Modeling Shapes with Higher-Order Graphs: Methodology and Applications

Abstract : Extrinsic factors such as object pose and camera parameters are a main source of shape variability and pose an obstacle to efficiently solving shape matching and inference. Most existing methods address the influence of extrinsic factors by decomposing the transformation of the source shape (model) into two parts: one corresponding to the extrinsic factors and the other accounting for intra-class variability and noise, which are solved in a successive or alternating manner. In this chapter, we consider a methodology to circumvent the influence of extrinsic factors by exploiting shape properties that are invariant to them. Based on higher-order graph-based models, we implement such a methodology to address various important vision problems, such as non-rigid 3D surface matching and knowledge-based 3D segmentation, in a one-shot optimization scheme. Experimental results demonstrate the superior performance and potential of this type of approach.
Type de document :
Chapitre d'ouvrage
Shape Perception in Human and Computer Vision: An Interdisciplinary Perspective, Sven J. Dickinson and Zygmunt Pizlo, pp.459-471, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00858417
Contributeur : Chaohui Wang <>
Soumis le : jeudi 5 septembre 2013 - 13:50:19
Dernière modification le : jeudi 7 février 2019 - 17:29:19
Document(s) archivé(s) le : vendredi 6 décembre 2013 - 04:19:43

Fichier

BookChapter_CompleteCameraRead...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00858417, version 1

Collections

Citation

Chaohui Wang, Yun Zeng, Dimitris Samaras, Nikos Paragios. Modeling Shapes with Higher-Order Graphs: Methodology and Applications. Shape Perception in Human and Computer Vision: An Interdisciplinary Perspective, Sven J. Dickinson and Zygmunt Pizlo, pp.459-471, 2013. 〈hal-00858417〉

Partager

Métriques

Consultations de la notice

555

Téléchargements de fichiers

318