Verifying floating-point programs with constraint programming and abstract interpretation techniques

Olivier Ponsini 1, * Claude Michel 1 Michel Rueher 1
* Auteur correspondant
Abstract : Static value analysis is a classical approach for verifying programs with floating-point computations. Value analysis mainly relies on abstract interpretation and over-approximates the possible values of program variables. State-of-the-art tools may however compute over-approximations that can be rather coarse for some very usual program expressions. In this paper, we show that constraint solvers can significantly refine approximations computed with abstract interpretation tools. More precisely, we introduce a hybrid approach combining abstract interpretation and constraint programming techniques in a single static and automatic analysis. This hybrid approach benefits of the strong points of abstract interpretation and constraint programming techniques, and thus, it is more effective than static analysers and constraint solvers, when used separately. We compared the efficiency of the system we developed---named rAiCp--with state-of-the-art static analyzers: rAiCp produces substantially more precise approximations and is able to check program properties on both academic and industrial benchmarks.
Type de document :
Article dans une revue
Automated Software Engineering, Springer Verlag, 2016, <10.1007/s10515-014-0154-2>


https://hal.archives-ouvertes.fr/hal-00860681
Contributeur : Michel Rueher <>
Soumis le : lundi 3 mars 2014 - 21:20:05
Dernière modification le : vendredi 26 août 2016 - 16:44:04

Fichier

raicp_ase.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Ponsini, Claude Michel, Michel Rueher. Verifying floating-point programs with constraint programming and abstract interpretation techniques. Automated Software Engineering, Springer Verlag, 2016, <10.1007/s10515-014-0154-2>. <hal-00860681v2>

Partager

Métriques

Consultations de
la notice

244

Téléchargements du document

116