Foundational aspects of multiscale digitization

Abstract : In this article, we describe the theoretical foundations of the Ω-arithmetization. This method provides a multi-scale discretization of a continuous function that is a solution of a differential equation. This discretization process is based on the Harthong-Reeb line HRω. The Harthong-Reeb line is a linear space that is both discrete and continuous. This strange line HRω stems from a nonstandard point of view on arithmetic based, in this paper, on the concept of Ω-numbers introduced by Laugwitz and Schmieden. After a full description of this nonstandard background and of the first properties of HRω, we introduce the Ω-arithmetization and we apply it to some significant examples. An important point is that the constructive properties of our approach leads to algorithms which can be exactly translated into functional computer programs without uncontrolled numerical error. Afterwards, we investigate to what extent HRω fits Bridges's axioms of the constructive continuum. Finally, we give an overview of a formalization of the Harthong-Reeb line with the Coq proof assistant.
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger
Contributeur : Eric Andres <>
Soumis le : mardi 3 septembre 2013 - 21:34:33
Dernière modification le : mercredi 5 septembre 2018 - 13:30:10
Document(s) archivé(s) le : jeudi 6 avril 2017 - 15:10:41


Fichiers produits par l'(les) auteur(s)




Agathe Chollet, Guy Wallet, Laurent Fuchs, Eric Andres, Gaëlle Largeteau-Skapin. Foundational aspects of multiscale digitization. Theoretical Computer Science, Elsevier, 2012, 466, pp.2-19. 〈10.1016/j.tcs.2012.07.026〉. 〈hal-00857689〉



Consultations de la notice


Téléchargements de fichiers