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ABSTRACT

The Thomas—Fermi approach to galaxy structure determines self-consistently the gravitational
potential of the fermionic warm dark matter (WDM) given its distribution function f{E). This
framework is appropriate for macroscopic quantum systems as neutron stars, white dwarfs and
WDM galaxies. Compact dwarf galaxies are near the quantum degenerate regime, while large
galaxies are in the classical Boltzmann regime. We derive analytic scaling relations for the
main galaxy magnitudes: halo radius r,, mass M}, and phase-space density. Small deviations
from the exact scaling show up for compact dwarfs due to quantum macroscopic effects.
We contrast the theoretical curves for the circular galaxy velocities v.(r) and density profiles
p(r) with those obtained from observations using the empirical Burkert profile. Results are
independent of any WDM particle physics model, they only follow from the gravitational
interaction of the WDM particles and their fermionic nature. The theoretical rotation curves
and density profiles reproduce very well the observational curves for r < r, obtained from 10
different and independent sets of data for galaxy masses from 5 x 10° to 5 x 10! M. Our
normalized theoretical circular velocities and normalized density profiles turn to be universal
functions of r /ry, for all galaxies. In addition, they agree extremely well with the observational
curves described by the Burkert profile forr < 2 ry,. These results show that the Thomas—Fermi

approach correctly describes the galaxy structures.

Key words: Galaxy structure — dark matter.

1 INTRODUCTION

Dark matter (DM) is the main component of galaxies: the fraction
of DM over the total galaxy mass goes from 95 per cent for large di-
lute galaxies (Persic, Salucci & Stel 1996; Oh et al. 2008; Memola,
Salucci & Babi¢ 2011) to 99.99 per cent for dwarf compact galaxies
(Martin, de Jong & Rix 2008; Woo, Courteau & Dekel 2008; Brodie
et al. 2011; Willman & Strader 2012; Walker, private communica-
tion). Therefore, the study of galaxy properties is an excellent way
to disentangle the nature of DM.

Warm dark matter (WDM), which is DM formed by particles
with masses in the keV scale, receives increasing attention today
(Biermann, de Vega & Sanchez 2012; de Vega, Falvella & Sanchez
2012b; de Vega & Sanchez 2013, and references therein).

At intermediate scales, ~100 kpc, WDM gives the correct abun-
dance of substructures and therefore WDM solves the cold dark
matter (CDM) overabundance of structures at small scales. (Colin,
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Valenzuela & Avila-Reese 2000; Sommer-Larsen & Dolgov 2001;
Gao & Theuns 2007; Tikhonov et al. 2009; Zavala et al. 2009;
Papastergis et al. 2011; Lovell et al. 2012, 2014; Anderhalden et al.
2013). For scales larger than 100 kpc, WDM yields the same results
as CDM. Hence, WDM agrees with all the observations: small-scale
as well as large-scale structure observations and cosmic microwave
background (CMB) anisotropy observations.

WDM simulations (as Avila-Reese et al. 2001; Gao & Theuns
2007; Colin., Valenzuela & Avila-Reese 2008; Zavala et al. 2009;
Lovell et al. 2012, 2014; Maccio et al. 2012; Viiias, Salvador-Solé
& Manrique 2012 and many others) are purely classical (i.e. WDM
quantum dynamics is not used in those simulations). The dynamics
of DM in the simulations is worked out classically from the clas-
sical Newton’s equations or self-gravitating hydrodynamics (also
classical, without WDM quantum effects). Quantum effects, as the
DM quantum pressure, are absent is such frameworks. Inside galaxy
cores, below ~100 pc, WDM N-body classical physics simulations
do not provide the correct structures because quantum effects are
important in WDM at these scales. Classical physics N-body WDM
simulations without the WDM quantum pressure exhibit cusps or
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small cores with sizes smaller than the observed cores (Avila-Reese
et al. 2001; Colin et al. 2008; Maccio et al. 2012; Viiias et al. 2012).
The relevant WDM quantum effect, as discussed in our previous
articles (Destri, de Vega & Sanchez 2013a, in what follows DdVS
2013a, Destri, de Vega & Sanchez 2013b, in what follows DdVS
2013b), is the fermionic quantum pressure.

In WDM simulations, the fact that the DM is warm appears in
the primordial power spectrum which is suppressed at small scales
below the free streaming length. This can be implemented by a
simple cutoff or through precise formulas fitting the WDM primor-
dial power spectrum (see Destri, de Vega & Sanchez 2013c for a
recent article), and through the non-zero particle velocity disper-
sion. In addition, in fermionic WDM, the phase-space density is
bounded from above by the Pauli principle (DdVS 2013a), see also
Tremaine & Gunn (1979). This is the only quantum (fermionic) as-
pect of WDM implemented in the WDM simulations. Such bound
is clearly not enough to account for the quantum pressure of the
WDM fermions, because the quantum pressure requires of a com-
bination of both the Pauli principle and the Heisenberg principle.
And therefore, the power spectrum cutoff and the Pauli bound on
the phase-space density are not enough in the simulations to en-
large the size of the WDM haloes against the gravitation attraction.
That is the reason why in WDM simulations the core size problem
persists. The presence of a repulsive quantum fermionic pressure is
crucial to enlarge enough the haloes against gravitation to account
for the macroscopic core sizes. The cutoff in the primordial power
spectrum in the WDM simulations is enough to account for the
right number of substructures and solve the CDM overabundance
problem.

Besides of the cutoff in the primordial power spectrum and the
Pauli bound in the phase-space density implemented in the WDM
simulations, the crucial point is that in WDM simulations the
N-body self-gravitating classical evolution follows the classical
Newton’s equations. This dynamics in the inner dense regions is
far away from the quantum evolution according to the N-body
Schrodinger equation and does not contain the quantum fermionic
pressure. Instead, the Thomas—Fermi approach corresponds to the
Schrodinger equation in the large N regime and contains from the
start the quantum pressure. This is the reason why the quantum
pressure is naturally contained in the Thomas—Fermi approach and
it is not included so far in the classical N-body WDM simulations.

The quantum pressure is well captured in the Thomas—Fermi
approach (DdVS 2013a,b). The lack of quantum pressure in the
WDM simulations explains why they exhibit cusps or small cores
with sizes smaller than the observed cores (Maccio et al. 2012).
WDM predicts correct structures and cores with the right sizes for
small scales (below the kpc scale) when its quantum nature is taken
into account (DAVS 2013a,b).

The quantum effects of matter in the inner halo regions arise
because of the quantum fermionic nature and of the quantum un-
certainty principle, the combined action of both translates into a
non-zero quantum pressure. For macroscopic systems with a large
number of particles as galaxies, this translates into macroscopic
quantum effects. (Other examples in nature are He®, white dwarf
stars and neutron stars.) The quantum pressure goes as the mass of
the particle to the power —8/3 and it is therefore much smaller for
baryons than for WDM (DdVS 2013a).

The Thomas—Fermi DdVS approach applies irrespective of the
WDM particle physics model. The lower bound for the WDM par-
ticle mass m > 1.91 keV is derived in the Thomas—Fermi approach
(DdVS 2013b) from the lightest known dwarf galaxies. This value
is independent of the WDM particle physics model.

MNRAS 442, 2717-2727 (2014)

The main fermionic WDM particle candidate is a sterile neutrino
in the keV scale. Many models of sterile neutrinos are available
by now (see, for a recent review, Merle 2013). Another fermionic
WDM particle candidate is a gravitino in the keV scale.

In summary, all the small-structure formation constraints on the
WDM particle mass (Zavala et al. 2009; Papastergis et al. 2011;
Lovell etal. 2012, 2014; Menci, Fiore & Lamastra 2013; Nierenberg
et al. 2013; Pacucci, Mesinger & Haiman 2013), as well as the
bounds from sterile neutrino decay into X-rays (Watson, Li & Polley
2012) favours a WDM particle mass approximately in the 2-3 keV
range.

Bounds on the WDM particle mass from Lyman o forest data
(Viel et al. 2013) may be not so reliable since they are affected
by the difficult-to-characterize non-linear growth of baryonic and
DM structures (Watson et al. 2012). Besides these systematic ef-
fects from the Lyman « data, there are uncertainities in the WDM
simulations themselves, mainly originating from the uncertainty on
the chosen initial velocity dispersion for the particles in the simu-
lations whose effective mass is about 10° M = 10% keV each, as
discussed by several authors (Lovell et al. 2012, 2014; Maccio et al.
2012; Viel et al. 2013). Namely the effective particles in the WDM
simulations are about 10° times heavier than the real WDM parti-
cles. This makes difficult to infer the initial velocity distribution of
the effective particles from the known initial velocity distribution
of the real WDM particles.

The Lyman o« mass bounds are usually given for the thermal
relic mass. This is the mass of the WDM particle if it decouples
in thermal equilibrium, which is normally not the case for ster-
ile neutrinos. The relation between the physical particle mass and
the thermal mass has to be worked out explicitly for each spe-
cific particle physics model. About 100 sterile neutrino models are
available today (Merle 2013) for which the Lyman « bounds are
not known. Therefore, it is not possible so far to provide precise
generic Lyman « bounds on the WDM sterile neutrino mass. At
present, Lyman o bounds on the WDM particle mass are only avail-
able for a few specific particle physics models. For discussions
on small-structure formation in WDM and Lyman « bounds on
the WDM particle mass, see de Vega et al. (2012b) and Biermann
etal. (2012).

The results presented in this paper do not depend on the precise
value of the WDM particle mass m but only on the fact that m is in
the keV scale.

One can determine the keV scale of the DM particle mass m
but not its precise value within the keV scale just from the core
radius value of dilute galaxies, those with M}, > 10° Mg used in
this paper.

The aim of this paper is to show that the obtained rotation curves
and density profiles in the Thomas—Fermi galaxy structure the-
ory are in well agreement with the galaxy data parametrized with
Burkert profiles.

We follow here the Thomas—Fermi approach to galaxy struc-
ture for self-gravitating fermionic WDM (DdVS 2013a,b). This
approach is especially appropriate to take into account quantum
properties of systems with large number of particles, that is, macro-
scopic quantum systems as neutron stars and white dwarfs (Landau
& Lifshits 1980). In this approach, the central quantity to derive is
the DM chemical potential p(r), which is the free energy per parti-
cle. For self-gravitating systems, the potential u(r) is proportional
to the gravitational potential ¢(r),

w(r) = po —mae(r), (D
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o being a constant, and obeys the self-consistent and non-linear
Poisson equation

Vi = —angGmt [ S0y (LZ - u<r>) - @
Q27 h)? 2m

Here, G is Newton’s gravitational constant, g is the number of in-
ternal degrees of freedom of the DM particle, p is the DM particle
momentum and f(E) is the energy distribution function. This is a
semiclassical gravitational approach to determine self-consistently
the gravitational potential of the fermionic WDM given its distribu-
tion function f(E).

In the Thomas—Fermi approach, DM-dominated galaxies are con-
sidered in a stationary state. This is a realistic situation for the late
stages of structure formation since the free-fall (Jeans) time #; for
galaxies is much shorter than the age of galaxies. f is at least one
or two orders of magnitude smaller than the age of the galaxy.

We consider spherical symmetric configurations where equation
(2) becomes an ordinary non-linear differential equation that deter-
mines self-consistently the chemical potential x(r) and constitutes
the Thomas—Fermi approach (DdVS 2013a,b). We choose for the
energy distribution function a Fermi-Dirac distribution

FE= m
where Ej is the characteristic one-particle energy scale. E, plays
the role of an effective temperature scale and depends on the galaxy
mass. The Fermi—Dirac distribution function is justified in the inner
regions of the galaxy, inside the halo radius where we find that the
Thomas—Fermi density profiles perfectly agree with the observa-
tional data modelized with the empirical Burkert profile.

Observations show that the DM angular momentum is small. In
spirals, we have a direct proof of this fact from their bottom-up gen-
eral scenario of formation. In these objects, we can compute from
observations the disc angular momentum; if the angular momentum
per unit mass is conserved during the process of disc formation, the
values found imply that DM haloes are not dominated by rotation
(Tonini et al. 2006). Therefore, the spherical symmetric approxi-
mation makes sense. Indeed, our results confirm the consistency of
such assumption.

In this paper, spherical symmetry is considered for simplicity to
determine the essential physical galaxy properties as the classical or
quantum nature of galaxies, compact or dilute galaxies, the phase-
space density values, the cored nature of the mass density profiles,
the galaxy masses and sizes. It is clear that DM haloes are not
perfectly spherical but describing them as spherically symmetric is
a first approximation to which other effects can be added. In DAVS
(2013a), we estimated the angular momentum effect and this yields
small corrections.

Our spherically symmetric treatment captures the essential fea-
tures of the gravitational dynamics and agrees with the observations.
Note that we are treating the DM particles quantum mechanically
through the Thomas—Fermi approach, so that expectation values
are independent of the angles (spherical symmetry) but the parti-
cles move and fluctuate in all directions in totally non-spherically
symmetric ways. Namely this is more than treating purely classi-
cal orbits for particles in which only radial motion is present. The
Thomas—Fermi approach to galaxies can be generalized to describe
non-spherically symmetric and non-isotropic situations, by consid-
ering distribution functions which include other particle parameters
like the angular momentum.

The solutions of the Thomas—Fermi equation (2) are charac-
terized by the value of the chemical potential at the origin ©(0).

2719

Large positive values of 1£(0) correspond to dwarf compact galaxies
(fermions near the quantum degenerate limit), while large negative
values of (0) yield large and dilute galaxies (classical Boltzmann
regime).

Approaching the classical diluted limit yields larger and larger
halo radii, galaxy masses and velocity dispersions. In contrast, in the
quantum degenerate limit, we get solutions of the Thomas—Fermi
equations corresponding to the minimal halo radii, galaxy masses
and velocity dispersions.

The surface density

o =ry po ~ 120 Mg pc™>  up to 10-20 per cent (3)

has the remarkable property of being nearly constant and inde-
pendent of luminosity in different galactic systems (spirals, dwarf
irregular and spheroidals, elliptics) spanning over 14 mag in lumi-
nosity and over different Hubble types (Spano et al. 2008; Donato
et al. 2009). It is therefore a useful characteristic scale to express
galaxy magnitudes.

To reproduce the smaller observed structures, the WDM particle
mass should be in the keV scale. We choose the value 2 keV as
references scale to express physical magnitudes.

In this paper, we compute the circular velocity in the Thomas—
Fermi approach using its expression in terms of the chemical po-
tential:

G M(r) r o du
Uc(r): , = _z dir .

On the other hand, the circular velocities of galaxies are known
with precision from the observational data from the kinematics of
thousands of disc galaxies and from the information arising from
other tracers of the gravitational field of galaxies as the dispersion
velocities of spheroidals and weak-lensing measurements (Salucci
et al. 2007, and references therein). All this evidence shows that an
empirical Burkert profile (Donato et al. 2009)
Lo

(5) = (5)]

correctly reproduces the observations out to the galaxy virial radius.
The two parameters in the Burkert profile, po and ry, are defined by
pB(0) = po and pp(ry) = po/4.

In this paper, we contrast the observational curves for the circular
velocities of galaxies Vyrcn(r) and the density profiles obtained
from observations using the empirical Burkert profile (equation 4)
with the theoretical results v.(r) and p(r) arising from the resolution
of the Thomas—Fermi equations.

Our theoretical results follow solving the self-consistent and non-
linear Poisson equation (equation 2) which is solely derived from
the purely gravitational interaction of the WDM particles and their
fermionic nature. All results are valid for self-gravitating fermionic
WDM particles which are assumed stable (or with a lifetime of
the order or longer than the Hubble time). The non-gravitational
interactions of the WDM particles are assumed weak enough to sat-
isfy the particle accelerator bounds and beta decay bounds. Except
for these general WDM particle properties, the framework described
here does not require any particular particle physics model of WDM
production. All the results reported here are independent of the de-
tails of the WDM particle physics model as the symmetry group
and the values of the weak enough particle couplings.

The theoretical rotation curves and density profiles well repro-
duce inside the halo radius the observational curves described by the

ps(r) = “)

MNRAS 442, 2717-2727 (2014)
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empirical Burkert profile, obtained from 10 different and indepen-
dent sets of data for galaxy masses from 5 x 10° to 5 x 10! Mg.

Our theoretical circular velocities and density profiles exhibit
the universal property as the observational curves do, and in addi-
tion, they coincide with the observational curves described by the
empirical Burkert profile for r < 2 ry,.

In summary, the results presented in this paper show the ability
of the Thomas—Fermi approach to correctly describe the galaxy
structures.

This paper is organized as follows. In Section 2, we present the
Thomas—Fermi approach to galaxy structure and we express the
main galaxy magnitudes in terms of the solution of the Thomas—
Fermi equation and the value of the surface density X,. We dis-
cuss the theoretical circular velocity curves, the theoretical density
profiles and the remarkable universality of them. In Section 3, we
present the contrast between the observational and theoretical curves
for the galaxy circular velocities and the density profiles and we dis-
cuss the universal property of these profiles. Section 4 is devoted to
our conclusions.

2 GALAXY PROPERTIES IN THE
THOMAS-FERMI WDM APPROACH

We consider DM-dominated galaxies in their late stages of structure
formation when they are relaxing to a stationary situation, at least
not too far from the galaxy centre.

This is a realistic situation since the free-fall (Jeans) time # for
galaxies is much shorter than the age of galaxies:

! 149 x 107 | MO
Jom T Ve
The observed central densities of galaxies yield free-fall times in the
range from 15 million years for ultracompact galaxies to 330 million
years for large dilute spiral galaxies. These free-fall (or collapse)
times are small compared with the age of galaxies running in billions
of years.

Hence, we can consider the DM described by a time-independent
and non-relativistic energy distribution function AE), where
E = p*/(2m) —  is the single-particle energy, m is the mass of
the DM particle, p is the chemical potential (DdVS 2013a,b) re-
lated to the gravitational potential ¢(r) by equation (1).

In the Thomas—Fermi approach, p(r) is expressed as a function
of u(r) through the standard integral of the DM phase-space distri-
bution function over the momentum

00 2
_ . gm 2 (P
pr) =3 03 /0 dpp f(2m u(r)), %)

Iy =

where g is the number of internal degrees of freedom of the DM
particle, with g = 1 for Majorana fermions and g = 2 for Dirac
fermions. For definiteness, we will take g = 2 in the sequel.

We will consider spherical symmetric configurations. Then, the
Poisson equation for ¢(r) takes the self-consistent form

du 2 dp
4Gm> [* 5 p?
= /0 dp p f(%—u(r)), (6)

where G is Newton’s constant and p(r) is the DM mass density.
Equation (6) provides an ordinary non-linear differential equation

that determines self-consistently the chemical potential wu(r) and

constitutes the Thomas—Fermi approach (DdVS 2013a,b). This is

MNRAS 442, 2717-2727 (2014)

a semiclassical approach to galaxy structure in which the quantum
nature of the DM particles is taken into account through the quantum
statistical distribution function f(E).

The DM pressure and the velocity dispersion can also be ex-
pressed as integrals over the DM phase-space distribution function
as

Py = —— [Tap s (2~
(r)—3ﬂ2mﬁ3_/o ppf o MO

2
i | Jodp p“f(f—m—um) o
00 = =35
Jo dp p? f 2~ M)

)

The fermionic DM mass density p is bounded at the origin due
to the Pauli principle (DdVS 2013a) which implies the bounded
boundary condition at the origin as

du
5, @=0. ®)

We see that u(r) fully characterizes the DM halo structure in this
Thomas—Fermi framework. The chemical potential is monotoni-
cally decreasing in r since equation (6) implies

du_ GmM(r)
dr r?

, M(r) =4n / ' dr' r? p(r') . )
0

In this semiclassical framework, the stationary energy distribu-
tion function f{E) must be given. We consider the Fermi—Dirac
distribution

J(E) = Vrp(E/Eo) = (10

where the characteristic one-particle energy scale E, in the DM
halo plays the role of an effective temperature. The value of E,
depends on the galaxy mass. In neutron stars, where the neutron
mass is about six orders of magnitude larger than the WDM particle
mass, the temperature can be approximated by zero. In galaxies,
Eo ~ m (v?) turns to be non-zero but small in the range 1073 K <
Ey < 50 K which reproduce the observed velocity dispersions
for m ~ 2 keV. The smaller values of E; correspond to com-
pact dwarf galaxies and the larger values of E, are for large and
dilute galaxies.

Note that for the relevant galaxy physical magnitudes, the
Fermi—Dirac distribution function gives similar results to out-of-
equilibrium distribution functions (DAVS 2013a).

The choice of Wgp is justified in the inner regions, where re-
laxation to thermal equilibrium is possible. Far from the origin,
however, the Fermi—Dirac distribution as its classical counterpart,
the isothermal sphere, produces a mass density tail 1/7> that overes-
timates the observed tails of the galaxy mass densities. Indeed, the
classical regime u/Ey — —oo is attained for large distances r since
equation (9) indicates that u(r) is always monotonically decreasing
with 7.

More precisely, large positive values of the chemical potential
at the origin correspond to the degenerate fermions limit which is
the extreme quantum case and oppositely, large negative values of
the chemical potential at the origin gives the diluted case which
is the classical regime. The quantum degenerate regime describes
dwarf and compact galaxies while the classical and diluted regime
describes large and diluted galaxies. In the classical regime, the
Thomas—Fermi equations (6)—(8) become the equations for a self-
gravitating Boltzmann gas.
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It is useful to introduce dimensionless variables &, v(§)
r=1é, u(r) = Eo v(§), (11

where [ is the characteristic length that emerges from the dynamical
equation (6):

L h {97’[ 12(1;0)}‘/6 e (2keV)“/3 {12(\)0) M@}‘/"
' J8G | m8py - m oo pcl ’
Ry = 7.425 pc, (12)
and
L =m+1 / y" dy Wep(y” — v),
0
n=12..., v=v0), po=p0), (13)

where we use the integration variable y = p/+/2m E|.

Then, in dimensionless variables, the self-consistent Thomas—
Fermi equation (6) for the chemical potential v(§) takes the form
v 2 dv
digz + g @ = —L(v),
We solve equation (14) numerically by using as independent vari-
able u = In& and then applying the fourth-order Runge—Kutta
method. We solve equation (14) for a broad range of values
vy = v(0), from negative values vy < —5 describing galaxies in
dilute regimes to positive values vy = 1 corresponding to compact
dwarf galaxies.

We find the main physical galaxy magnitudes, such as the mass
density p(r), the velocity dispersion o(r) = v*(r)/3 and the pres-
sure P(r), which are all r-dependent as

L(v(§)) _Lomt (2B
L(v) sy Po= ﬁ % (7> 2(vo) ,

V'(0) = 0. 14

o(r) = po

2 Ey 14(v(§))

=S hoe) (13)
— 1,002 | LG (21«:\/)“/3 { P p‘:3}1/31«1151
L(v()) m L(vg) Mg ’
(16)
C2E LOG)
P = Sm po I (vo)
1 32 K3 2/3 5/3
=3 ( s ) [ 12‘(’30)] L&) . (17

As a consequence, from equations (9), (11), (12), (14) and (15), the
total mass M(r) enclosed in a sphere of radius r and the phase-space
density Q(r) turn to be

poly [f 2
M@r)=4n / dx x” L(v(x))
L(vo) Jo
Lo 18 2.
= — &7 (&)l
L (vo) § d
) keV\' | py  pc3
= My £ V()] (—) o B
m L(v) Mg
R\ s
My=4mMg | — | =0.8230 x 10° Mg , (18)
pC

2721
_ e _ P
00 =5 =V e
4 552
_ VB mt BPwE) (19)

3 B PwE)

We have systematically eliminated the energy scale Ej in terms of
the central density p, through equation (15). Note that Q(r) turns
to be independent of Ej and therefore from py.
We define the core size ry, of the halo by analogy with the empir-
ical Burkert density profile as
LY S 0)
o 4
It must be noticed that the surface density,

Yo = rn o, 21

is found nearly constant and independent of luminosity in different
galactic systems (spirals, dwarf irregular and spheroidals, elliptics)
spanning over 14 mag in luminosity and over different Hubble
types. More precisely, all galaxies seem to have the same value for
3o, namely 3y >~ 120Mp pc=2 up to 10-20 per cent (Kormendy
& Freeman 2004; Spano et al. 2008; Donato et al. 2009). It is re-
markable that at the same time other important structural quantities
as ry, po, the baryon fraction and the galaxy mass vary orders of
magnitude from one galaxy to another.

The constancy of X seems unlikely to be a mere coincidence
and probably reflects a physical scaling relation between the mass
and halo size of galaxies. It must be stressed that ¥, is the
only dimensionful quantity which is constant among the different
galaxies.

We use here the dimensionful quantity X to set the energy scale
in the Thomas—Fermi approach. That is, we replace the central
density p¢ in equations (11), (12), (15) and (18) in terms of X,
(equation 21) with the following results:

= Ko/ 9l P TE Ly
7 65 \512 m8 2,

2keV\Y /120 M\
— 42557 [&, Iz(vo)]l/s( - ) ( @) P,

o pc?

4/5
E, = 15 G (18 )" { Zo }/
3/

&n I (vo)

712757 x 103 /2keVY [/ 2 pe? \°
- X (")(OPC)K, 22)

(& L)l m 120 M
and
s 2KV (120 Mg\
r =4.2557& [& L(vo)]” pe,
m % pe?

(23)

. 6/5
o) = 18.1967 — 26D ( m )8/5 (120M®> Mo

(& L) \2keV %o pc? pcd’

M) 2731282 ) (2keV)16/5 ( Topc? )3/51\/1
ry= ——->~= :
[ Lo m 120Mg ) ©

24

For a fixed value of the surface density X, the solutions of
the Thomas—Fermi equation (14) are parametrized by a single
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parameter: the dimensionless chemical potential at the centre vy.
That is, vg is determined by the value of the halo galaxy mass

My = M(ry). (25)

In the classical dilute limit, vy < —35, the analytic expressions for
the main galaxies magnitudes are given by

3.147473  dv
=" qme| = 1839957, (26)
My, = 1.75572 % r2,
4 670114 (2keV® /% pe? e "
" e m 120 Mg ©
M 120 M
= 68.894 d O p, @7
10° Mg o pc?
M 2keV\? /120 M \/®
r=22728 & ~0 ° 0Mo pc, (28)
M, m ¥y pc?
si0s0as _Mn N m o y+  Zope N
pe) = 3. (104M@) <2keV) (IZOM@)
M
x e ® pT?’ (29)
My N /2keV\? [ B0 pe? \*
M(r) = 17930 ( = ° o b
Mo m 120 Mg
dv(§)
*§ e | Mo (30)
10 Mo \"* / 2o pe? \*
0(0) = 1.2319 (7®> (inc) keV*. 31
M, 120 Mg

These equations are accurate for M, > 10°® M. We see that they
exhibit a scaling behaviour for r, versus My, Qp, and Q(0) versus
My, and M, versus the fugacity at the centre zo = e'. These scaling
behaviours are very accurate except near the degenerate limit as
shown by Fig. 1.

It must be stressed that (i) the scaling relations (equations 26—
31) are a consequence solely of the self-gravitating interaction of
the fermionic WDM and (ii) the value of the WDM particle mass
m =~ 2 keV appears in the proportionality factors.

We plot in Fig. 1 the ordinary logarithm of

R Th m \8/5 >0 pC2 175
= () 32)
pc \2keV 120 Mg
versus the ordinary logarithm of
M, 16/5 /120 Mg\’
=t (os) (5 2) (33)
M@ 2keV o pc?

From equations (26), (32) and (33), we find the scaling relation
1 N

log,o 7 = 3 log,y My, — 1.161 82, (34)

which is accurate for M, > 10°® Mg.

Actually, the dilute regime formulas (equations 26-31) apply
even near the fermion degenerate limit as shown by Fig. 1. In
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Figure 1. The ordinary logarithm of the theoretical halo radius 7, versus
the ordinary logarithm of the halo mass M, for small galaxy masses in
the Thomas—Fermi approach from equations (20), (24), (25), (32) and (33)
(dashed green line) and the dilute regime equations (26) and (27) (red
continuous line). 7, and My, are defined by equations (32) and (33). The
dilute regime approximates very well the exact Thomas—Fermi results, r,
follows the square-root of M scaling behaviour of the classical regime
(equations 26 and 27). This is so even near the fermion degenerate quantum
limit.

Flg 1, we deplcted log,, 7 versus log, My, for the smaller galaxies
My min < My < 10° where My, min = 30999. We see that the dilute
regime equations (26)—(31) reproduce the Thomas—Fermi results
for practically all galaxy masses even near the degenerate limit.

In equations (23)—(31), we use the surface density X, as energy
scale to express the theoretical results (we used the central density pg
in DAVS 2013a,b). Itis highly remarkable that our theoretical results
reproduce the observed DM halo properties with good precision.

The opposite limit vy 2 1 is the extreme quantum limit corre-
sponding to degenerate WDM fermions. The galaxy mass and halo
radius take in the degenerate limit their minimum values

2keV\Y /120 M \'/°
r;“‘“=11.3794( c ) ( @> pe.

m o pc?
: 2keV\'"? [ Tope? \7°
M = 309987 St 0P ) Mo, (35)
m 120 Mg

while the phase-space density Q(r) takes its maximum value

max_16\/ﬁ< m

b 7732 \2kev

4
) keV* = 6.041 628 (—
2ke

4
m ) keV*.
A%

(36)

But the Thomas—Fermi equations provide a whole continuous range
of galaxy solutions above the degenerate limit as discussed above
and in DAVS (2013a,b).

The degenerate limit corresponds to Ey = 0. In the classical dilute
limit My, > 10° M, E, runs approximately from 0.02 to 20 K.
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2.1 The galaxy circular velocities

We consider now the circular velocity v.(r) defined through the
virial theorem as

0y = 1/ & lr”(r) . (37)

The circular velocity is directly related by equation (9) to the deriva-
tive of the chemical potential as

r du
v(r) = _; dir’

which in dimensionless variables takes the form

EO dv
m dlng’

ve(r) =

Expressing the energy scale Ej in terms of the surface density
using equation (22), we have for the circular velocity the explicit
expression

v.(r) = 5.2537

JEE <2keV)“/5( Sope? )Z/Sk L
GO0l \ m Mg )
(38)

In the dilute Boltzmann regime, the circular velocity at the core
radius r, scales as the power 1/4 of the galaxy halo mass Mj,:

M 1/4 > 2 \1/4
h ) ( OPC) kms™.  (39)

o) =7.901 (—— ) (2o
ve(rh) (106 Mo 120 Mg

It is important to consider the circular velocity normalized to unit
at the core radius ry,

ve(r) [ V() r
U = = s = —. 40
*) ve(rn) ! V' (&) * T “0)

Explicitly solving the Thomas—Fermi equation (14), we find that
ve(r)/vc(ry) is only function of x = r/r, and takes the same val-
ues for all galaxy masses in the range going from 5.13 x 10° to
5.15 x 10" Mg as shown in Fig. 2. Namely U(x) turns to be a
universal function.

This is a remarkable result since a priori v.(r)/v.(ry) could be a
function of r and r, and could be different for different galaxies.

This important result shows the ability of the Thomas—Fermi
approach to correctly describe the galaxy structures.

The phase-space density Q(r) can be also obtained from the cir-
cular velocity at the radius r as

Qc(r)=3“/§ Qch=3\/§

:0;(’") o(ry) @n

vi(r)’ i)
Expressing p(r,) in terms of r, (equation 26), ¥ (equation 21) and

v.(ry) from equation (38) yields for the phase-space density at the
halo radius as

Oun = 7.96204 — 20 ( m )4 keV*. 42)

[—& v(EDT? \2keV

The numerical values of Q. turn to be larger than Q(0) (equation
19) approximately by a factor of 2. In the dilute regime, M) 2
10° My, they are related by

Qch = 2.0873 Q(0). (43)

14

081 URC from Observations —— ]

U(z) = ve(r)/ve(rn)

Mj, = 5.1 10° Mg: Theory
M), =8.410° Mg: Theory — -
06 Mj, = 1.41010 J\V?Q: Theory 1
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Figure 2. Normalized circular velocities U(x) = vc(r)/vc(rp) versus x =
r/rn from the observational data (equation 46) and from the theoretical
Thomas—Fermi formula (equation 38). The theoretical curves from the
Thomas—Fermi approach for 10 different galaxy masses all fall one into
each other providing aURC which practically coincides with the observa-
tional universal curve URC for x = r/ry, < 2.

3 CIRCULAR VELOCITIES CONTRASTED
WITH OBSERVATIONS

The circular velocities’ values v.(r) (equation 37) are known with
precision from galaxy observational data.

3.1 The galaxy data

The kinematics of about several thousand disc galaxies, described
by the rotation curves of spirals, and the information obtained from
other tracers of the gravitational field of galaxies, including the
dispersion velocities of spheroidals and the weak-lensing measure-
ments (Salucci et al. 2007 and references therein), show that the
density of the DM haloes around galaxies of different kinds, dif-
ferent luminosity and Hubble types is well represented, out to the
galaxy virial radius, by an empirical Burkert profile

pe(r) = pos Fp <L> )
'hB
1 r
—_—— X = —, (44)
(I +x)A+x?) B
where p( stands for the central core density and r,5 for the core
radius. The empirical Burkert profile satisfactorily fits the astro-
nomical observations and we use the observed data of pgg and ryg
for DM-dominated spiral galaxies given in Salucci et al. (2007).
Kinematical data and properties of other galaxy gravitational
potential tracers are all reproduced, within their observational un-
certainty, by a mass model including a DM halo with a Burkert
profile (see Salucci et al. 2007; Donato et al. 2009). While some
other cored DM distributions [but not the pseudo-isothermal one
00/(r* + a*)] may successfully reproduce these data, every cuspy
distribution fails to do so (see e. g. Gentile et al. 2004).

Fg(x) =
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The Burkert and the Pefiarrubia et al. (2012) profiles are indis-
tinguishable with the data available at present. Any cored density
profile with two free parameters (central density, core radius) that
decreases faster than 1/r” can be mapped into each other, just by a
transformation of the parameters. Only when the determination of
the DM density profile will be available at the few per cent error
level (today it is 10-30 per cent) we would be able to discriminate
between different cored profiles.

The circular velocities Viyrc n(r) for the empirical Burkert density
profile follow from equations (37) and (44) (Salucci et al. 2007) as

3
PoB T
Viren(r) = 2m G —2

1
X |In(1 + x) — arctan x + — In(1 +x2) X = L.
2 ThB
(45)

Note that normalizing Vyrc n(7) to its value at the core radius rp
yields
VI%RC, n(r)

UZoo(x) =
vRe VSRC. n(rn)

3.93201 1
= lIn(1 + x) — arctanx + 3 In(1 +x2)| . (46)
X

Namely the function U (x)ygrc only depends on x = r/ryg and com-
plies with the concept of universal rotation curve (URC; Salucci
et al. 2007): U(x)yrc is an universal function.

Note that the URC concept is valid not only for the Burkert rep-
resentation of the density profile but also for other density profiles
that correctly reproduce the density data.

In the Burkert profile case, the halo galaxy mass follows integrat-
ing equation (44) from zero to rup

My, = 1.59796 pyp rig = 1.59796 X r2, . (47)

This empirical equation can be recasted in a similar form to equation
(26) of the theoretical Thomas—Fermi approach as

s = 72215 | 20 Mh o 48)
hB = e %o pc? 109 pe.

ry in equation (26) and r,p in equation (48) refer to the point where
p(rh)/p(0) = 1/4 and pg(rw)/p(0) = 1/4 both according to equa-
tion (20), for two different density profiles: the theoretical Thomas—
Fermi profile p(r) in equation (26) and the empirical Burkert profile
p(r)p for the observational data.

The halo radius r,p and ry, for given galaxy mass M), and surface
density X are related by the universal relation

I'h = 0.954 01 I'nB,

which follows from equations (26) and (47). Namely due to the
slight shape difference between the theoretical Thomas—Fermi and
empirical Burkert profiles (see Fig. 3), the Thomas—Fermi halo
radius turns to be about 5 per cent smaller than the Burkert halo
radius.

It follows from equation (14) that the theoretical Thomas—Fermi
profile possess an expansion in even powers of 72 (this is also the
case for the density profiles obtained in the linear approximation
from the cosmological density fluctuations in de Vega, Salucci &
Sanchez 2012a). In contrast, the empirical Burkert profile (equation
44) is not an even function of r and exhibits a linear behaviour in r
near the origin. This is the source of the small deviation near r = 0
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Figure 3. Normalized density profiles p(r)/p(0) as functions of r/r,. We
display the theoretical profiles for galaxy masses in the dilute regime 1.4 x
10° < My < 7.5x 10", —1.5 > vy > —20.78. All fall into the same and
universal density profile. We plot the empirical Burkert profile as function
of r/ry.

between the theoretical Thomas—Fermi profile and the empirical
Burkert profile exhibited in Fig. 3.

The circular velocity at the halo radius for the empirical Burkert
profile follows setting x = 1 in equation (45) with the result

Voren(m) = 7117 (Mo ( Zope? " mst
URERIT 106 Mg 120 Mgy '

This value is to be compared with the theoretical Thomas—Fermi
result (equation 39). We see that they differ from each other by only
2.4 per cent, confirming again the success of the Thomas—Fermi
approach to describe the galaxy structures.

3.2 Comparison to observations

Our results are independent of the details of the WDM particle
physics model. They follow from the gravitational self-interaction
of WDM particles and their fermionic nature. The same remarks
apply to all the Thomas—Fermi results including the lower bound
m > 191 keV (DdVS 2013b).

We depict in Fig. 2 the normalized circular velocities U(x) =
ve(r)/vc(ry) versus x = r/r, obtained on one hand from the obser-
vational data U(x)yrc described with the empirical Burkert pro-
file (equation 46), and on the other hand, U(x) obtained from the
theoretical Thomas—Fermi formula (equation 38). In general, the
normalized circular velocities v.(r)/v.(r,) can be functions of  and
rh, Which just reflects the fact that in a spherically symmetric ap-
proach only one parameter r, shows up in the circular velocities.
[The parameter r, depends on the characteristic energy Ej in the
Fermi—Dirac distribution function at fixed surface density X,. Gen-
eralizing the Thomas—Fermi approach to non-spherically symmetric
and non-isotropic situations by including other particle parameters
like the angular momentum in the distribution functions would lead
to density profiles depending on other parameters besides ry.]
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Here, we remarkably find that the normalized circular velocities
ve(r)/vc(ry) turn out to be functions of only one variable: the ratio
x =r/ry. [On the contrary, v.(r) is a function of r and r, sepa-
rately]. We see that the theoretical curves from the Thomas—Fermi
approach for 10 different galaxy masses all fall one into each other.
Therefore, we find the result that the Thomas—Fermi approach pro-
vides URC. Moreover, the theoretical Thomas—Fermi curves U(x)
and the observational universal curve U(x)yrc described by the
empirical Burkert profile coincide for r < ry.

We depict in Fig. 3 the normalized density profiles F(x) =
p(r)/p(0) as functions of x = r/r, obtained from the theoreti-
cal Thomas—Fermi profiles for galaxy masses in the dilute regime
1.4 x 105 < M, < 7.5 x 10", —1.5 > vy > —20.78. All fall into
the same and universal density profile. The empirical Burkert profile
Fg(x) in Fig. 3 turns to be very close to the theoretical Thomas—
Fermi profile F(x) except near the origin as discussed above.

We display in Fig. 4 v.(r) in km s~! versus r in kpc ob-
tained on one hand from the observational data described with the
empirical Burkert profile (equation 45) and on the other hand from
the theoretical Thomas—Fermi formula (equation 38). We plot in
Fig.4v.(r)forO < r < ry, rvi being the virial radius of the galaxy.

The corresponding halo galaxy masses M}, are indicated in Fig. 4
and run from 5.13 x 10° t0 5.15 x 10" M.

The theoretical rotation curves reproduce the observational
curves modelized with the empirical Burkert profile for r < ry, jus-
tifying the use of the Fermi—Dirac distribution function (equation
10) in the Thomas—Fermi equations (13) and (14).

We display in Figs 5 and 6 the theoretical density profiles com-
puted from the Thomas—Fermi equations and the observational pro-
files described by the empirical Burkert expression. We plot the
ordinary logarithm of the density in M pc™ versus r in kpc in
the interval 0 < r < 4 r,. We see very good agreement of the the-
oretical density profiles with the observations modelized with the
empirical Burkert profile in all the range 0 < r < 4 ry,.

Baryons represent less than 5 per cent of the galaxy mass (Persic
etal. 1996; Oh et al. 2008; Memola et al. 2011). For dwarf galaxies,
baryons count for less than 0.01 per cent of the galaxy mass (Martin
et al. 2008; Woo et al. 2008; Brodie et al. 2011; Willman & Strader
2012; Walker, private communication).

The self-gravity of the baryonic material is negligible while
baryons are immersed in a DM halo potential well. Baryons trace
the DM potential well playing the role of test particles to measure
the local DM density.

4 CONCLUSIONS

The more appropriate way to decipher the nature of the DM is to
study the properties of the physical objects formed by it: galaxies
are formed overwhelmingly by DM since 95 to 99.99 per cent of
their mass is dark. This is the task we pursue in this paper.

Fermionic WDM by itself produce galaxies and structures in
agreement with observations modelized with the empirical Burkert
profile showing that baryonic corrections to WDM are not very
important. Therefore, the effect of including baryons is expected to
be a correction to the pure WDM results, consistent with the fact
that DM is in average six times more abundant than baryons.

The theoretical curves from the Thomas—Fermi approach to
galaxy structure for self-gravitating fermionic WDM (DdVS
2013a,b) practically coincide with the observed galaxy rotation
curves and density profiles described with the empirical Burkert
profile for r < 2 ry. In addition, our approach provides scaling rela-
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Figure 4. The velocity rotation curves ve(r) in km s~! versus r in kpc
for 10 different independent galaxy masses M}, going from 5.13 x 10° to
5.15 x 10! M. For each galaxy mass My, we show the two curves: the the-
oretical Thomas—Fermi curve and the observational curve described by the
empirical Burkert profile. The Thomas—Fermi curves reproduce remarkably
well the observational curves for r < r,. We plot ve(r) for 0 < r < ryir, Fyir
being the virial radius of the galaxy.

tions for the main galaxy magnitudes (equations 26-31) as the halo
radius r,, mass M, and phase-space density.

Therefore, the Fermi—Dirac distribution applies in the region
r < 2 ry, for the whole range of galaxy masses.

Note that the scaling relations (equations 26-31) are a conse-
quence solely of the self-gravitating interaction of the fermionic
WDM.

The galaxy relations derived in equations (26)—(31) are accurate
for My, > 10° Mg . We see that they exhibit a scaling behaviour
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Figure 5. The theoretical Thomas—Fermi density profiles and the observa-
tional profiles described by the Burkert expression for the first five galaxy
masses. We plot the ordinary logarithm of the density in M pc—3 versus
rin kpc in the interval 0 < r < 4 ry,. For each galaxy mass My, we show
the two curves: the theoretical Thomas—Fermi curve and the observational
Burkert curve. The agreement of the Thomas—Fermi curves to the observa-
tional curves is remarkable.

for ry, versus My, Q(0) versus My, and M), versus the fugacity at the
centre 7o = e*®/Fo_ These scaling behaviours of the dilute classical
regime are very accurate even near the degenerate limit as shown
by Fig. 1. Interestingly enough, the small deviation of these scaling
laws near the degenerate limit is a manifestation of the quantum
effects present in compact dwarf galaxies.

The theoretical circular velocities v.(r) and the theoretical den-
sity profiles p(r) computed from the Thomas—Fermi equation (6)
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Figure 6. The theoretical Thomas—Fermi density profiles and the observa-
tional profiles described by the Burkert expression for further five galaxy
masses. We plot the ordinary logarithm of the density in M pc—3 versus r
in kpc in the interval 0 < r < 4 ry,. For each galaxy mass My, we show the
two curves: the theoretical Thomas—Fermi curve and the observational Burk-
ert curve. The agreement of the Thomas—Fermi curves to the observational
curves is remarkable.

reproduce very well the observational curves modelized with the
empirical Burkert profile for » < ry, as shown in Figs 3-6. These
results fully justify the use of the Fermi—Dirac distribution function
in the Thomas—Fermi equation (6).

Remarkably enough, solving the Thomas—Fermiequation (6) we
find that the theoretical circular velocities U(x) = v.(r)/vc(rn)
as well as the normalized density profiles F(x) = p(r)/p(0) are
only functions of x = r/r, and take, respectively, the same value
for all galaxy masses in the range going from 5.13 x 10° to
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5.15 x 10" M as shown in Figs 2 and 3. Namely the Thomas—
Fermi approach provides universal functions U(x) and F(x) for the
normalized circular velocities and normalized density profiles, re-
spectively. Moreover, Figs 2 and 3 show that the observational
universal curves and the theoretical Thomas—Fermi curves coincide
forr <2 r.

These important results show the ability of the Thomas—Fermi
approach to correctly describe the galaxy structures.
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