Multiple zeta values, Padé approximation and Vasilyev's conjecture

Abstract : Sorokin gave in 1996 a new proof that pi is transcendental. It is based on a simultaneous Padé approximation problem involving certain multiple polylogarithms, which evaluated at the point 1 are multiple zeta values equal to powers of pi. In this paper we construct a Padé approximation problem of the same flavour, and prove that it has a unique solution up to proportionality. At the point 1, this provides a rational linear combination of 1 and multiple zeta values in an extended sense that turn out to be values of the Riemann zeta function at odd integers. As an application, we obtain a new proof of Vasilyev's conjecture for any odd weight, concerning the explicit evaluation of certain hypergeometric multiple integrals; it was first proved by Zudilin in 2003.
Type de document :
Article dans une revue
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2016, 15, pp.1-24
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00860302
Contributeur : Tanguy Rivoal <>
Soumis le : mardi 10 septembre 2013 - 14:32:38
Dernière modification le : jeudi 8 mars 2018 - 09:29:54
Document(s) archivé(s) le : jeudi 12 décembre 2013 - 10:19:45

Fichiers

padezetaimp13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00860302, version 1
  • ARXIV : 1309.2534

Citation

Stephane Fischler, Tanguy Rivoal. Multiple zeta values, Padé approximation and Vasilyev's conjecture. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2016, 15, pp.1-24. 〈hal-00860302〉

Partager

Métriques

Consultations de la notice

160

Téléchargements de fichiers

75