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Abstract—In this paper, we present a method for drivable

road detection by extracting its specular intrinsic feature

from an image. The resulting detection is then used

in a stereo vision-based 3D road parameters extraction

algorithm. A substantial representation of the road surface,

called axis-calibration, is represented as an angle in log-

chromaticity space. This feature provides an invariance

to road surface under illuminant conditions with shadow

or not. We also add a sky removal function in order

to eliminate the negative effects of sky light on axis-

calibration result. Then, a confidence interval calculation

helps the pixels’ classification to speed up the detection

processing. At last, the approach is combined with a stereo-

vision based method to filter out false detected pixels and

to obtain precise 3D road parameters. The experimental

results show that the proposed approach can be adapted

for real-time ADAS system in various driving conditions.
Index Terms—Road extraction, illuminant invariance theory,

drivable space detection

I. INTRODUCTION

Road detection from a driving scene is a popular topic which

usually helps the intelligent on-vehicle system to get a better

understanding of the environment so that it can improve traffic

safety and efficiency. Vision systems constitute key sensors in

intelligent vehicles perception task. Their versatility provides

rich information like colors, shapes, and depth at low cost with

reduced power consumption. Among the popular vision-based

researches, road detection not only provide a straightforward

information for path planning but also helps to obtain precise

obstacle detection and road profile estimation.

Recently, several approaches for image-based road detection

have been proposed. In [1], the road detection is performed by

boosting image features. In [2], the authors propose to detect

the road using a new approach for vanishing points detection

combined with texture orientations extraction. In [3], the road

detection approach uses Illuminant Invariance Theory on color

images to classify road pixels. In [4], the road extraction is

based on road borders extraction using texture classification. If

the road can be considered as the dominant plane, 3D vision

methods like Inverse Perspective Mapping [5], Homography

estimation [6], Omnidirectional Images and optical flow [7]

or active contours [8], and stereo vision [9], [10], [11].

Basically, the main drawback of vision system, is their

sensibility to illumination conditions such as shadows, back-

lighting and low rising sun conditions. Especially, shadows are

most impactive since they often appear and may lead to false

object detection. Thus, road detection in varying illumination

conditions becomes a really hard issue, which should be

handled with care before further processing.

To solve this problem, [12] presented an impressive method

from a view of Invariant Image. Shannon’s entropy is used to

find and distinguish the intrinsic quality of surface’s spec-

ular properties. This method has been introduced for road

extraction by [3]. In this work, after obtaining intrinsic feature

of RGB images, a model-based classifier is built to extract

drivable road. Basically, it realizes a simple and efficient

separation of road and non-road area from RGB images. But

it still remains some drawbacks. For example, it did not

avoid the impact of skylight on the axis-calibration result,

and the classification threshold value of classifier relies on

prior manually segmented ground-truth. From this analysis, we

proposed relevant modifications to improve the performance

of this algorithm, and we combine the improved method with

stereo vision for 3D road plane extraction. Experiments have

been taken on different databases and the results proved that

our approach is quite fast and robust to be applied for a real-

time on-vehicle system.

The rest of this paper is organized as follows. Section 2

briefly recalls the related theory and algorithms. Our proposed

approach with theory demonstration and combination with

stereo vision are assigned in section 3. Section 4 shows the

experimental results. Finally, section 5 concludes this paper

and discusses some future works.

II. RELATED THEORY

A. Axis-calibration for illuminant invariant images

Shadows often lead to problems in image segmentation and

may cause unreliable detection results. According to [12],

shadows can be removed by extracting the essential quality

of surfaces. Under the assumptions of Lambertian reflectance,

approximately Planckian lighting, and fairly narrow-band cam-

era sensors, RGB features of an image captured by camera

could be represented as

Ri = σE(λi)S(λi)qi i = R,G,B (1)

Where, σ is a Lambertian shading. E(λi) is the spectral

power distribution; S(λi) is the surface spectral reflectance

function, and qi is the sensitivity of the camera. The chro-

maticity is defined as:

ci = Ri/R3 (2)

R3 represents one channel picked from R,G,B, Ri represent

the rest two channels. It is then possible to remove shading
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Figure 1: (a) Example of chromaticities for 6 surfaces under 9

lights in log-chromacity space; (b) Entropy plot for different

axis.

information σ and qi by taking the logarithm of chromaticity:

ρi ≡ log(ci) = log(si/s3) + (ei − e3)/T. i = 1, 2 (3)

Thus, ρ1,2 form a log-chromaticity space (see Fig. 1a). In

this space, the pixels on the same surfaces under different

illuminations build a straight line. The lines li which represent

different chromaticities are almost parallel. Their directions are

only determined by the factor of (ei − e3), which correspond

to the spectral power distribution E(λi). Their displacements

log(si/s3) are only related to surface spectral reflectance

function S(λi). Hence, an image Iθ with suppressed shadows

can be obtained by projecting the lines li on their common

orthogonal axis which make an angle θ with the horizontal

axis. Therefore, Iθ is lighting independent and is also shadow-

free:

Iθ = ρT (cos θ, sin θ), ρ = (ρ1, ρ2) (4)

To find the correct axis θ, Shannon’s definition of entropy

has been introduced:

η = −
�

Pj(Iθ) logPj(Iθ). (5)

Where P j is the empirical probability for each bin in

histogram of Iθ. The axis that generates a grayscale image with

minimum entropy is the correct angle to distinguish different

surfaces.

B. Model-based Classification

According to the illuminant invariant property of Iθ, road

pixels are expected to be similar regardless of the illumination

variety. Therefore, free-road surface and non-road surface

could be separated by a model-based classifier as follow [3]:
�

p is road, if P (Iθ(p) | road) ≥ λ

p is background,
(6)

where P (Iθ(p)|road) represents the probability P of pixel p
being on the road according to its illuminant-invariant gray

scale value Iθ(p). λ is a predefined threshold on this mea-

sure. P (Iθ(p)|road) is obtained from a normalized histogram

composed of the selected pixels on the road.

The threshold λ is determined by the measurement of

detection effectiveness F , where, F = (2PR)/(P + R)
with precision P and recall R. The highest effectiveness F
gives the desired λ. However, this calculation needs manually
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Figure 2: (a) Samples selected both from sky and other

area. (b) Representation of sample pixels transformed in log-

chromaticity space, reds are sky pixels and blue the others,

arrows are directions determined by these pixels. (c) Entropy

plot with sky area taken into consideration. (d) Entropy plot

after sky removal.

segmented ground-truth mask as criterion. Thus, the road-

extraction results generated by this method fit to the drivable

road area. But, it is difficult to apply it in unknown environ-

ments.

III. PROPOSED APPROACH FOR ROAD DETECTION

Depending on the basic theory and problem analysis, we

developed a new method for fast road detection with sus-

tainable modifications and reliable improvements: firstly, sky

removal and new log-chromaticity space contribute to the axis-

calibration stability and to cost saving; secondly, confidence

intervals help in the determination of the threshold λ without

any prior knowledge about road conditions; finally, stereo-

vision-based extension provides possibility of 3D road profile

extraction and improve the detection precision.

A. Sky removal for axis-calibration

Remarkably, axis-calibration results show great variations

in Dataset1 (See Section IV A), especially when sky takes

more than 30% of the image area. Fig. 2 shows representation

differences between sky and real surface. From Fig. 2b, we can

get that the pixels from sky do not respect the axis-calibration

theory. Indeed, the line formed by them is not parallel to the

others in the log-chromaticity space. In fact, the changeful

appearance of sky can be explained by Rayleigh scattering:

I(λ)scat = const · I(λ)inc/λ4 (7)

Iscat represents the intensity of the scattered light. Iinc
represents the intensity of the incident light, and λ represent

the wavelength. Blue color with a small wavelength is more



strongly scattered than red, so it becomes the common color

for sky. At sunrise and sunset, the distance from sun to camera

is longer, blue is almost scattered away while red is reserved

in I(λ)scat. But for trees and roads, their colors captured by

camera are caused by reflection of black-body radiation. This

difference tells why axis-calibration theory is not suitable for

sky background.

Usually, if the camera is well calibrated, it is possible

to determine the horizon line of the images directly. Under

this condition, we can simply cut off the above part for sky

removal. Else if there is a lack of horizon information, an

adaptive horizon finding algorithm mentioned in [13] would be

helpful. In this work, the algorithm analyzes the highest 60%

area of the image which is divided into 10 parts by empirical

horizon line estimation; for each line, an Ostu threshold is

calculated, and the most effective value is expected.

To simplify the procedure and to save time, we propose that

once the horizon line has been determined at beginning of the

sequence, it can be directly applied to the next few images.

Assuming S (sky) and R (road) are two parts separated by

determined horizon line, and R�, S� represent the two real

parts of image. When R ⊆ R�, all pixels in R� respect to the

same axis θ, so as to R. Else, if R ⊇ R�, some sky area is mis-

detected as road, noted as Ssub = R − R�. In practice, slope

angles of road are usually smaller than 30 degree while the

vertical visual angle of a camera could be from 60 degree to 90

degree. Thus, most of the time, Ssub � R�, then, the influence

by Ssub is could be neglected. This simplified processing

is only used for axis-calibration when the road profile has

been extracted. It is then easier to limit the ROI for faster

calculation.

B. Log-chromaticity space by geometric mean

After an evaluation of the previous approach, the axis-

calibration result still remains unstable. For this reason, we

introduced a new log-chromaticity space built by geometric

mean to offer an equal processing for R, G, B channel’s

transformation[12].

From Eq. 2, σ and qi can be removed through a division

by any of the color channels. However, the choice of the

denominator is still a tough issue. If the denominator happens

to appear rarely in the whole image (e.g. channel red in

Dataset1), then the variance of the division would be large

[14]. In reality, for long-term driving, the background tonal

is changing continuously even dramatically, e.g. an urban

scene with colorful buildings along the road. In order to avoid

favoring one particular channel, the R, G, B factors could be

transformed to division by their geometric mean, i.e

Cref =
3
√
R ∗G ∗B (8)

Thus, the definition of chromaticity becomes:

ci = Ri/Cref (9)

and the log version remains: ρi = log(ci). One can notice

that in the log space, the color space ρ is orthogonal to u =
1/
√
3(1, 1, 1)T .

Therefore, the transformation from the original coordinates

to the new geometric mean divided space is:

χ ≡ Uρ,χ is 2× 1 (10)

U = [v1, v2]
T , and v1 = (1/

√
2;−1/

√
2; 0)T , v2 =

(−1/
√
6;−1/

√
6; 2/

√
6)T . Points still retain the parallel lines

in the new log space [15]. Then the new shadow-free gray

image is calculated by:

Iθ = χ1 cos θ + χ2 sin θ (11)

Since time consumption of dynamic adjusting method is

important, the calibrated angle can be defined off-line, which

means the result could be directly used for later varied driving

scenes [3]. Thus, as a preparation work, calibration could be

realized off-line, and would not affect the real-time detection

performance. The algorithm can be summarized as follow:

Algorithm 1 Axis-calibration algorithm

• Determination of the horizon line, cut off above area IS
• Form a 2D log-chromaticity representation χ(IR) for the

rest of the image IR.

• For θ� from 1° to 180° :

1) Form gray-scale image Iθ� by projecting χ(IR) to axis

θ: Iθ = χ(IR) ·
−→
θ

2) Forms the histogram of Iθ� with a careful bin-choice and

outliers exclusion.

3) Calculate entropy by Eq. 5

• Correct axis θ equals to θ�minEnt which lead to the

minimum Entropy.

C. Confidence interval classification

Practical fast road detection should be adaptive to dynamic

environment. For this reason, it is necessary to sever the depen-

dency of the prior knowledge about road’s ground truth. Based

on this consideration, we introduced confidence intervals to

determine the threshold λ for the model-based classifier which

separates the pixels into road or non-road class.

Notice that, since Iθ has eliminated the influence of shad-

ows, the histogram composed by pixels on road surface is

expected to be uni-modal with low dispersion and skewness.

Therefore, the normalized histogram follows the empirical

form of a normal distribution for a random variable, i.e.

Iθ(road) ∼ N (µ,σ 2).
Under the assumption that the bottom area of a driving scene

image indicates the safe driving distance, as written in [3], a

model of road surface could be built with a set of patches

dispersed in this area. The representation of the road’s illu-

minant invariance feature can be abstracted from normalized

histogram, i.e., H(Iθ(p)), where p represents selected pixels.

In this paper, 9 patches with a size of 10× 10 at the bottom

of images have been devoted to modal construction. With

this model, it is easy to calculate statistic parameters µ and

σ and to stimulate the distribution of Iθ(road). Empirically,

we believe that the middle 95% data in histogram represents



road’s illuminant invariance feature; therefore, we defined

confidence level 1 − α = 0.95 to calculate the confidence

interval [λ1 = µ− 1.86 σ√
n
, λ2 = µ+ 1.86 σ√

n
] of H(Iθ(p)).

On the whole image, pixels whose grayscale values fall

outside this interval would be regarded as background or

obstacles (e.g. vehicles, trees, buildings, etc.). Therefore the

classifier could be redefined as:

�

IR = 1 Road, if λ1 ≤ I(p) ≤ λ2

IR = 0 non Road, otherwise
(12)

Using Eq. 12, we can get a binary images of road detection.

This is a rough operation because the threshold is based on a

confidence level but may have some pixels be mis-classified.

For the false negative pixels we use the operation of holes

filling or a ’majority’ morphological operation to fix them,

but for the false positives, we need fusion information to refine

them. That is the purpose of the use of the stereo vision as

described in the next section.

Notably, when the vehicle stops right behind the front

vehicle, the assumption of bottom road may not stand. In this

situation, we record former threshold to estimate the new road

condition.

D. Improving road extraction using stereo vision

In past few years, research efforts have been made to

use stereo vision in intelligent vehicles applications such as

pedestrian detection [16], road extraction [17], etc. A well-

known approach in the IV community is the V-disparity

approach [18]. In this paper, we applied former method in

stereo vision for plane extraction and conversely V-disparity

helps to correct the false-detected pixels and even provide

depth information of road condition.

With two images of the same scene captured from slightly

different viewpoints, disparity map I∆ could be computed and

then it is possible to recover the depth of an object. Iv∆ is so

called the V-disparity image built by accumulating the pixels

of same disparity in I∆ along the v axis [19]. A projected

plane in the V-disparity image is usually with the form:

∆ = aυ + b (13)

For different horizontal offsets, their disparities are different.

Thus, a surface which is formed by a succession of parts of

planes is therefore projected as a piecewise linear curve [20].

Road is modeled as such a plane so that it can be represented

by straight slope lines in disparity map and the obstacles on

it are represented as vertical lines. In this way, V-disparity

approach helps to estimate the longitudinal profile of the road

and to detect the presence of obstacles. In this paper, we focus

on road profile extraction.

As in common method, all patches on disparity map will be

accumulated to compute the V-disparity. However, especially

in urban scene, it is hard to define the main line which rep-

resents a road area (See Fig.5) with buildings and trees along

the road. All these objects will be represented as vertical lines

in each distance layout. To solve this problem in our approach,

only the pixels that are verified as road area in the binary image

IR could participate in the calculation of the disparity map

and in the accumulation for V-disparity. The limitation of ROI

of two images will greatly improve the precision of disparity

match and reduce the runtime consumption. Reminding that

the result of our former processing only gives an extraction of

drivable road area, the obstacles (e.g. vehicles and pedestrians)

will not be calculated for V-disparity. Thus, a regular sloping

line as a representation of the drivable area can be achieved as

shown in Fig.5d. According to Eq.13 and applying the Hough

transform, the ground plane of image IG could be constructed

by:

if∆ p ∈ [∆υ ± ευ], IG = 1, else, IG = 0 (14)

Here, we define a dynamic variance ευ = c.v which

is proportional to υ with a constant factor c. We use this

parameter because the closer the layout is, the greater the

variance becomes.

Finally, we compare IG and IR for their intersection to

check the road detection result. The algorithm can be summa-

rize as follows:

Algorithm 2 Stereo vision approach for road extraction

1) Compute I∆ and Iv∆ with only valid pixels on IR;

2) Abstract line’s function in Iv∆ with Hough transform;

3) Calculate disparity ∆υ for each horizontal offset υ
4) Reconstruct the ground plane area IG
5) Verify the final detection result:Ifinal = IR ∩ IG

IV. EXPERIMENTAL RESULTS

A. Dataset and Processing Platform

The following datasets have been used for evaluation:

Dataset1: Road image database from Computer Vision Center

of University Autonoma of Barcelona.

Dataset2: Database of the KITTI (Karlsruhe Institute of Tech-

nology and Toyota Technological Institute) Vision Benchmark

Suite. Our processing platform is a standard PC with Windows

7 Enterprise OS, with CPU of 2.66 GHz. The computation

environment is MATLAB R2012a.

B. Improvement with sky removal

After some tests, the horizon line is basically at 30% top-

area in Dataset1. Fig.3a presents an original RGB image from

Dataset1, on its right is the axis-calibration result with sky

removal. Bottom images in Fig.3 show the comparison be-

tween the whole image axis-calibration and sky-removed axis-

calibration. In the result of the whole image axis-calibration,

the sky pixels become uniform, but shadow remains on the

road. After the sky removal, the projection axis of 36° is much

closer to the correct axis and shadows are greatly attenuated.

As a conclusion, the sky color doesn’t follow the rules in

Section II, and sky removal can obviously help to correct the

result.

In the test of Dataset1, some results are unpleasing. The

reason is an over-saturation in some part of the images. When

the driving direction is back-lighted, it is hard to capture

real colors of the scene. Additionally, some parts without



(a) Original color image

0 20 40 60 80 100 120 140 160 180
5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

Angle

E
n

tr
o

p
y

(b) Entropy plot without sky
factor

(c) Gray image by whole image
axis-calibration

(d) grayscale image get by sky
removal axis-calibration

Figure 3: Comparison the gray images got from original

algorithm and sky removed algorithm (Dataset1)

illumination may lead to a mixture of self-shadow and cast-

shadow which is more complex to separate their optical

features.

Dataset Dataset1 Dataset2

Measure (log-chroma)
Robust Standard Robust Standard

mean deviation mean deviation

Normal 56.3° 17.19° 49.67° 3.88°

Geometric mean 43.4° 16.09° 34.33° 2.17°

Table I: Comparison of normal and geometric mean chromatic-

ities
C. Result in geometric mean divided log-chromaticity

Tab.I compares normal axis-calibration result with only

sky removal and the result with modifications of both sky

removal and geometric mean division for chromaticity. From

this comparison, we can see that the result for geometric mean

in 2D space is more stable with a smaller deviation. Fig.4 gives

an intuitionist proof of the improvement. We can see that the

result for geometric mean in 2D space (Fig.4b) is finer. So the

geometric mean division helps to reduce the axis-calibration

variance and to improve detection precision.

Additionally, we see that the variance in Dataset1 is much

greater than Dataset2, that is because the images of dataset1

contain some special weather and illumination conditions such

as cloudy day and over-saturation of the scene.

D. Real-time detection based on confidence interval theory

Modifications based on confidence intervals establish the

independency of processing detection with ground truth or

temporal constraints. However, the road surface itself also

presents some color variations (e.g., worn out asphalt and

non-uniformly wet road or the lanes), which may lead to

dispersion and noise of the road gray scale. As α = 0.05

(a) (b)

Figure 4: (a) Primary detection result with only sky removal

(b) Primary detection result with both Geometric mean and

Sky removal

is just an empirical value for the confidence interval, there

must exist deviation from the real situation. Thus, the detection

performance may have some wobbles in performance. Hence,

we introduced plane extraction based on stereo vision to limit

the range of road detection. Conversely the detected area can

help to build a clear V-disparity line for 3D reconstruction of

the road profile. As to the false negative pixels are excluded

by confidence interval, holes filling filters would be useful to

fix them.
E. Application to Stereo-Vision Based Road Extraction

In this section we use the Dataset2 which consists of

sequences of stereo images of driving scene. Fig. 5 shows

improvements with V-disparity estimation: with a limitation

of ROI, the line indicating a plane become more clear and

precise. Fig. 6 presents the final detection result of our method

combining illuminant invariant theory and stereo-vision: the

first three images present the results of primary road detection

IR by Alg. 1, plane extraction with constraints of ROI IG and

final detection Ifinal separately. The bottom image presents

comparison of final result (red region) with the original RGB

image.

The computational cost for primary detection is 1720ms

and for stereo-vision-based algorithm is about 1400ms on

MATLAB platform with stereo images of size 1242 × 375.

With C++ with optimized code, it is possible to reach about

250ms which corresponds to 4 images per second.

V. CONCLUSION AND FURTHER DISCUSSION

In this paper, we developed a novel method for fast road de-

tection including shadow and sky removals, confidence interval

theory and stereo vision detection. The experimental results

show that our method provides more stable and more precise

results for drivable road detection at a reduced computational

cost. The main advantages of our method are: 1. It is simple

and can be suitable for real-time and on-line computations; 2.

It is independent from prior knowledge of road conditions and

temporal constraints. 3. Integration of stereo vision not only

improved detection precision but also can provide a reliable

platform for obstacle detection with binocular information.

From this consideration, our future works will be devoted to

the direct use of illuminant invariance theory in the V-disparity

calculation in order to get more robust results and to improve



(a) Left image

(b) Disparity map of the scene

(c) Classic V-Disparity

(d) Modified V-Disparity

Figure 5: V-Disparities for dataset 3

road obstacle detection. Furthermore, obstacle information can

also guide the system to choose proper sample pixels on the

road besides the safe driving distance constraint.
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