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Abstract
Modelling the radio-induced effects in biologicaédium requires accurate physics models to
describe in detail the main physical interactiorduiced by all the charged particles present in
the irradiated medium (secondary as well as primamgs). These interactions include

inelastic events like ionization and excitationgasses as well as elastic scattering, the latter

being the most important process in the low-enesgime. To check the accuracy of the
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theoretical models recently implemented into thewr@4€ toolkit for modelling the electron
slowing-down in liquid water, the simulation of elen Dose Point Kernels remains the
preferential test. In this work, normalized radmbfiles of deposited energy at a distance
from emissions point sources are then computedund water by using the very low energy
“Geant4-DNA” physics processes available in ther®#oolkit. We here report an extensive
comparison with profiles obtained by a large s&bectof existing and well-documented

Monte-Carlo codes, namely, EGSnrc, PENELOPE, CPAEQUKA and MCNPX.
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1. Introduction

Energy deposition functions from point isotropic sms - commonly denoted dose point
kernel (DPK) functions - are of prime interest immy fields like dosimetry in particular for
medical applications. To better understand theofadiogical effects resulting from the use
of electron-emitting radiopharmaceuticals, it is@&sary to have an appropriate knowledge of
the cellular distribution of the radiopharmacedtiemd then to model the microscopic
distribution of energy deposited in irradiated reaftl]. Absorbed doses to targeted cancer
cells play an important role in evaluating the tigka merits of different radionuclides and
pharmaceuticals. In this context, information on i@ distribution at the tissue, cellular and
sub-cellular levels can be obtained by autoradiglyya[2], micro-autoradiography [3], or
alternative techniques such as secondary ion npessremetry [4]. Converting these data to
absorbed dose distribution requires the use ofyaoahethods based on point-dose kernels or
methods based on radiation transport calculatibrng.[Indeed, Monte Carlo code event-by-
event simulations can be particularly suitable IT-The latter consist in describing, step-by-
step, interaction after interaction, the history eafch ionizing particle created during the
irradiation of the biological matter. In this kinof numerical code, each projectile-target
interaction is described either thanks to thecaé(differential as well as total) cross sections
or by semi-empirical ones giving access to a mardeses complete description of the
kinematics before and after the collision.

In fact, there are in the literature a large nundfevionte Carlo electron track-structure
codes in water, which have been developed indepdiyd® investigate the microscopic
features of ionizing radiation, the ensuing cheimpeaghways and the molecular nature of the
damages in bio-molecular targets (see [11] andartes therein). The aim of the present
study is to compare dose point kernels - for paldicelectron energies - calculated by using

different Monte Carlo codes, namely, EGSnrc [LBNELOPE [13], CPA100 [14], FLUKA
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[15], MCNPX [16] and GEANT4-DNA [17]. To do thath¢ energy deposited by the emitted
electrons as well as all the secondary particleslyged along the primary trajectories are
scored in spherical shells placed around an ismirepurce for distances ranging from 0 to
1.2 times the continuous slowing-down approximatiange hereafter denotdkspa and

provided by the different codes here studied.

2. Methods

The Monte Carlo numerical simulations used in thesent study are well-documented and
nowadays extensively used by many groups. Only ief lolescription is then hereafter
reported and for more details we refer the intexdeseader to the corresponding literature
whose examples are cited as references.

2.1 The GEANT4-DNA code

The Geant4-DNA code is fully included in the geheparpose Geant4 Monte Carlo
simulation toolkit. It simulates track structureksedectrons, hydrogen and helium atoms of
different charge states {HH") and (H&, He', HE?") respectively, as well as’G N™*, O** and
Fe® ions, in liquid water. The physical processes lidel ionization (for all particles),
electronic excitation (for electrons, protons, loghn atoms and-particles including their
different charge states), charge exchange (fordgealr and helium atoms with the above-
mentioned charge states), and, for electrons, ielasattering, vibrational excitation and
dissociative attachment. Electron interactions ctle 7.4eV - 1MeV energy range, whereas
proton and hydrogen interactions are simulated fi@@eV to 100MeV while helium ions of
different charged states are followed from 1lkeVtaglOOMeV. These processes are further
described in [17].

2.2 The EGShrc code
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EGSnrc is a general-purpose package for the Moat Gimulation of the photons and the
electrons transport from a few keV up to 100GeV S uses a condensed history approach
based on the formalism developed by Kawrakow amdbiw to sample angular distributions
from the any-angle form of the screened Rutherfwoss section [18]. The Mdller inelastic
cross-sections are used for the generation of sacpneélectrons. For this study, the
simulations were based on the user-code EDKnrcloesd by Mainegraet al. [19]. We
applied the PRESTA Il electron-step algorithm amel EXACT boundary crossing algorithm
to switch to single scattering when a particle ceraeser to a boundary. The “skin depth”
parameter was set to 3: it represents the numberlastic mean free paths to the next
boundary at which the simulation switches into kngcattering mode. We set the cut-off
parameter ECUT to 1 keV in order to track primamesl secondaries until they leave the
geometry or their energy falls below 1 keV. We poeld a PEGS4 data set describing cross
sections and stopping powers adapted for this lawoff value.

2.3 The PENELOPE code

PENELOPE (2006 version) is a general-purpose MGatto code for the coupled simulation
of electron and photon transport. The cross sextdaiabase used in PENELOPE covers a
wide range of elementZ € 1-99) and various materials useful for medigadligations in the
energy range of 50 eV - 1 GeV. This code has #aHility to generate electron and positron
histories on the basis of a mixed procedure, wlucmbines detailed simulation of hard
events with the continuous slowing down approxioratior soft interactions. The level of
detail of electron transport processes is contloliie PENELOPE by specifying values for
several parameter§;, C,, Wee andWer. The C; and C, parameters are associated to the
condensation of electron and positron elastic agag processe®Vcc andWeg, respectively,
represent the cut-off energy losses for hard itielasllisions and for hard Bremsstrahlung

emission. A detailed description of the algorithosed in PENELOPE can be found in its
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manual [20]. These simulations were done with telaevent-by-event transport setting
C1=C, = 0,Weec = Wer = 50 eV and using 50 eV as the lower absorptiargnallowed in
this code.

2.4 The CPA100 code

CPA100 is an event by event Monte Carlo track stineccode, developed in Toulouse
(France), for understanding fundamental aspectgadfation track interaction [14]. It
simulates complete electron/photon transport imidigwater for energy range from 10 to
200 keV. It generates all the electronic and phictaascades occurring after a particle
passage in the volume of interest (Auger elect’toRays, atomic reorganization). It is also
able to describe the various stages of the paittialesport not only the early physical stage,
but also the physico-chemical and the chemical ,odesing the very early passage of
particles in matter say up to one microsecond. &ynphysical and chemical damages not
only in liquid water but also in complex DNA targednd its higher order structures can be
calculated to estimate the radio-induced damagi@¢oDNA molecular scale (DSB, SSB,
base lesion).

2.5 The FLUKA code

FLUKA is a multi-purpose Monte Carlo particle traost code that considers all particle
interactions including electromagnetic interactionsiclear interactions of the primary or
incident particles and the generated secondaricles;tenergy loss fluctuations and Coulomb
scattering [15]. The version 2011.2.15 with theadéifconfiguration ‘PRECISION’ was used,
with an energy cut-off lowered at 1 keV for eleasocand 0.1 keV for photons. To reach a
good accuracy, the single scattering model thraihgh‘MULSOPT’ option was activated,
because the Moliere multiple scattering model cdxddinreliable with thin shells, disturbing
the propagation of electrons between the boundiids

2.6. The MCNPX code
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MCNPX is a general-purpose Monte Carlo code for eflod) the interaction of radiation
with matter [16]. MCNPX stands for MCNP eXtendedd amansports electrons, photons,
neutrons and several particle types, like neatlgm@érgies. It utilizes the latest nuclear cross
section libraries and covers various materialsuldef medical applications. The tallies have
extensive statistical analysis and the convergéma@nabled by a wide variety of variance
reduction methods. For this work, the version 2wa3 used with the F8* energy deposition
tally in coupled electron-photon mode. The photon @lectron cut-off energies were set
above 1 keV. A specific consideration was focuseclectron transport conditions, through
the ITS option and the ESTEP parameter, due tovéng narrow shells. The ITS energy
indexing algorithm was used to have a better dafimiof the energy group and their
boundaries [22] and the ESTEP parameter was inmileasorder to divide the major electron
energy step into smaller sub-steps [23]: ESTEP f0d @00 keV and ESTEP = 100 for 10, 30

and 50 keV.

3. Resultsand discussion

To obtain the dose point kernel (DPK) around arrégnc point source, the geometry
here used consists in a spherical water phantordedivinto 120 spherical shells of thickness
Rcspa/100, whereRespa stands for the continuous-slowing-down-approxioratiange whose
values calculated by the different codes here stlidre reported in Table 1. Note that for the
EGSnrc, the CPA100, the FLUKA and the MCNPX codes,corresponding values are taken
from the NIST web database ESTAR [24], what geesratopping powers and ranges for
electrons which are the same as those tabulatd@RtU Report 37 [25]. Besides, let us
remind that the present GEANT4-DNA version trangpalectrons down to an energy
threshold of 7.4 eV contrary to the other codesistud/hich use higher energy cut-off, what

undoubtedly affects thB-spa values.
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Finally, the GEANT4-DNA DPK distributions have beeampared to those obtained
with the other Monte Carlo codes by using Kolmoge®mirnov statistical tests. Thus, we
found that the GEANT4-DNA simulations are statialix compatible with EGSnrc and
PENELOPE simulationgpfvalue > 0.05) with a maximum distand®) (between distribution
functions less than 0.2. On the contrary, much kemgvalues (< 0.05) and largdd
distances were obtained when comparing GEANT4-DMAukations with the MCNPX and
CPA100 simulations.

The DPK distributions also obtained by the differanimerical codes are reported in
Figure 1 for four particular electron energies, en10 keV, 30 keV, 50 keV and 100 keV.
These quantities are defined as the fraction oéthited energy absorbed (per unit mass) at a
certain distance from the point source and are liysuaported by means of scaled

E0)/E wherer is the distance from the point source,

distributions defined a& (r/ =
Istributi | (r/ Regpa) &/ Reco

JE(r) stands for the energy absorbed in the spheric#l stexl at a distance from the point
r/Rcspa source,Eqg being the initial kinetic energy of the electromdaX the shell thickness
(hereRcspa/100). The obtained distributions will be hereafegported as a function ofRcspa
and refer to scoring of the deposited energy atrtiteradius of the shell.

In Figure 1, we observe that the shape of the gmset kernels generated by the
different codes is very similar. However, we ndtattthe CPA100 code exhibits a peak closer
to the source in comparison to the other cqdé&spa [10.53 vs 0.58), the amplitudes being
all of the same order of magnitude - from 1.45 &bl except for the MCNPX which largely
overestimates the other result8vhen the incident electron energy increases, these
observations are confirmed with in particular ampiavement of the agreement between the
CPA100 and the other simulations. Thus, from Fip.tth Fig.1d) all the curves tend to

converge except again the MCNPX simulation whiabvjates higher DPKs (of about 20%).
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Besides, for the four energetic cases here reported GEANT4-DNA DPK
distributions have been compared to those obtawmiédd the other Monte Carlo codes by
using Kolmogorov-Smirnov statistical tests. Thuse Viound that the GEANT4-DNA
simulations are statistically compatible with EGSAPENELOPE and FLUKA simulations
(p-value > 0.05) with a maximum distand®) (between distribution functions less than 0.3.
On the contrary, much smallprvalues (< 0.05) and larg€& distances were obtained when
comparing GEANT4-DNA simulations with the MCNPX (fahe four incident energy

values) and CPA100 (for 30 keV and 50 keV) simalai

4. Conclusions

Normalized radial profiles of deposited energy moaonly referred to as dose point kernels -
have been here reported by using the very low gngggant4-DNA” physics processes

available in the Geant4 toolkit. In comparison witfofiles obtained by a large selection of
existing and well-documented Monte-Carlo codes, elgnEGSnrc, PENELOPE, CPA100,

FLUKA and MCNPX, we have here emphasized evidestrépancies undoubtedly relied to
the physics models implemented into the differeades. In this context, the Geant4-DNA
code has been shown to provide accurate dose keinels for incident electron energies

ranging from 10 keV to 100 keV.
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220 Figurel:
221 (Color online)Comparison between the scaled dose point kerngilbdisons obtained by the
222 different numerical track-structure codes studiedhie present work: GEANT4-DNA (red),
223 EGSnrc (green), PENELOPE (blue), CPA100 (cyan), N&N(magenta) and FLUKA
224 (orange). Panel a)Eo=10keV. Panel b)Ey;=30keV. Panel c)Ey=50keV.
225 Panel d, = 100 keV.
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228 Tablel:
229 Comparison between the continuous-slowing-down-@ppration rangéicspa (Lm) obtained

230 by the different numerical track-structure codeslsd in the present work.

Rcspa Rcspa Resoa
& (GEANT4-DNA) (PENELOPE) (EGSnrc, CPA100, KLUKA, MCNPX)
10 keV 2.76 2.52 2.52
30 keVv 18.16 17.57 17.56
50 keV 44.07 43.21 43.20
100 keV 144.12 143.06 143.10

231 “Note that the EGSrc, CPA100, FLUKA and MCNPX values have been taken from the NIST
232 web database ESTAR [24] contrary to the other data here reported.
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