the distance from g(xn) to gn(xn) must converge to 0,
so gn(xn) converges to g(x), showing that g(x) = x. This concludes the proof that
g 7→ Tg is Borel.

Next we fix g ∈ Homeo(X). We first assume that g does not belong to [ϕ],
i.e. there exists x ∈ X such that g(x) 6= ϕn(x) for all n ∈ Z. Then, using the
continuity of g and ϕ, one can build by induction a decreasing sequence of clopen
neighborhoods Ui of x such that for all i and all y ∈ Ui one has g(y) 6= ϕ±i(y),
which yields an infinite branch of Tg. Conversely, assume that Tg is not well-
founded and let (Ui)i<ω be an infinite branch of Tg. Then F =

⋂
i<ω Ui is nonempty,

and for all x ∈ F g(x) is different from ϕn(x) for all n ∈ Z, showing that g does
not belong to [ϕ]. �

If [ϕ] were Borel, the set Tϕ = {Tg : g ∈ [ϕ]} would be an analytic subset of
T , hence the boundedness principle for coanalytic ranks (see [K1, Theorem 35.23])
would imply the existence of a countable ordinal α such that the rank of any ele-
ment of Tϕ is less than α. We want to prove that it is not the case, so we need to
produce elements of [ϕ] such that the associated tree has arbitrarily large rank. Let
us introduce some notation in order to make the work ahead simpler.

Definition 4.3. For any g ∈ [ϕ] we let ρ(g) denote the rank of Tg. For any fi-
nite sequence of clopen sets (U0, . . . , Un), we let ρg(U0, . . . , Un) denote the rank of
(U0, . . . , Un) with regard to the tree Tg. If α and β are ordinals, we write α ∼ β to
express that there are only finitely many ordinals between them; we write α & β
when α ≥ β or α ∼ β.

An encouraging sign that our introduction of ρ is a good way to capture infor-
mation about elements of [ϕ] is that the topological full group [[ϕ]] is exactly made
up of all g ∈ Homeo(X) such that ρ(g) < ω.

In order to build elements of [ϕ] such that the associated tree has arbitrarily
large rank, the following observation will be crucial.
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Lemma 4.4. Let g be an element of [ϕ], and assume that ρ(g) ≥ ω. Then for any
h ∈ [[ϕ]] one has ρ(g) ∼ ρ(hg).

Since ρ(g) = ρ(g−1), the above lemma also holds true when multiplying on the
right by an element of the topological full group.

Proof. For k < ω, let

Tk
g = {(Uk, . . . , Un) : (U0, . . . , Un) ∈ Tg for some U0, . . . , Uk−1}.

If h ∈ [[ϕ]], then for some k < ω and for all x ∈ X there is j such that |j| ≤ k and
h(x) = ϕj(x). So if g(x) 6= ϕj(x) for all |j| ≤ n but hg(x) = ϕm(x) for some m,
then |m| > n − k. This implies that Tk

g ⊆ Thg. Since ρ(Tk
g) ≥ ρ(Tg) − k, we get

ρ(Thg) ≥ ρ(Tg) − k, and similarly ρ(Tg) = ρ(Th−1hg) ≥ ρ(Thg) − k, proving the
claim. �

When U is a subset of X and g belongs to [ϕ], we set

n(g, U) = min({|k| : ∃x ∈ U g(x) = ϕk(x)})

Lemma 4.5. Let α be an infinite ordinal belonging to {ρ(g) : g ∈ [ϕ]}, and N be an
integer. For any nonempty clopen U ⊆ X, there exists h ∈ [ϕ] with support S contained
in U (in particular, h(U) = U), such that ρ(h) & α and n(h, S) > N.

Proof. Pick g ∈ [ϕ] such that ρ(g) = α is infinite and fix a nonempty clopen U ⊆
X and an integer N. Using compactness of the space of ϕ-invariant probability
measures and the fact that they are all atomless, one can find a nonempty clopen
Ũ ⊆ U such that (2N + 2)µ(Ũ) < µ(U) for any ϕ-invariant measure µ.

Since ϕ is minimal, there exist i1, . . . , in such that X =
⋃n

j=1 ϕij(Ũ). For all

j ∈ {1, . . . , n}, denote Uj = ϕij(Ũ), and consider the tree Tj defined by

(V0, . . . , Vn) ∈ Tj ⇔ (V0, . . . , Vn) ∈ Tg and V0 ⊆ Uj .

Denote by ρj the rank function associated to the well-founded tree Tj, and by ρ(Tj)
the rank of Tj. For any finite sequence (V0, . . . , Vk) of clopen subsets of X, we have(

∀j ∈ {1, . . . , n} ρj(V0 ∩Uj, . . . , Vk ∩Uj) = 0
)
⇒ ρg(V0, . . . , Vk) = 0 .

From this, we see by transfinite induction that ρ(g) = max{ρ(Tj) : j ∈ {1, . . . , n}},
so there exists j such that ρ(Tj) = α. Fix such a j; any element of [ϕ] coinciding
with g on Uj must have rank larger than α.

Applying the Glasner–Weiss result recalled as Theorem 2.7, we can find f ∈
[[ϕ]] such that f (Uj) = W ⊆ U. We also have

µ(g(Uj)) < µ

(
U \

N⋃
i=−N

ϕi(W)

)
for any ϕ-invariant µ, so applying Theorem 2.7 again we can find k ∈ [[ϕ]] such
that k(g(Uj)) is contained in U and disjoint from

⋃N
i=−N ϕi(W). Now, let h be equal

to kg f−1 on W, to f g−1k−1 on kg f−1(W), and to the identity elsewhere. We set
S = W ∪ h(W). Using the fact that f , k belong to [[ϕ]] and Lemma 4.4, we see that
ρ(h) & ρ(g). The construction ensures that h(W) is disjoint from

⋃N
i=−N ϕi(W), so

n(h, W) > N; since h is an involution, n(h, h(W)) = n(h, W) is also strictly larger
than N. This ensures that n(h, S) > N and all the desired conditions are satisfied.
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�

Theorem 4.6. The full group of a minimal homeomorphism of a Cantor space X is a
coanalytic non-Borel subset of Homeo(X).

Proof. Let ϕ be a minimal homeomorphism of a Cantor space X. We explain how
to produce elements of [ϕ] with arbitrarily large rank. To that end, we fix for
the remainder of the proof a compatible distance on X, an element g of [ϕ] and a
countable family (Vi) of nonempty disjoint clopen subets of X with the following
property: the tree generated by terminal nodes (U0, . . . , Un) of Tg such that Un =
Vi for some i has rank at least ω. Note that the value n associated to such a terminal
node is determined by i: we must have g = ϕ±(n+1) on Vi. We note n = Ni, and
our hypothesis is that (Ni) is unbounded.

We then pick an infinite sequence (Wi)i<ω of nonempty clopen subsets of X
such that the diameter of each Wi is less than 2−i and Wi ⊆ Vi for all i. Now, let gi
be any sequence of elements of [ϕ] of infinite rank; using Lemma 4.5, we can find
elements hi of [ϕ] with support Si contained in Wi and such that ρ(hi) & ρ(gi). We
shall also ask that n(hi, Si) > 2Ni + 1. We then define h : X → X by setting

h(x) =

{
ghi(x) if x belongs to some Wi

g(x) otherwise
.

Note that, since the sets Wi are pairwise disjoint, h is well-defined. We next show
that h is continuous. Let (xi) be a sequence of elements of X converging to some
x ∈ X. If x belongs to Wj for some j then xi ∈Wj for i large enough and continuity
of g and hj ensure that h(xi) converges to h(x). So we may assume that x does
not belong to ∪Wj; in that case h(x) = g(x) and since g is continuous we may
also assume that xi belongs to some Wji for all i. Each Wi is clopen, so we must
have ji → +∞, hence the diameter of Wji converges to 0. Since g is uniformly
continuous, the diameter of g(Wji ) also converges to 0; h(xi) and g(xi) both belong
to this set, showing that d(g(xi), h(xi)) converges to 0. Hence h(xi) converges to
g(x) = h(x), proving that h is continuous. The construction also ensures that h is
bijective, so h is a homeomorphism of X, and h belongs to [ϕ]. The definition of h
and the argument of Lemma 4.4 (using the fact that g = ϕ±(Ni+1) on Wi) ensure
that ρ(h) & ρ(hi) for all i. If we have ρ(gi) ≥ αi for limit ordinals αi, we then obtain
ρ(h) ≥ sup αi.

Now let α be a countable limit ordinal, and f an element of [ϕ] such that ρ( f ) ≥
α; we now explain how to produce an element of [ϕ] with rank greater than α + ω,
which will conclude the proof. The element in question, again denoted by h, is
obtained by applying the construction above with gi = f for all i. Let (U0, . . . , Un),
U0 = Un = Vi, be a terminal node of Tg, so in particular g = ϕ±(n+1) on U0, n = Ni.
Since n(hi, Si) > 2n + 1, the only way to have ghi(x) = ϕm(x) for x ∈ U0 is with
|m| > n, and this says that (U0, . . . , Un) belongs to Tghi

(and to Th) as well. Once
we know this, the argument of Lemma 4.4 implies that ρh(U0, . . . , Un) & ρ(hi) ≥ α:
if (U′0, . . . , U′k) ∈ Thi

, U′0 ⊆ Un, 2n + 1 < k, then (U0, . . . , Un, U′2n+2, . . . , U′k) ∈ Th.
We conclude that ρ(h) ≥ α + n = α + Ni. Since this is true for every i, we get
ρ(h) ≥ α + ω, as expected. �

Remark 3. Given the result we just proved, it seems likely that the full group of
an equivalence relation induced by a minimal action of a countable group Γ on a
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Cantor space is never Borel. The above argument may be adapted in large part,
but it is not clear to the authors how one can modify Lemma 4.5 in a context where
Theorem 2.7 does not hold.

One can nevertheless note that the above result extends to relations induced
by actions of Zd for all integers d, though this extension of the result is not re-
ally meaningful, indeed it is trivial once one knows that full groups associated to
minimal Zd-actions are the same as full groups associated to minimal Z-actions, a
powerful result proved in [GMPS].

5. CLOSURES OF FULL GROUPS.

We saw above that there does not exist a Hausdorff, Baire group topology on the
full group of a minimal homeomorphism ϕ of a Cantor space X. This precludes
the usage of Baire category methods; however, the same cannot be said of the
closure of [ϕ], which is of course a Polish group since it is a closed subgroup of
Homeo(X) (and the arguments of Section 3 show that the topology induced by
that of Homeo(X) is the unique Polish topology on the closure of [ϕ] which is
compatible with the group operations). As pointed out in [GPS2], the closure of
[ϕ] is easy to describe thanks to Theorem 2.7: letting Mϕ denote the (compact,
convex) set of all ϕ-invariant probability measures, we have

[ϕ] = {g ∈ Homeo(X) : ∀µ ∈ Mϕ g∗µ = µ} .

Notation. Below we denote the closure of the full group of ϕ in Homeo(X)
by Gϕ.

This group is relevant when studying topological orbit equivalence of mini-
mal homeomorphisms, because of a theorem of Giordano–Putnam–Skau which
implies the following result.

Proposition 5.1. Let ϕ1, ϕ2 be two minimal homeomorphisms of a Cantor space X; as-
sume that Gϕ1 and Gϕ2 are isomorphic (as abstract groups). Then ϕ1 and ϕ2 are orbit
equivalent.

Proof. Assume that Φ : Gϕ1 → Gϕ2 is a group isomorphism. First, the usual re-
construction techniques (see e.g. [M2]) show that there exists a homeomorphism
h ∈ Homeo(X) such that Φ(g) = hgh−1 for all g ∈ Gϕ1 .

So we have that

∀g ∈ Homeo(X) g ∈ Gϕ1 ⇔ hgh−1 ∈ Gϕ2 .

SinceMϕi is equal to the set of measures which are invariant under translation by
elements of Gϕi (for i = 1, 2), this means that

∀µ µ ∈ Mϕ1 ⇔ h∗µ ∈ Mϕ2 .

Then ([GPS1, Theorem 2.2(iii)]) implies that ϕ1 and ϕ2 are orbit equivalent. �

Of course, the converse of the above statement is true: if ϕ1 and ϕ2 are orbit
equivalent, then their full groups are conjugated inside Homeo(X), so the closures
of the full groups are also conjugated. However, the statement above is only valid
a priori for actions of Z: while it is true that for any minimal actions of count-
able groups an isomorphism between the closures of the respective full groups
must be implemented by an homeomorphism of X, there is no reason why this
homeomorphism would be sufficient to prove that the full groups themselves are
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isomorphic. Indeed, using ideas from ergodic theory, one can see that there are
plenty of examples of actions of countable groups Γ1, Γ2 on a Cantor space X such
that

[
RΓ1

]
=
[
RΓ2

]
, yet the two associated relations are not orbit equivalent. The

example below was explained to us by D. Gaboriau.

Proposition 5.2. There exists an action of Z and an action of the free group F3 on three
generators on a Cantor space X, such that the closures of the full groups of the two actions
coincide, yet the relations are not orbit equivalent.

Proof. Let Z act on the Cantor space {0, 1}ω via the usual odometer map. Consider
the free group F2 on two generators acting by the Bernoulli shift on {0, 1}F2 ; using
a bijection between ω and F2, one can see this as an action of F2 on {0, 1}ω = X. Let
F3 = F2 ∗ Z act on X, where the action of F2 is the Bernoulli shift and the action of
Z is via the odometer map. Then the actions of Z and F3 on {0, 1}ω both preserve
the (1/2, 1/2)-Bernoulli measure µ on 2ω; since the odometer is uniquely ergodic,
we see that for both actions the closure of the full group is equal to the set of all
homeomorphisms which preserve µ. Yet, there cannot even exist a µ-preserving
bijection h of X such that, for µ-almost all x, x′ ∈ X, one has

(xRZx′)⇔ (h(x)RF3 h(x′)) .

Indeed, the relation induced by the action of Z is hyperfinite, while the relation in-
duced by the action of F3 contains a subrelation which is induced by a free action of
F2, so it cannot be hyperfinite (see for instance [K2] for information on probability-
measure-preserving group actions and the properties we use here without details).
Since a homeomorphism realizing an orbit equivalence between RZ and RF3 would
have to preserve µ, we see that while the closures of both full groups coincide, the
associated relations cannot be orbit equivalent. �

In view of this, the following question might be interesting.

Question 5.3. Let Γ1, Γ2 be two countable amenable groups acting minimally on a
Cantor space X. Assume that the closures of the corresponding full groups are
isomorphic as abstract groups. Must the two actions be orbit equivalent?

If one knew that any minimal action of a countable amenable group is orbit
equivalent to a Z-action then the answer to the question above would be positive;
the result of [GMPS] mentioned at the end of the previous section implies that
the above question has a positive answer when Γ1, Γ2 are finitely generated free
abelian groups.

We already pointed out that it is unknown whether the full group of a minimal
homeomorphism ϕ is simple. This reduces to deciding whether the full group
coincides with its derived subgroup. Indeed, it is proved in [BM, Theorem 3.4]
that any normal subgroup of [ϕ] contains its derived subgroup; the same is true
for Gϕ, as can be seen by following the proof of [BM].

Unfortunately, it seems to be hard in general to decide which elements of [ϕ]
are products of commutators (though one might conjecture that every element has
this property; partial results in this direction can be found in [BM]). The use of
Baire category methods might make things simpler in the case of Gϕ, especially in
view of the following folklore result.

Proposition 5.4. Let G be a Polish group; assume that G has a comeager conjugacy class.
Then every element of G is a commutator.
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Proof. Assume that Ω is a comeager conjugacy class in G, and let g ∈ G. The
intersection gΩ∩Ω is nonempty; picking an element g0 in this intersection, we see
that there exists k ∈ G such that gkg0k−1 = g0, in other words g = g0kg−1

0 k−1. �

It is thus interesting to understand when Gϕ has a comeager conjugacy class,
even more so because of the following observation.

Proposition 5.5. Let ϕ be a minimal homeomorphism of a Cantor space X, and assume
that Gϕ has a comeager conjugacy class. Then Gϕ has the automatic continuity prop-
erty, i.e. any homomorphism from Gϕ to a separable topological group is continuous.

Proof. The argument in [RS, Theorem 12] adapts straightforwardly. �

In the next section, we will discuss in more detail the problem of existence of
comeager conjugacy classes in Gϕ in the particular case when ϕ is uniquely er-
godic, recovering in particular a result of Akin that provides many examples of
this phenomenon.

In the first version of this article, we proved a weaker version of the result be-
low, which worked only in the case when n = 1 and ϕ is a uniquely ergodic home-
omorphism (see the next section); we are grateful to K. Medynets for pointing out
to us the following stronger result.

Theorem 5.6 (Grigorchuk–Medynets [GM]). Let ϕ be a minimal homeomorphism of
a Cantor space X. Then {(g1, . . . , gn) : (g1, . . . , gn) generates a finite group} is dense in
[ϕ]n for all n.

Proof. Since this statement is not explicitly written down in [GM] (though it is
very close to Theorem 4.7 there), we describe the argument for the reader’s conve-
nience. We simply prove that the set of elements of finite order is dense in [ϕ]; the
proof of the general case is an easy consequence of this argument.

We may assume, replacing ϕ by a minimal homeomorphism which is orbit
equivalent to it (which does not affect the full group) that the topological full
group [[ϕ]] is dense in [ϕ]. This fact is pointed out in [BK, Theorem 1.6], and
follows from a combination of [GW, Theorem 2.2] and [GPS2, Lemma 3.3]. Under
this assumption, we only need to prove that the set of elements of finite order is
dense in [[ϕ]].

We fix γ ∈ [[ϕ]]. We let Di = {x : γ(x) = ϕi(x)}, and Ek = {x : γ−1(x) =
ϕk(x)} . The sets Di form a clopen partition of X, as do the sets Ek ; we let jγ : X →
Z (resp. kγ) be the continuous function defined by jγ(x) = j iff x ∈ Dj (resp.
kγ(x) = k iff x ∈ Ek). We also pick K such that Dj = ∅ = Ej for all |j| > K, fix a
compatible distance d on X for the remainder on the proof, and let δ > 0 be such
that d(Di, Dj) > δ for all nonempty Di 6= Dj, and d(Ei, Ej) > δ for all nonempty
Ei 6= Ej.

Recall that a Kakutani–Rokhlin partition associated to ϕ is a clopen partition of
X of the form {ϕi(Bn) : 0 ≤ n ≤ N, 0 ≤ i ≤ hn − 1}. The base of the partition is
B =

⋃N
n=0 Bn, while its top is T =

⋃N
n=0 ϕhn−1Bn. Note that ϕ(T) = B. For all i, we

set

Yi =
N⋃

n=0
ϕi(Bn) and Zi =

N⋃
n=0

ϕ−i(Bn)



FULL GROUPS OF MINIMAL HOMEOMORPHISMS AND BAIRE CATEGORY METHODS 15

K-R partitions exist because ϕ is minimal; actually, one can use minimality to
ensure that the following conditions are satisfied (see for instance [GM] for a dis-
cussion of these partitions and references):

(1) The functions jγ and kγ are constant on each atom of the partition.
(2) min{hn : 0 ≤ n ≤ N} ≥ 2K + 2.
(3) The diameter of each Yi and each Zi is less than δ for all i ∈ {0, . . . K}

(this can be ensured because of the uniform continuity of ϕ and ϕ−1, and
the fact that one can build K-R partitions whose base has arbitrarily small
diameter).

Fix such a partition. Note that the third condition ensures that jγ and kγ are con-
stant on each Yi, Zi (|i| ≤ K), and the second condition guarantees that the sets
(Yi)0≤i≤K, (Zi)1≤i≤K are pairwise disjoint. We now define P ∈ [[ϕ]] as follows. For
all n, and all i ∈ {0, . . . , hn−1}, let jγ(n, i) be the value of jγ on ϕi(Bn) = Bn,i.

• If 0 ≤ jγ(n, i) + i ≤ hn−1, then P(x) = γ(x) for all x ∈ Bn,i.
• If jγ(n, i) + i < 0, then necessarily i < K, so Bn,i = Yi, and since jγ is

constant on Yi one has γ(Yi) ⊆ Zl for some 1 ≤ l ≤ K. The inclusion must
be an equality since kγ is constant on Zl . Then set P(x) = ϕ−i+hn−l(x) for
all x ∈ Bn,i.
• If jγ(n, i) + i ≥ hn, then one must similarly have Bn,i = Zj for some 1 ≤

j ≤ K, γ(Zj) = Yl for some 0 ≤ l < K, and one can set P(x) = ϕ−i+l(x) for
all x ∈ Bn,i.

It is straightforward to check that P has finite order; also, the fact that the
diameter of each Yi, Zi for |i| ≤ K is small ensures that for all x one has both
d(P(x), γ(x)) ≤ δ and d(P−1(x), γ(x)) ≤ δ. Thus γ belongs to the closure of the
set of elements of finite order, which concludes the proof. �

Actually, as pointed out by K. Medynets, this argument shows that [ϕ] contains
a dense locally finite subgroup (the group of all elements which preserve a positive
semi-orbit ; see the remarks in [GM, Section 5]). We will not need this fact so do
not give any details.

Even though we do not know whether Gϕ or [ϕ] are simple in general, we can
use Theorem 5.6 to prove that these groups do not have any non-trivial closed
normal subgroups.

Theorem 5.7. Let ϕ be a minimal homeomorphism of a Cantor space X. Then Gϕ and
[ϕ] are topologically simple.

Proof. We show that the derived subgroup of [ϕ] is dense, which implies the sim-
plicity of both groups by the result of Bezuglyi–Medynets recalled in the para-
graph before Proposition 5.4. Say that g ∈ [ϕ] is a p-cycle on a clopen set U
if U is the support of g, gp = 1 and there exists a clopen A such that U =
A t g(A) . . . t gp−1 A (this is the same as saying that the g-orbit of every element
of U has cardinality p, and every element outside U is fixed by g). Theorem 5.6
implies that products of cycles are dense in [ϕ], so it is enough for our purposes to
show that p-cycles are products of commutators for any integer p.

Let g be a p-cycle on a clopen U, with U = tp−1
i=0 gi(A). Given a permutation σ

belonging to the permutation group Sp on p elements, we denote by gσ the element
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of [ϕ] defined by setting gσ(x) = x for all x outside U and

∀i ∈ {0, . . . , p− 1} ∀x ∈ gi(A) gσ(x) = gσ(i)−i(x) .

The map σ 7→ gσ is a homomorphism from Sp to [ϕ]. Since the commutator sub-
group of Sp is the alternating subgroup Ap, we thus see that whenever σ belongs
to Ap gσ is a product of commutators. In particular, g has this property if p is
odd. If p is even, let τ be the transposition of Sp which exchanges 0 and 1. Then
[BM, Corollary 4.8] tells us that gτ is a product of 10 commutators in [ϕ]; since
ggτ = gσ for some σ ∈ Ap, g is also a product of commutators. �

It was pointed out by the referee that, since one can assume that [[ϕ]] is dense
in [ϕ], the density of the derived subgroup of [ϕ] directly follows from the fact
that that [[ϕ]] is contained in the derived subgroup of ϕ, a fact which is mentioned
without proof on page 419 of [BM].

Let us mention another reason why we think it might be interesting to further
study the properties of closures of full groups.

Proposition 5.8. Let ϕ be a minimal homeomorphism of a Cantor space X. Then Gϕ is
an amenable Polish group.

Proof. By Theorem 5.6 there exists an increasing sequence of compact subgroups
of Gϕ whose union is dense in Gϕ (see [KR, Proposition 6.4], which must then be
amenable.

The result would also follow immediately from the stronger fact that Gϕ actu-
ally contains a dense locally finite subgroup.

�

This fact is particularly interesting in view of a question of Angel–Kechris–
Lyons [AKL, Question 15.1] asking whether, whenever an amenable Polish group
has a metrizable universal minimal flow, the universal minimal flow is uniquely
ergodic. A positive answer to the following problem would then show that the
answer to Angel–Kechris–Lyons’ question is negative.

Question 5.9. Let ϕ be a minimal homeomorphism of a Cantor space X. Is the
universal minimal flow of Gϕ metrizable?

Remark 4. Proving that there exists one minimal homeomorphism ϕ which is not
uniquely ergodic, yet has a metrizable universal minimal flow would be enough
to answer negatively the question of Angel–Kechris–Lyons mentioned above. In
the opposite direction, proving that the universal minimal flows of these groups
are not metrizable as soon as the homeomorphism is not uniquely ergodic, and are
metrizable otherwise, would point towards a positive answer to their question.

At the moment, this seems out of reach: for instance, when ϕ is equal to the
usual binary odometer, Gϕ is just the set of all homeomorphisms of the Cantor
space {0, 1}ω which preserve the usual (1/2, 1/2)-Bernoulli measure on {0, 1}ω.
Identifying the universal minimal flow of this group is already a very complicated
problem, studied in [KST] where a candidate (which is metrizable) is proposed.
Thus it seems that the current state of the art does not, for the moment, allow us
to hope for an easy answer to our question.
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6. UNIQUELY ERGODIC HOMEOMORPHISMS AND FRAÏSSÉ THEORY

From now on, we focus on the case when ϕ is uniquely ergodic, i.e. there is a
unique ϕ-invariant probability measure.

Definition 6.1. A Borel probability measure µ on a Cantor space X is said to be a
good measure if µ is atomless, has full support, and satisfies the following property:
whenever A, B are clopen subsets of X such that µ(A) ≤ µ(B), there exists a clopen
subset C of B such that µ(C) = µ(A).

Note that in the definition above the fact that A, B, C are clopen is essential.
Good measures are relevant in our context because of the following fact.

Theorem 6.2 ([A1]; Glasner–Weiss [GW]). Let µ be a probability measure on a Cantor
space X. There exists a minimal homeomorphism ϕ of X such that {µ} = Mϕ if, and
only if, µ is a good measure.

The fact that the goodness of µ is a necessary condition in the result above is
due to Glasner–Weiss (it follows directly from the result we recalled as Theorem
2.7); the fact that is is sufficient is due to Akin.

It seems natural to ask the following question, which we only mention in pass-
ing.

Question 6.3. Can one give a similar characterization of compact, convex subsets
K of the set of probability measures on a Cantor space X for which there exists a
minimal homeomorphism ϕ of X such that K is the set of all ϕ-invariant measures?

The following invariant of good measures is very useful.

Definition 6.4 (Akin [A1]). Let µ be a good measure on a Cantor space X. Its clopen
value set is the set

V(µ) = {r ∈ [0, 1] : r = µ(A) for some clopen A ⊆ X} .

A good measure µ on a Cantor space X is completely characterized by its clopen
value set, in the sense that for any two good measures µ, ν on X with the same
clopen value set there must exist a homeomorphism g of X such that g∗µ = ν (see
[A1, Theorem 2.9]; we discuss a different proof below). If µ is a good measure,
then V(µ) is the intersection of a countable subgroup of (R,+) and [0, 1], contains
1, and is dense in the interval; conversely it is not hard to see that any such set is
the clopen value set of some good measure µ. The density condition corresponds
to the fact that µ is atomless, and is equivalent (since 1 ∈ V) to saying that V is not
contained in 1

p Z for any integer p.

Definition 6.5. Given a good measure µ on a Cantor space X, we follow [A1]
and denote by Hµ the set of all homeomorphisms of X which preserve µ. For a
countable V ⊂ [0, 1], we denote by 〈V〉 the intersection of the subroup of (R,+)
generated by V∪{1}with [0, 1]; we say that V is group-like when V is not contained
in 1

p Z for any integer p and V = 〈V〉. In that case, we denote by µV the good
measure whose clopen value set is equal to V.

Of course, µV above is only defined up to isomorphism; since we focus on
isomorphism-invariant properties we allow ourselves this small abuse of termi-
nology.
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We would like to understand when there exists a comeager conjugacy class in
Hµ. Akin [A1, Theorem 4.17] proved that this holds true whenever V(µ) + Z is
a Q-vector subspace of R, or equivalently whenever any clopen subset can be
partitioned into m clopen subsets of equal measure for any integer m. One can
check that this also holds true, for instance, when µ is a Bernoulli measure (this
is explicitly pointed out in [KR]), and it was our hope that this property would
be satisfied by all good measures. Unfortunately, such is not the case, as we will
see shortly; since we approach this problem via techniques developed by Kechris–
Rosendal [KR], we quickly recall the framework for their results.

A signature L is a set {{( fi, ni)}i∈I , {(Rj, mj)}j∈J , {ck}k∈K} where each fi is a
function symbol of arity ni, each Rj is a relation symbol of arity mj, and each ck is a
constant symbol.

Given a signature L, an L-structure M consists of a set M along with a fam-
ily {{( fMi )}i∈I , {RMj }j∈J , {cMk }k∈K} where each fMi is a function from Mki to M,

each RMj is a subset of Mmj , and each cMk is an element of M. In our context,
one might for instance consider the signature containing constant symbols 0 and
1, binary functional symbols ∧ and ∨, and consider the class of structures in that
signature which are boolean algebras with minimal element (the empty set) cor-
responding to the constant 0, and maximal element (the whole set) corresponding
to the constant 1. It might also simplify matters to add a unary function symbol
standing for complementation. Here, we are not concerned merely with boolean
algebras, but with probability algebras. One way to fit those into our framework
is to first fix a set V ⊆ [0, 1] (the set of values allowed for the probability measure),
and add a unary predicate µv for each v ∈ V. Then, one can naturally consider the
class of probability algebras with measure taking values in V as a class of struc-
tures in this signature LV .

There are natural notions of embedding/isomorphism of L-structures. Assume
that we have fixed a countable signature L (that is, each set I, J, K above is at most
countable), and that K is a class of finite L-structures. Then one says that K is a
Fraı̈ssé class if it satisfies the four following conditions:

(1) K countains only countably many structures up to isomorphism, and con-
tains structures of arbitrarily large finite cardinality.

(2) K is hereditary, i.e. if A ∈ K and B embeds in K, then B ∈ K.
(3) K satisfies the joint embedding property (JEP), that is, any two elements of K

embed in a common element of K.
(4) K satisfies the amalgamation property (AP), that is, given A, B, C ∈ K and

embeddings i : A → B, j : A → C, there exists D ∈ K and embeddings
β : B→ D and γ : C → D such that β ◦ i = γ ◦ j.

The point is that, given a Fraı̈ssé class K, there exists a unique (up to isomor-
phism) L-structure K whose age is K and which is homogeneous. Here, the age of
a structure is the class of finite L-structures which embed in it, and a structure K
is homogeneous if any isomorphism between finite substructures of K extends to
an automorphism of K. Conversely, if K is a countable homogeneous L-structure
whose finitely generated substructures are finite, then its age is a Fraı̈ssé class.

For instance, the class of finite boolean algebras is a Fraı̈ssé class and its limit
is the unique countable atomless Boolean algebra, whose Stone space is the Can-
tor space —so the automorphism group of the limit is just the homeomorphism
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group of the Cantor space in another guise. Note that the automorphism group of
any countable structure K may be endowed with its permutation group topology,
for which a basis of neighborhoods of the neutral element is given by pointwise
stabilizers of finite substructures.

Let us fix a good measure µ on a Cantor space X, set V = V(µ), and consider
the probability algebra (Clop(X), µ) made up of all clopen subsets of X endowed
with the measure µ, in the signature LV discussed above. Then it follows from The-
orems 6.2 and 2.7 that this is a homogeneous structure: any measure-preserving
isomorphism between two finite clopen subalgebras of X is induced by a measure-
preserving homeomorphism of X, i.e. an automorphism of the boolean algebra
Clop(X) which preserves the measure µ. Also, an easy induction on the cardi-
nality of finite subalgebras of (Clop(X), µ) shows that its age consists of the finite
probability algebras whose measure takes values in V. Hence this is a Fraı̈ssé class;
note that this implies that two good measures µ1, µ2 such that V(µ1) = V(µ2) must
be isomorphic, by the uniqueness of the Fraı̈ssé limit (this was first proved by Akin
[A1]).

Now we can come back to the question of existence of dense/comeager conju-
gacy classes in Hµ, when µ is a good measure. Assume again that K is a Fraı̈ssé
class in some countable signature L, let K be its Fraı̈ssé limit and let K1 denote
the class of structures of the form (A, ϕ), where A belongs to K and ϕ is a partial
automorphism of A, i.e. an isomorphism from a substructure of A onto another
substructure of A. An embedding between two such structures (A, ϕ) and (B, ψ)
is an embedding α of A into B such that ψ ◦ α extends α ◦ ϕ. Then, the existence of
a dense conjugacy class in Aut(K) is equivalent to saying that the classK1 satisfies
the joint embedding property (see [KR, Theorem 2.1]).

The existence of a comeager conjugacy class is a bit harder to state. Keeping
the notations above, say that a class of structures K satisfies the weak amalgamation
property if for any A ∈ K there exists B ∈ K and an embedding i : A→ B such that
for any C, D ∈ K and any embeddings r : B → C, s : B → D, there exists E ∈ K
and embeddings γ : C → E and δ : D → E such that γ ◦ r ◦ i = δ ◦ s ◦ i. Then
[KR, Theorem 3.4] states that there exists a comeager conjugacy class in Aut(K) if
and only if K1 satisfies both (JEP) and (WAP).

We now know what combinatorial properties to study when looking at the au-
tomorphism groups of good measures; fix a good measure µ and consider the
corresponding Fraı̈ssé class Kµ, which is made up of all finite probability algebras
whose measure takes its values inside V(µ). Theorem 5.6 provides a good starting
point: indeed, it shows that any element of Kµ

1 can be embedded in an element
of the form (A, ϕ), where ϕ is a global automorphism of A. We denote this class
by Kµ

aut.
It follows from Theorem 5.6 that Kµ

aut is cofinal in Kµ
1 . Hence, in order to un-

derstand when Kµ
1 satisfies (JEP), we only need to consider automorphisms of

finite algebras; explicitly, we now see that Hµ has a dense conjugacy class if and
only if the following condition is satisfied: wheneverA,B are finite subalgebras of
Clop(X), and a, b are automorphisms of (A, µ) ,(B, µ) respectively, there exists a fi-
nite subalgebra C of Clop(X) and an automorphism c of (C, µ) such that there exist
µ-preserving embeddings α : A → C and β : B → C satisfying c(α(A)) = α(a(A))
for all A ∈ A, and c(β(B)) = β(b(B)) for all B ∈ B.
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Unfortunately, this property does not always hold. Indeed, assume that µ sat-
isfies (JEP), and that there exists A ∈ Clop(X) such that µ(A) = 1

n for some in-
teger n. Then, there exists an element a ∈ Hµ such that X is the disjoint union of
A, . . . , an−1(A). Let now r be any element of V(µ), B a clopen subset of X such
that µ(B) = r, and consider:

• the algebra A generated by A, . . . , an−1(A), with the automorphism a;
• the algebra B made up of B and its complement, with the identity auto-

morphism b.
Assume one can jointly embed (A, a) and (B, b) in (C, c); identify A,B with the
subalgebras of C associated with these embeddings. Then B = B ∩ tn−1

i=0 ci(A) =

tn−1
i=0 ci(B∩ A), so B is cut into n clopen subsets of equal measure. This means that

r
n must belong to V(µ). Hence, the joint embedding property fails for instance
when V = 〈 1

2 , 1
π 〉.

Analysing the above example, one can extract a combinatorial condition on V
that is equivalent to the existence of a dense conjugacy class in HµV .

Proposition 6.6. Let V be a group-like subset of [0, 1]. Then there is a dense conjugacy
class in HµV if, and only if, V satisfies the following condition: whenever ai, bj ∈ V and
ni, mj ∈ N are such that ∑

p
i=1 niai = 1 = ∑

q
j=1 mjbj, there exist ci,j ∈ V such that

∀j mjbj =
p

∑
i=1

lcm(ni, mj)ci,j and ∀i niai =
q

∑
j=1

lcm(ni, mj)ci,j .

This holds true in particular when V +Z is a Q-vector subspace of R, and when V +Z
is a subring of R.

As we already mentioned above, Akin [A1] actually proved that Hµ has a comea-
ger conjugacy class when V(µ) + Z is a Q-vector subspace of R, a fact that we will
recover below.

Proof of Proposition 6.6. To simplify the notation below we sometimes do not men-
tion the measure; in particular, all automorphisms are to be understood as pre-
serving µ.

Assume that the joint embedding property for partial automorphisms holds,
and consider (ai, ni)1≤i≤p, (bj, mj)1≤j≤q as above. Then one can consider a finite
algebra A with clopen atoms Ai,k for k ∈ {0, . . . , ni − 1} such that each Ai,k has
measure ai, and an automorphism a of A such that a(Ai,k) = Ai,k+1 for all i, k
(where addition is to be understood modulo ni); similarly one can consider a fi-
nite algebra B with clopen atoms Bj,k (k ∈ {0, . . . , mj − 1}) and the corresponding
automorphism b of B. For all i we let Ai = ∪Ai,k and Bj = ∪Bj,k.

Then we pick (C, c) such that (A, a) and (B, b) can be embedded in (C, c), where
c is an automorphism of the finite algebra C, and we identify them with the cor-
responding subalgebras of C. If for some i, j Ai ∩ Bj is nonempty, then it is a c-
invariant clopen set. Any atom of C contained in some Ai,k ∩ Bj,l must have an
orbit whose cardinality is a multiple of lcm(ni, mj), so ci,j = 1

lcm(ni ,mj)
µ(Ai ∩ Bj)

belongs to V. Then we have for all i:

niai = µ(Ai) =
q

∑
j=1

µ(Ai ∩ Bj) =
q

∑
j=1

ci,jlcm(ni, mj) .
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The same reasoning holds for mjbj.
This proves one implication; to prove the converse, let us first note that, given

a clopen U and two cycles a, b on U of orders n, m respectively and such that
1

lcm(n,m)
µ(U) belongs to V, there exists a cycle on U of order N = lcm(n, m) in

which both a and b embed. Such a cycle is obtained by cutting U in N disjoint
pieces Ci (0 ≤ i ≤ N − 1) of equal measure, and setting c(Ci) = Ci+1 (modulo
N). Then, let N = nr = ms; letting A0, . . . , An−1 denote the atoms contained in
U of the algebra on which a is defined, one obtains the desired embedding by
identifying each Ai with tr−1

k=0Cnk+i, and each Bj with ts−1
k=0Cmk+j.

Now, let α, β in HµV be such that X = tp
i=1 Ai, where each Ai is clopen and α is a

product of cycles αi of order ni on Ai, and X = tq
j=1Bj, where each Bj is clopen and

β is a product of cycles β j of order mj on Bj. It is enough to prove that α, β embed
in a common element of HµV . Let niai = µ(Ai) and mjbj = µ(Bj), and apply our
assumption on V to get ci,j as in the lemma’s statement. Let I denote the set of all
(i, j) such that ci,j 6= 0; we may find a finite subalgebra of Clop(X) whose atoms
Ck

i,j ((i, j) ∈ I, 1 ≤ k ≤ lcm(ni, mj)) are of measure ci,j. For each (i, j) ∈ I, set

Di,j =

lcm(ni ,mj)⊔
k=1

Ck
i,j

We saw that there exists a cycle δi,j on Di,j, of order lcm(ni, mj), in which a cycle
αi,j on Di,j of order ni and a cycle βi,j on Di,j of order mj both embed. Let δ be the
product of all δi,j; α embeds in δ as the product of all αi,j, and β embeds in δ as the
product of all βi,j.

To see that the property under discussion holds true when V + Z is a subring
of R, simply note that in that case aibj belongs to V; thus ci,j = aibj

nimj
lcm(ni ,mj)

=

aibjgcd(ni, mj) works.
When V + Z is a Q-vector subspace of R, which is equivalent to saying that

a
n ∈ V for any positive integer n and any a ∈ V, we skip the proof since we will
show a stronger property below.

�

The above criterion is probably of minimal practical interest, since it appears
to be fairly hard to check (certainly, it does not help much when tackling the case
when V + Z is a Q-vector subspace of R).

Definition 6.7. Following Akin [A1], we say that a group-like subset V ⊆ [0, 1] is
Q-like if V + Z is a Q-vector subspace of R; this is equivalent to saying that V is
group-like and 1

n V ⊆ V for any positive integer n.

Proposition 6.8. If V is Q-like, then KµV
aut satisfies the amalgamation property. (The

converse is also true.) Hence HµV has a comeager conjugacy class in that case.

Proof. Suppose that (A, ϕ) embeds in (B, ψ) and in (C, θ). We construct the boolean
amalgam (B⊗A C, ψ⊗ θ) of (B, ψ) and (C, θ) over (A, ϕ) in the standard way (see
for example [KST]), and only need to define the measures. We give an argument
in the fashion of the one contained in Theorem 2.1 of [KST].
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Fix an atom a ∈ A, and list the atoms of B and C contained in a by {bk
i }

k<n
i<nk

and {cl
j}

l<m
j<ml

respectively, where bk
i and bk′

i′ are in the same ψ-orbit iff k = k′, and

analogously for the cl
j. We want to define the values xkl

ij = µ(bk
i ⊗ cl

j). Then we
would translate these values in the obvious manner to the products of the atoms of
B and C contained in the ϕ-translates of a; finally, we would proceed analogously
for the other orbits of (A, ϕ).

Other than being in V, the values xkl
ij have to satisfy:

0 ≤ xkl
ij ,

xkl
ij = xkl

i′ j′ ,

∑
ki

xkl
ij = µ(cl

j), ∑
l j

xkl
ij = µ(bk

i ).

Denoting xkl = xkl
ij , we can reformulate the conditions as:

∑
k

nkml xkl = mlµ(cl
0), ∑

l
nkml xkl = nkµ(bk

0).

Considered as a system in the variables ykl = nkml xkl , we can find a solution in

R, namely ykl = nkml
µ(bk

0)µ(c
l
0)

µ(a) . Since V is group-like and dense, there must also

be solutions ykl in V. Since it is also Q-like, we can take xkl = ykl

nkml
and we are

done. �

The amalgamation property for Kµ
aut is stronger than the existence of a comea-

ger conjugacy class in Hµ; for instance, if V(µ) is the set of dyadic numbers, then
it follows from [KR, discussion after the statement of Theorem 6.5] that Hµ has a
comeager conjugacy class, but it is easy to see that Kµ

aut does not have the amalga-
mation property in that case. It does however admit a cofinal class which satisfies
the amalgamation property, which is sufficient to obtain (WAP) (that class is made
up of finite subalgebras all of whose atoms have the same measure). A priori, the
cofinal amalgamation property for Kµ

aut is itself stronger than (WAP); yet we do
not know of an example of measure for which Kµ

1 has (WAP) but Kµ
aut does not

have the cofinal amalgamation property.
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