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Abstract. We investigate the problem raised by L. Bondesson in [1], about
the hyperbolic complete monotonicity of α-stable densities. We prove that

densitites of subordinators of order α are HCM for α ∈]0, 1/4] ∪ [1/3, 1/2].

1. Introduction

Hyperbolically completely monotone functions (HCM in short) were introduced
by L. Bondesson [1] in order to analyze infinitely divisible distributions, and partic-
ularly the so-called generalized gamma convolutions introduced by O. Thorin [4].
We recall their definition in section 1 below.

Bondesson showed that the densities of α-stable positive random variables are
HCM for α = n−1, for any integer n ≥ 2. Furthermore, he conjectured that the
HCM property actually holds for all α ∈]0, 1/2]. Recently, Wissem Jedidi and
Thomas Simon [2] investigated some aspects of the problem. I thank them for
pointing out this question to me.

In this paper we prove this conjecture for values of α in ]0, 1/4] ∪ [1/3, 1/2].
For this we introduce the functions

Gα(x) = x− 1
α gα(x

− 1−α
α )

where gα is the density of the positive α-stable distribution. We show that Gα

extends to an analytic function on the slit plane C\] − ∞, 0]. By analyzing its
behaviour at infinity and near the cut, we are able to prove that it has the following
form

(1.1) Gα(z) = ce−δz exp

(
∫ +∞

0

[

1

z + t
− 1

1 + t

]

θ(t)dt

)

where c, δ are positive constants and θ takes values in ]0, 1[.
In order that Gα be HCM it is then enough that the function θ be increasing,

which we prove for α ∈ [1/3, 1/2]. The HCM property for the remaining values of
α is obtained by a multiplicative convolution argument.

This paper is organized as follows. In the section 2 we recall some results of
Zolotarev on densities of stable distributions. These are used in the next section
to obtain the asymptotic behaviour of the function Gα in the complex plane. In
section four we establish the integral representation (1.1). Finally, in section five,
we prove that θ is increasing for 1/3 < α < 1/2, and we finish the proof of this part
of the conjecture.
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2. Hyperbolically completely monotone functions

We recall here the basic definition and properties of the class of hyperbolically
completely monotone functions, and refer to [1] for more details.

A real valued function H defined on ]0,+∞[ is called hyperbolically completely
monotone (HCM) if for every u > 0 the function H(uv)H(uv−1) is a completely
monotone function of the variable v+ v−1. Bondesson [1] introduced this property
in order to analyze infinitely divisible distributions, and particularly the so-called
generalized gamma convolutions introduced by O. Thorin.

Proposition 2.1.

(i) H is HCM if and only if H(x−1) is HCM.
(ii) H is HCM if and only if it admits the following representation

(2.1)

H(x) = cxβ−1 exp

(

−a1x−
∫ ∞

1

log
x+ t

1 + t
µ1(dt)− a2x

−1 −
∫ ∞

1

log
x−1 + t

1 + t
µ2(dt)

)

where β is real, a1, a2 are positive constants and µ1, µ2 positive measures.
(iii) If H is HCM then H(xβ) is HCM for all β ≤ 1
(iv) H is HCM if and only if the functions xγH(x) are HCM for all values of

γ ∈ R.
(v) If X and Y are independent positive random variables both with an HCM

density then the random variable XY also has an HCM density.

In particular, from (iii) and (iv) we deduce that if X is a positive random variable
with HCM density, then Xγ has HCM density for all γ ≥ 1.

3. Stable random variables

Let α ∈]0, 1[ and ρ ∈]0, 1[, we denote gα,ρ the density of the strictly α-stable
distribution with asymmetry parameter ρ (cf [5]). For ρ = 1 (and only for this
value) this distribution is supported on the half axis ]0,+∞[, and we simply put
gα = gα,1.

The following result is an integral representation for the functions gα,ρ on the
positive axis, due to Zolotarev.

Theorem 3.1. (Zolotarev, [5], Theorem 2.4.2)
For all x > 0, α, ρ ∈]0, 1[

(3.1) gα,ρ(x) = (2iπ)−1

∫ ∞

0

e−e−iπραyαx−α − e−eiπραyαx−α

x
e−ydy

The following result which is easily obtained by a subordination argument, plays
an important role in the following.

Lemma 3.2. Let X and Y be independent positive stable random variables, with
respective parameters (α, ρ) and (β, 1), then XY 1/α is a stable random variable with
parameter (αβ, ρ).

We deduce from the preceding lemma and Proposition 2.1 that

Proposition 3.3. The set of α ∈]0, 1[ such that gα is HCM is a semigroup under
multiplication.
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4. The function Gα

Denote Gα the function

(4.1) Gα(z) = (2iπ)−1

∫ ∞

0

e−e−iπαyαz1−α − e−eiπαyαz1−α

z
e−ydy

where we take ( as in the rest of the paper) for zh, the determination of the power
function which is positive on ]0,+∞[ and analytic on C\]−∞, 0]).

This function Gα is analytic in C\]−∞, 0]. In fact zαGα(z) = Fα(z
1−α) where

Fα is an entire function. One has, for all x > 0,

gα(x) = x− 1
1−αGα(x

− α
1−α )

and for all z ∈ C\]−∞, 0]

Gα(z̄) = Gα(z)

For r > 0 we denote

Gα(−r+) = lim
z→−r,ℑ(z)>0

Gα(z) Gα(−r−) = lim
z→−r,ℑ(z)<0

Gα(z) = Gα(−r+)

the boundary values of Gα.

5. Behaviour near 0.

It follows from (4.1) that, as z → 0,

(5.1) Gα(z) = Γ(α+ 1)
sin(2πα)

π
z−α(1 +O(|z|1−α))

6. Bounds at infinity

Theorem 6.1. Let θ ∈]− 1, 1[ be fixed, and

δ = (1− α)α
α

1−α c = (1− α)−
1
2α

1
2(1−α)

then, as r → +∞, for z = reiπθ, one has

(6.1) Gα(z) ∼ cz−
1
2 e−δz

As r → +∞
(6.2) Gα(−r+) ∼ −icr−

1
2 eδr Gα(−r−) ∼ icr−

1
2 eδr

Furthermore, for some R > 0, the function Gα(z)z
1/2eδz is uniformly bounded

on C\]−∞, 0] ∩ {|z| > R}.
In order to obtain this asymptotic result, observe that one can rewrite the integral

defining Gα as a contour integral:

Gα(z) = (2iπ)−1

∫

Γ

ey−yαz1−α

z
dy

where Γ is a contour which starts from −∞, following the negative axis, taking the
lower branch of yα, encircles 0 then goes back to −∞ along the negative axis, this
time picking up the upper branch of yα.

In order to obtain the asymptotics we take z = reiθ and rewrite the integral as

Gα(z) = (2iπ)−1

∫

Γ

er(y−yαeiπ(1−α)θ )e−iπθdy
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This integral is subject to the steepest descent method (see [3] for example) using

the unique saddle point at y = α
1

1−α eiπθ of the function y−yαeiπ(1−α)θ. This gives
the point wise convergence for a fixed θ. In order to obtain the uniform convergence,
first notice that uniform property is clear for θ in any compact subset of ]− 1,+1[,
say for θ ∈ [−7/8, 7/8]. then, for θ ∈]7/8, 1[, the saddle point is over the half line
]−∞, 0[ and close to it, then one can use another determination of yα with a cut say
on the half-line arg(y) = −3π/4, and a contour encircling the cut and going back
to a neighborhood of −∞ by an arc with a ray going to infinity. Then again one
can deform this contour to go through the saddle point and then conclude of the
uniform convergence for θ ∈]7/8, 1[. A symmetrical argument gives the uniformity
for θ ∈]− 1,− 7

8 [.

7. Behaviour of Gα on the cut

Lemma 7.1. For any r > 0

(7.1) Gα(−r+) = (2iπ)−1

∫ ∞

0

er
1−αyα − ee

−2iπαr1−αyα

r
e−ydy

(7.2) Gα(−r+) = (2iπ)−1
∞
∑

1

Γ(nα+ 1)

Γ(n+ 1)
(1− e−2iπnα)rn(1−α)−1

Proof. The first formula follows at once from (4.1) by letting z → −r, the
second one comes from expanding the exponentials in the numerator of (4.1) and
integrating term by term. �

Lemma 7.2. For any r > 0 one has ℑ(Gα(−r+)) < 0. Furthermore, −rαℑ(Gα(−r+))
is an increasing function of r.

Proof. By (7.2) we get

−ℑ(Gα(−r+)) = (2π)−1
∞
∑

1

Γ(nα+ 1)

Γ(n+ 1)
(1− cos(2πnα))rn(1−α)−1

in which all terms in the sum are positive; the two claims are clear. �

In the sequel, denote

Gα(−r+) =: R(r)e−iπθ(r)

the polar decomposition of Gα(−r+). Since ℑ(Gα(−r+)) < 0, one can chose θ(r)
in ]0, 1[.

Observe also that θ(r) → 1/2 as r → +∞ (by (6.2)).

Remark 7.3. in fact one could also obtain from the integral representation that
θ(t)− 1/2 = o(e−ǫr) as r → +∞ for some ǫ > 0, but we will not use this).

8. Integral representation

Proposition 8.1. For all z ∈ C\]−∞, 0]

(8.1) Gα(z) = ae−δz exp

∫ ∞

0

[

1

z + t
− 1

1 + t

]

θ(t)dt

for some a > 0.
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Proof. Let

Lα(z) = exp

∫ ∞

0

[

1

z + t
− 1

1 + t

]

θ(t)dt

This is an analytic function on C\]−∞, 0], and it satifies, by well known prop-
erties of Stieltjes transforms,

Lα(−r+)

Lα(−r−)
= e−2iπθ(r)

Furthermore, as z → ∞, since θ(t) →t→+∞ 1/2, one has

Lα(z) = z−1/2 exp(o(log(|z|))
Near zero, one has θ(t) = α+O(t1−α) by (5.1), which implies

Lα(z) ∼ zα z → 0

On the other hand, for r > 0,

Gα(−r+)

Gα(−r−)
= e−2iπθ(r)

therefore the function
Eα(z) = eδzGα(z)/Lα(z)

is analytic on C\]−∞, 0], and can be extended continuouly to C \ {0}. Since it is
bounded near 0 it can be extended to an entire function and it satifies

Eα(z) = exp(o(log(|z|))
at infinity thus it is constant. Since both functions Gα, Lα take positive values on
]0,+∞[, this constant is positive. �

9. The function θ is monotone for α ∈ [1/3, 1/2]

Lemma 9.1. For 0 ≤ ρ ≤ inf(1, 1
2α ) the function g̃α,ρ(x) = x−1−αgα,ρ(x

−1) is
decreasing on ]0,+∞[.

Proof. Recall that if X is a stable variable with parameters (2α, ρ), and Y an

independent stable variable with parameters (1/2, 1), then Z = XY
1
2α is a stable

variable with parameters (α, ρ) . Since the density of Y is e−
1
2t√

2πt3
one has

gα,ρ(x) = 2α

∫ ∞

0

g2α,ρ(y)
e−

1
2 (y/x)

2α

yα√
2πxα+1

dy

Therefore

x−1−αgα,ρ(x
−1) = 2α

∫ ∞

0

g2α,ρ(y)
e−

1
2 (yx)

2α

yα√
2π

dy

which is clearly decreasing in x.
�

Lemma 9.2. For α ∈ [1/3, 1/2] the function rαℜGα(−r+) is decreasing.

Proof. Note that, by formulas (3.1) and (7.1) one has

ℜGα(−r+) = r−1/αgα, 1
α
−2(r

− 1−α
α )

for α ∈ [1/3, 1/2]. it follows that

rαℜGα(−r+) = rα−1/αgα, 1
α
−2(r

1−α
α ) = x−1−αgα, 1

α
−2(x

−1)
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with x = r1−
1
α . The result follows from the preceding lemma.

�

Theorem 9.3. For α ∈]1/3, 1/2|, the function θ increases from the value α to the
value 1/2, and

Gα(z) = Γ(α+ 1)e−δzz−1/2 exp−
∫ ∞

0

log(1 + t/z)θ′(t)dt

Proof. One has

tan(πθ(r)) =
−rαℑ(Gα(−r+))

rαℜ(Gα(−r+))

and the numerator and denominator of this formula are positive and respectively
increasing and decreasing. This implies that θ is increasing. The other claim follows
by integrating by parts. �

10. The HCM property of stable distribution

For α ∈ [ 13 ,
1
2 ] one has

1−α
α ≥ 1 and Gα is HCM. This implies that gα is HCM. By

Proposition (3.3) the set of α such that gα is HCM thus contains the multiplicative
semigroup generated by [1/3, 1/2], which is ]0, 1/4]∪ [1/3, 1/2]. �

Remark 10.1. Following the same arguments than above, one can prove that for
α ≥ 1/2, the function θ decreases from α to 1/2 and consequently Gα enjoys the
next decomposition :

Gα(z) = Γ(α + 1)e−δzz−1/2 exp

∫ ∞

0

log(1 + t/z)|θ′(t)|dt

In other words, e−δz 1
Gα(z) is an HCM function.
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