N
N

N

HAL

open science

A color-based selective and interactive filter using
weighted TV

Cédric Loosli, Francois Lecellier, Stéphanie Jehan-Besson, Jonas Koko

» To cite this version:

Cédric Loosli, Francois Lecellier, Stéphanie Jehan-Besson, Jonas Koko. A color-based selective and
interactive filter using weighted TV. 15th Conference on Computer Analysis of Images and Patterns,

Aug 2013, York, United Kingdom. pp.315-323, 10.1007/978-3-642-40246-3_39 . hal-00860082

HAL Id: hal-00860082
https://hal.science/hal-00860082

Submitted on 10 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00860082
https://hal.archives-ouvertes.fr

A color-based selective and interactive filter using weighted TV
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Abstract. In this paper we propose to introduce a new color interactive and seldittiring tool based
on the minimization of a weighted vectorial total variation t€Fvyy with theL? norm as data term. Our
goal is to filter one region of an image while preserving the other using a rainirteraction with the
user. To this end, we take benefit of a weighted vectorial regularizatiortey based on color moments
in order to perform our selective color filtering. Up to now, color moméatge been mainly introduced
for indexation purposes. In our case, the user selects some pointsareth# preserve and some other
points in the area to be filtered. Reference color moments are then congoupedches around the se-
lected points and are included in tfidj term through various functions Two maing functions are
tested within the HSL color space leading to very interesting results on bathesiynand real images.
Convex optimization tools are then used to solve the minimization issue. AnemigchLagrangian
formulation leads to a simple and efficient algorithm based on Uzawa b&lakation schemes. Our
algorithm, while easy to be implemented, proves to be efficient in termsnpatational cost due to its
robustness towards the choice of the penalty parameter. The prdjiesety tool may be very interest-
ing as a pre-processing step for segmentation, movie post-productidnject-oriented compression.

1 Introduction

In many image processing issues, a filtering step is requirexider to remove noise or spurious details
from the initial image. The image may then be decomposedgions (e.g. homogeneous regions) using a
segmentation algorithm, or some regions of interest mayehleted using well-defined algorithms (active
contours for example). The interactive color filtering tpobposed in this paper is quite different from a
simple filtering step and may even be considered as a preesggtion algorithm. Indeed, the main idea
is to filter and simplify some parts of the image while pregegsome others using some color properties
of the regions. In order to obtain such a filtering tool, a a@onal framework is settled. We focus on the
minimization of functionals that take benefit of a color whiigd total variation TVg) regularization term
coupled with the minimization of &2 data term. The total variatioT{/) regularization term owns some
interesting geometrical properties [19, 1, 6] that can leelgiused for denoising and segmentation. The
regularization term was first proposed for denoising in @fl}pled with the minimization of thie? norm as

a data term (the well-known ROF model). More recently, Boasst al [1] proposed to introduce a spatially
adaptive TV term while using a functianinside the integral of th@ V term. The functiorg allows to take
into account the image gradient in th& term in order to preserve object boundaries during the derpi
process. Some other authors also take benefit of such a wdigh[5, 13, 1, 14, 16, 17].

In this paper, we propose to settle an interactive color erfdtgring algorithm by introducing color
moments in the weighted TV regularization term. The usek®eted to draw a curve on the region to be
removed and another curve on the region to be preserved.dltiersoments of the chosen points are then
computed on small patches and the corresponding chasitei@re included in a well-adaptgdunction
inthe T\ term. As far as color moments are concerned, they are coesids a powerful color descriptor.



They have been introduced in [18] for image indexation amdesel in order to complete or replace SIFT
descriptors. They appear to be more interesting than tlsickd color histograms used in [9, 11, 15]. Indeed,
color histograms are not able to represent the spatial tegfalne color repartition. In an original manner,
we propose to take advantage of such a representation faetaative color filtering tools. Concerning the
optimization of the whole functionall(vg + L2), we rely on the mathematical framework introduced in [16]
for grey level images. We propose to tackle the optimizatibthe vectorialT V + L2 using an augmented
Lagrangian approach and Uzawa block relaxation schemesn@nuerical scheme presents the advantage
to be robust regarding with the choice of the penalty paramesd is efficient in terms of computational
cost. The proposed filtering tool may be very interesting pseaprocessing step for segmentation, movie
post-production or object-oriented compression.

In the rest of the paper, we first detail the main principleswfselective filtering tool in section 2. Then
we propose to give the main lines of the optimization progesection 3. The color-based weighted TV is
introduced in section 4. Finally some experimental resuitoth synthetic and real images are displayed
in order to check the availability of our tool.

2 Selective filtering based on the minimization of a weightedV

2.1 Geometrical properties of TV and weighted TV

The classical ROF (Rudin, Osher and Fatemi) model [20] aone¢over the original image(x) given a
noisy imagef (x) by minimizing the total variation undér data fidelity:

B = [ 100691 dx+A | (ubx) - 1(9)dx ()

whereQ c R?, is the image domain anda positive scale parameter.

The first integral is the classical regularization termexiTV (Total Variation) term. This term has proven
its efficiency for image restoration and also presents son@dsting geometrical properties. In order to
better explain these properties, let us denote the uppelrdets of the image By (u) = {x,u(x) > a} like

in [4]. From a geometrical point of view, the co-area form@pstates that, for any function which belongs
to the space of bounded variations BY( there is a relation between the TV regularization term ded t
perimetePer(U?) of the seU®. Indeed, we can writBer(U®(u)) = [ [ ya(y|dxfor all a wherexy« (u)
stands for the characteristic function of the 9€{u). Such geometrical features may contribute to explain
the properties of this regularization term. Indeed, wherrekesing the weight of the data term, components
will be removed in an order determined by their size and theometry. For example, small components
will be removed first and sharp angles will be smoothed. Intf&d authors establish a connection between
this model and morphological operators such as opening amghulogical granulometry.

The introduction of g function in TV may produce different filtering results. Itk theT Vg term,
when applied to a characteristic set is equivalent to a wetpherimeterf- g(s)dswhereC designates the
boundary of the set argits arc length. In [1], the functiog is then chosen agx) = 1/(1+ BGg * |0 f]) in
order to introduce the image gradient directly in the regeddion term. This term allows to preserve object
boundaries and sharp angles during the regularizatiorepsognd can also be used for shape segmentation
[1]. Indeed, this regularization term corresponds to tlaesgital criterion proposed in geodesic active con-
tours [2]. Note that such a spatially varying TV term has dsen investigated by different authors with
various g functions (e.g. for salt and pepper denoising) 351, 14, 16, 17].



2.2 Color selective filter using weighted TV

In this paper, we propose to test the availability of the \Wwed TV regularization term in order to perform a
kind of selective filtering of the image components. Thisaideclosely related to the design of geometrical
filters in the framework of mathematical morphology whermeshapes are removed on the basis of their
geometric properties. Some first examples of a geometriteifig using thel \y term are given in [16, 17].
Rather than using geometric properties, we here proposdeéddienefit of color moments and of a vectorial
TV term in order to include some color features in the funttjoln order to introduce a selective filtering
scheme, we add an interactive step where two regions areaifasalected (using a curve drawn on each
region). Then the color moments of each point within eacioregre computed leading to a reference vector
of moment for each region. The functigris then designed in order to filter one region while preseytite
other one and inversely. The main principle of this schens&@vn in Fig.1.

Image to filter select two connected regions extract the two regions
on the initial image and dilate them to obtain
inside and outside regions

J
%

compute the generalized moments filter the image

Fig. 1. Main principles of the proposed color interactive and selective filtering too

3 Fast dual minimization of TV + L2

Let Q be a three-dimensional bounded open domailR4fd = 2,3 and a vector-valued functiamx) =
(ur(X), uz(x), u3(x)) € R3 defined onQ that corresponds to the color intensity with the three valfeeach
color channel. In the rest of the document, vector valuedtfans are denoted by bold-face letters (e.g.
u = (ug,up,uz)). Let us also note the Euclidean scalar productuby = zﬁzluivi, for u andv in RY,
Moreover, foru € RY, we use the notatiofu|, = (u-u)/? for the Euclidean norm.

Let g be a continuous, positive valued and bounded function difimeQ, when dealing with color
images, we consider the following weighted total variatiegularization term, denoted Byv

1/2
TVg(u):/Qg(x) (10U 3+ O[3+ | Dusl3) 2



The considered functiogis described later in section 4.
Letf = (fy, f2, f3) be the input color image to be filtered, we propose to addhestotlowing vectorial
TV + L2 minimization problem:

minE(u) :J(u)+>\/Q|u(x)_f(x)|§dx. )

uex

whereu is the unknown image to restore aKds a suitable functions space.
3.1 Augmented Lagrangian methods for thel Vg + L2 model

In this section we propose to use convex optimization toots @ual approaches in order to solve (2). To
this end, we need to transform the convex minimization mob{2) into a suitable saddle-point problem by
introducing an auxiliary unknown as for the scalar case.[A8] augmented Lagrangian approach is then
introduced and solved using Uzawa relaxation schemes. Slatads are given thereafter for the reader
convenience but only briefly for space reasons.

Let us introduce the auxiliary unknown= f — u and rewrite the functiondt as

E(up) = TV +A | p(9 Bo ©)

The minimization problem (3) becomes mijp)ck E(u,p),, where the constraint sét is defined byK =
{(u,p) eXxX|u+p—f=0inQ}. Itis obvious that the two minimization problems are equéval With
this constrained minimization problem, we associate ttgramgian functional? defined onX?3 by

Z(u,p;s) =E(u,p)+ (s,u+p—"F)x. (4)

In (4), sis the Lagrange multiplier associated with the constrairK.i SinceE is convex and continuous
and the constraint il is linear, a saddle poinfu*,p*;s*) € X3 of .# exists and verifies? (u*,p*;s) <
Z(ur,p*s) < Z(u,p;s’), V(u,p,s) e X3,

We now introduce the augmented Lagrangian defined, fof, by

r
Z(u.pis) = Z(u.pis)+5 [ utp—flZ (5)

wherer is the penalty parameter. We then consider the followingligadoint problem
Z(ur,p*;s) < L4 (U, p%s) < % (u,p;s’), Y(up,s) e X3 (6)

It can be proved (easily) that a saddle point&f is a saddle point ofZ and conversely. This is due to

the fact that the quadratic term i#f; vanishes when the constraimt- p — f = 0 is satisfied. Some efficient

numerical schemes can be used to solve this problem likeblyotiae Uzawa Block Relaxation methods
detailed thereafter. One important feature is that thisrilgm is well-conditioned and robust against the
choice of the penalty parametef16].

3.2 Uzawa block relaxation methods

We apply the following Uzawa block relaxation method to sdive saddle-point (5) by using an alternative
minimization procedure (see e.g. [10, 12]). Giyernt ands’, we compute successivelif, pk ands<t! as



follows

uf= argmin# (u,p*,) 7
sk+1/2=sk+%(uk+p"‘17f) (8)
p¥ = argming; (u,p, ) ©)
sk+1:sk+l/2+%(uk+pk— f) (10)

- Solution of subproblem (7) The functionali — % (u, p¥1;s) can be rewritten a®1(u) := 5lu ||E2
+J(u) + (B, u)x +C, whereC is a constant anfl = s+ r(pk~1 — f). Using Fenchel duality theory (see e.g.
[7]), the solution of (7) isuk = (O-vK — ) /r wherevK is the solution of inf2_g2<o 1 0-v—plZ . we
can then computeX using the following semi-implicit scheme due to Chamba8 [

S Vi+10(0-v — f)

i 3 o112’ i=123, whera >0 (11)
1+(t/9) 34 100V — ) 3]

- Solution of subproblem(9) The functionap — . (uX, p;s) can be rewritten as
®(p) = (A+1/2) || p [[F2 +(S 41 (U~ F),p)x +C,
whereC is a constant. A straightforward calculation yieffs= — (¢ +r(u<—f)) /(r + 2\).
- Uzawa block relaxation algorithm With the results above, we can now present the Uzawa bloak-el

ation algorithms for tha Vg + L2 model. The procedure is detailed in Algorithm 1. We iteratél welative
error on(uX, pk) becomes sufficiently small.

Algorithm 1 Uzawa block relaxation algorithm for (6)

Initialization. p 1, <" andr > 0 given.
Iteration k > 0. Compute successively, pk ands< as follows.

Step 1. Setf =S¢+ r(pk~1 —f) and computeX with (11) and ther =f — pk~1 4 %(D RVARE-5)

Step 2. Update the Lagrange multiplies<t1/2 = &€ + %(uk+ pt_f).
Step 3. ComputepX = — (s +r(uk—f))/(r + 2\)
Step 4. Update the Lagrange multiplieg“t? = &+1/2 1 %(uk +pk—1).

Such algorithms are fast, easy to implement, and also robtist choice of the penalty parameter which
allows to choose a value ofthat minimizes the number of iterations and so the compantaticost [17].

4 Proposition of a weighted TV based on Color moments

Let us now introduce the weighted TV regularization desibjfte our color selective filtering tool. Given
a color imageu = (uz, U, u3), we propose to take benefit of generalized color mommﬁ introduced in



[18]. The color moment of ordgv+ g and degre@a+ b+ c is defined as follows:
M3a¢ = // xDxa[u (%1, %2) ]2 (U2 (X1, %2)]P[Us (X1, X2) ) Cdxe Az (12)

wherex = (x1,%2) is a pixel in a 2D image and, b, ¢, p andq some positive integers arizithe domain of
computation of the moment (it can then be the whole image atehj.

In order to use a semi-local information on color (which canréally interesting for texture regions),
we propose to compute color moments on small patches araastdpxel of the considered region. We
denote this small neighborhood By, wheren represents the half size of the neighborhood. Note that the
moments of degree 0 correspond simply to the classical geeiemsoments oD, and so they do not pro-
vide useful information for filtering since they only encottie fixed geometry oD,. In our application
we consider 27 moments in order to reduce the computatianal which areM35¢, M3¢ and M25¢ with
(a,b,c) € {(1,0,0);(0,1,0); (0,0,1); (1,1,0);(1,0,1); (0,1,1); (2,0,0);(0,2,0); (0,0,2)}. The correspond-
ing 27-vectors of moments are notd x) wherex € Q. In our application we consider the HSL color space
for the computation which conducts in the practice to be#sults than the RGB color space. Note that the
space color can be changed easily using a simple conveitsiba beginning of the process.

The semi-supervised filtering scheme has been previoustyitbed in Figure 1. In the first step, we draw
two curves on the image, one for the "inside” region and tteofor the "outside” region. The "outside”
region Qq Will be filtered and the "inside” on€;, remains without filtering. A small dilatation of what
we can call “the markers” is performed and the color momemtgéch selected region are then computed.
We present there two main solutions for the design of a we@ilv term taking into account these color
moments.

4.1 Definition of weighted TV based on the average moment veato

The most straightforward method is to compute an averageanowector of the marke@;, andQo; (aver-
aging each component of the vector). The average valuedaaimponent is p* = ITl.I fQi Ma (X1, X2)dx dX%
with a € [0,27] andi = in or out. We then propose to select the ordérthat corresponds to the maximum
distance between the two average values as follows :

*

a* = max (|(kh — Hou)l) - (13)

ae[0,27]

We then propose to introduce the following thresholdingction :

c1 if Mg (X) < Mo~
T)= {c; if Ma: (X) > pa (1)

wherepy corresponds to the average of the moméngs of ordera* of the whole image2 and is then
chosen as a threshold. We choesge- 0.01 andc; = 1 or inversely in order to uppermost smooth the pixels
corresponding to the reference regigy; or rin. A regularized continuous version of the functidfx) is
needed which is obtained by a Gaussian filtergjgf) = Go * T (X) (0 = 0.05).

4.2 Definition of a weighted TV usingl — nnselection

The previous method is not able to deal with large variatwfreolor inside each reference region. In order
to cope with this problem, we propose to consider the wholeeZfor as a descriptor. We then compute the



L, distance between the 27 moments of pixaind the 27 moments of each pixel of the inside and outside
region and we select the nearest pixel in each referencerrego, for each pixet of the image, we choose
the pixelx* in the reference region (i = in or out) such that x* = argminyer; [ (M%(x) — Mo‘(y))z]. For
each pixek, the pixelx" designates the pixel in the regiorwith the nearest moment valuest the sense

of theL? norm.

A thresholding function is then defined usiigx) = ¢ if X, € rip andcy if X, € rou. We choose
c1 = 0.01 andc,; = 1 in order to uppermost smooth the pixels corresponding éadlference regiongy
while preservingrin. The role ofrj, andrgy can be inverted to preservgy:. A regularized continuous
version of the functio (x is needed which is obtained by a Gaussian filtergig) = G * T (x) (o = 0.05).

5 Experimental results

To test our approach, we conduct tests on synthetic andatatoages using the two differegtfunctions
(uand 1-nn). The patch size is chosen as= 3 which represents a good trade-off between precision and
guantity of information (a higher patch size can be needeatdler to filter texture with larger patterns).
The results are depicted in Fig.2 and Fig.3. In each figurebatk display the two results obtained when
choosingrin Or roy; to be preserved.

The comparison betwegnand 1— nnis straightforward. The £ nn method outperforms significantly
the other one showing the interest of designing a well-agthfatnctiong. This can be easily explain singe
only compares the average of the whole selection with theeaimoment of the pixel. The-nn method
selects interactively the nearest vector of moments insébd region and then the nearest region (inside or
outside) to apply the filtering. So it delivers a more locadattor of the selected regions.

Since the results give a strong smoothing effect on the deitgigion while preserving all the details of
the inside one, this method gives a straightforward way téop@m an object-oriented compression. When
considering the “cats” image, a classic JPEG compressitnasactor of 09 leads to an image of size R5.
The same JPEG compression on the filtered image where theattw@ie selected and the background is
smoothed leads to an image size oKb7 So, depending on the size of the region of interest, ourifije
method may compress the images with a ratio from 30% to 80%e\wheserving some selected components.
The algorithm can also be used as a pre-processing stepffienedt applications such as segmentation or
object selection or even artistic post-production of insgemovies.
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Fig. 2. Experimental results on a synthetic image and on two natural images (selectidiltering of the background
in (a) and of the geometric components in (b), selection and filtering of the#s in (c) and of the background in (d),
selection and filtering of the leopard in (e) and of the background in ¢fjjg approach and HSL space.
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Fig. 3. Experimental results on a synthetic image and on two natural images (selentdiltering of the background
in (a) and of the geometric components in (b), selection and filtering of thedts in (¢) and of the background in (d),
selection and filtering of the leopard in (e) and of the background in ¢fjjgu1— nn approach and HSL space.
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