Sparse Prediction with the $k$-Support Norm

Abstract : We derive a novel norm that corresponds to the tightest convex relaxation of sparsity combined with an L_2 penalty. We show that this new k-support norm provides a tighter relaxation than the elastic net and can thus be advantageous in sparse prediction problems. We also bound the looseness of the elastic net, thus shedding new light on it and providing justification for its use.
Type de document :
Communication dans un congrès
Neural Information Processing Systems, Dec 2012, Lake Tahoe, United States. pp.1466-1474, 2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00858954
Contributeur : Paragios Nikos <>
Soumis le : vendredi 6 septembre 2013 - 11:52:30
Dernière modification le : mardi 5 février 2019 - 13:52:14

Identifiants

  • HAL Id : hal-00858954, version 1

Collections

Citation

Andreas Argyriou, Rina Foygel, Nathan Srebro. Sparse Prediction with the $k$-Support Norm. Neural Information Processing Systems, Dec 2012, Lake Tahoe, United States. pp.1466-1474, 2012. 〈hal-00858954〉

Partager

Métriques

Consultations de la notice

145