N

N

Inadequacy of SIR Model to Reproduce Key Properties
of Real-world Spreading Phenomena: Experiments on a
Large-scale P2P System
Daniel Bernardes, Matthieu Latapy, Fabien Tarissan

» To cite this version:

Daniel Bernardes, Matthieu Latapy, Fabien Tarissan. Inadequacy of SIR Model to Reproduce Key
Properties of Real-world Spreading Phenomena: Experiments on a Large-scale P2P System. Social
Network Analysis and Mining, 2013, 3 (4), pp.1195-1208. 10.1007/s13278-013-0121-0 . hal-00857518

HAL Id: hal-00857518
https://hal.science/hal-00857518

Submitted on 3 Sep 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00857518
https://hal.archives-ouvertes.fr

Inadequacy of SIR Model to Reproduce Key
Properties of Real-world Spreading Cascades:
Experiments on a Large-scale P2P System

Daniel F. Bernardes, Matthieu Latapy, Fabien Tarissan
LIP6 — CNRS and Univerdgit Pierre et Marie Curie / Paris 6
4 Place Jussieu, 75252 Paris cedex 05 — France
Email: firsthame.lasthame@lip6.fr

Abstract—Understanding the spread of information on com- based on the precise interactions of individuals on a nétwor
plex networks is a key issue from a theoretical and applied have blossomed in sociology [3], computer science [4] and
perspective. Despite the effort in developing theoretical models economics [5], among others. New epidemic models inspired

for this phenomenon, gauging them with large-scale real-world - : . .
data remains an important challenge due to the scarcity of by the classical approaches featuring a detailed dynamic

open, extensive and detailed data. In this paper, we explain description in the context of networks also appeared (spe [6
how traces of peer-to-peer file sharing may be used to this goal. for a survey). In particular the network version of the SIR

We reconstruct the underlying social network of peers sharing model (henceforth called simply SIR model) and derivates

content and perform simulations on it to assess the relevance of have established themselves as reference models in the stud
the standard SIR model to mimic key properties of real spreading . . . .
of information diffusion [7].

cascades. First we examine the impact of the network topology
on observed properties. Then we turn to the evaluation of two ) )
heterogeneous extensions of the SIR model. Finally we improve In this context, we have seen theoretical developments of

the social network reconstruction, introducing an affinity index  these models [8], [9], focusing particularly in their asyotjz
between peers, and simulate a SIR model which integrates this behavior. A number of applications of such models were

new feature. We conclude that the simple, homogeneous model | lored [10 111 includi ks i tioati
is insufficient to mimic real spreading cascades. Moreover, none also explored [10], [11], including works investigating

of the natural extensions of the model we considered, which r€levant properties of epidemic models on real network$ [12
take into account extra topological properties, yielded satisfying However, as pointed out in [13], assessing the pertinence
results in our context. This raises an alert against the careless, of such models to describe real-world phenomena is critical
widespread use of this model. and empirical studies featuringeal spreading dataare
key. Since network-based epidemic models are based on
local rules of transmission which take into account the
network topology, in order to validate these models one
Diffusion phenomena in complex networks — such aseeds a comprehensive empirical spreading trace, congisti
the spread of virus on contact networks, gossip on soc@fl (1) detailed chronological data of who transmitted the
networks and files in peer-to-peer (P2P) networks — hairformation to whom and (2) data describing the underlying
spawned an increasing interest in recent years. The bopstwork on which the diffusion process takes place. In large
of computer networks and online social network platformspidemic bursts the available data often provides the &eolu
offers data and new insights on these phenomena in lawfean aggregate quantity (such as the number of touched
scale networks; the possibility to validate and refine airreindividuals) but rarely uncover the local trail of the epide
models might lead to breakthroughs in the field. at an individual level. Data mining in computer networks
can help providing detailed information at a large scald,[14
Although large scale diffusion phenomena have alway$5], [16], [17]. In this framework, works typically feater
attracted considerable interest, it has been historicaligcords of diffusion events at an individual level but labk t
challenging to obtain open, extensive and detailed realewocomplete information of the underlying network on which the
data at this level. Despite this obstacle, diffusion modetiffusion takes place — see discussion in [18]. The present
emerged, notably in epidemiology. The early models, bopiaper analyses the relevance of the SIR model for real-world
discrete and continuous (see [1], [2] for a survey), focusdiffusions, using data obtained measuring file sharingvifgti
primarily on macroscopicaspects of diffusion — such as theon a peer-to-peer network. Our framework allows one to take
evolution of the number of infected individuals in a popigdat advantage of this rich dataset to obtain both the real sprgad
— overlooking themicroscopicdynamic of the epidemic — i.e., data (the detailed diffusion trail) and the underlying ratev
how (by whom) individuals become infected. The advent of
network analysis in various contexts has pushed for a moreThis paper extends the results in [19]. It begins with a
detailed description of the diffusion process. Indeed, @wd description of our dataset and framework in section I, in

I. INTRODUCTION



which we calculate statistics concerning peer activity aml File sharing

file sharing and in which we define spreading cascadesThe traceD naturally induces a relationship between files
In section Il we construct the underlying somallnetworlénd peers (who request or provide them), which we explore de-
of peers from the diffusion trace. In the following twoscriptively in this section. We begin encoding this relagibip
sections, we confront the SIR model and extensions 10 thgween the disjoint sets of pegPsand F files in a bipartite
real data. More precisely, in section IV we simulate th@raphB = (P,F,A) as follows. Let(t, P, X,F) € D be
spreading of files as a standard SIR process and cOMpgrgscorded transmission of the file by the peerP to some

it with the observed spreading; we also investigate trbeeerX at some time, which we denote simply by, P, -, F).
interplay between this process and structural propertfes |Queyise, let(-,-, P,F) € D be a recorded transmission of

the underlying network where the spreading takes place. Kk file F to the peerP, provided by some peer at some time
section V we examine the spreading pattern when we modjf\stant. Then:

the SIR model to account for heterogeneity in the behavior
of the peers and in the popularity of files. In section VIA={(P,F) e P xF: (-, P,-,F)eDV(,-PF)eD}
we present a novel approach which consists in simulating

, , n other words3 is the bipartite graph in which peers are
an SIR derived models on an enhanced reconstructlonltﬁ ed to the files which they have provided or sought. The

the underlying social network. This reconstructed networ gree of peers and files in this bipartite graph represents

is made possible using an afflm_ty index for each COUPIe number of files transfered by a peer and the number of
of peers. We conclude the paper with future work perSp(ﬂm'\“ﬁeers who shared a file, respectively. The degree distibuti
of these sets in5 (constructed from the P2P trace) are
plotted in Fig. 2a. In order to estimate the typical number
of interested peers per file we have computed the median
The data used in this study comes from file sharing egree of files in the bipartite graph, 5, and the average
an eDonkey server, obtained from a measurement of eigitgree, 14.73, with standard deviation 34.74. Likewise, we
hours of activity (akin to [20]). In this setting, peers querhave calculated the same statistics for peers, to estirhate t
the eDonkey server indexing files and for each file they getwmber of files commonly shared by peers: its median degree
list of available peers in the network possessing the regdesin the bipartite graph is 3 and the average degree is 6.19,
file. Next, peers contact potential providers directly andith corresponding standard deviation 12.66. The degree
transmission between them ensues. Our dataset is a omfiectlistribution of both peers and files is however heterogeseou
of answers to these queries, encoded as 4-tuples of integétd mostly concentrated on small values; all degree values
in the following format: (¢, P,C, F'), where capital letters for peers and files remain belowd*.
represent unique ids (e.g. in Fig. 1). Each tuple accounts
for a query made at time of the file /' by the peerC, Another important aspect of our P2P trace in terms of
satisfied by the peeP — that is, P provided I’ to the peer sharing is the abundance &ke-riders— that is, peers who
C at time t. Let D be the set of all recorded tuple®, benefit of shared files in the system, but who do not share
the set of all peers in these tuples affdthe set of all back. This characteristic is well known in the P2P literatur
files exchanged. In our dataset we ha® = 1 908 500 and has been observed elsewhere [21]. In our dataset, while
peers|F| = 801 280 files and|D| = 22 944 800 file transfers. most peers are clients (i.e., have requested a least one file)
only 4.33% of them have supplied files.

Il. DATASET AND FRAMEWORK

B. Spreading cascades

Trace log Spreading In this work we analyze thepreading cascadeepresenting
example cascade the diffusion of each file in the P2P network. For a fife the
spreading cascade is a directed graph featuring thePset

:?_ ;’ _.2,’ E of peers who have participated in the spreadrofas clients
t2 4 5 F and/or providers) and linkg — C, connecting each client
3 2 6 C with the first peer(s) who providefl to it. More formally,

t F let 7p(C) = inf{t : (t,-,C,F) € D} be the first instanC
t4 6 7 F obtainedF’ and let the directed grapkir = (Pr, LF) be the
t4 5 7 F spreading cascade @f, with
t5 7 3 F

Pr={PeP:(PF)ec A}
Lr=U P,C) e Prp xPr:(r(C),P,C,F) €D
Fig. 1. Trace log example with corresponding spreading cieséa black F CEPF{( ) F F ( F( )’ T ) }
and underlying network in light gray. A client requesting a file may receive a response from
potentially several providers simultaneously, which iegl
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Fig. 2. Spreading statistics from the observed diffusi@cer

that nodes in the cascade graph not only have multipp@ssessed it prior to any transfer activity on the obsemasbt
outgoing links, but also multiple incoming links in generalThese nodes are the origin of the spreading cascade, frigger
The causality induced by the fact that we only considéne diffusion of the fileF'. This information can also be in-
the links corresponding to the first time a node receivéd ferred from the request log and be determined in the follgwin
prevents the appearance of cycles. Hence the cascade isvay. LetCr(t) = {C € P : (¢',-,C,F) € D,t' <t} be the
fact a directed acyclic graph (DAG). set of peers who requestdd prior to t. We define the set of
initial providers of F' as the set of peer® who have provided

The first key property encoded in the spreading cascaffeat some timet, without having obtained it before from
of a given file F' is the number of nodes who possess it another peer in the network:
the end of the observed period, which is given by s$iwme of
the cascad¢Pr|. We also explore two other key topological Ir={PeP: (P F) €D, P ¢Cr(t)}
properties of the cascade, namely dspth and number of Plotting the complementary cumulative distribution of
links. The former is defined as the length of the longest pathe number of initial providers for the spreading cascades
on the cascade and captures the maximum number of h@pg. 2c) we obtain an interesting curve, revealing a scale-
from peer to peer that the file has undergone before it whee distribution. This means that although most spreading
relayed from a provider to a client. The number of linksgascades in our observation have few initial providerstethe
given by |Lr|, combined with the size of the cascade giveils a non negligible fraction of cascades with a large number
information on the sharing pattern of the network. An exampbf initial providers.
of observed trace and constructed spreading cascade i3 give
in Fig. 1: the spreading cascade has §izdepth3 and6 links.

I1l. SOCIAL NETWORK STRUCTURE

From the P2P trace log we have constructed the spreadind®s discussed in the introduction, our goal is to investigate
cascades for each observed file and calculated the ab8( model spreading cascades on the social network of peers
mentioned features. The distribution of these cascadartst Participating in the P2P system in question. In order to
is presented in Fig. 2b. First, we observe that the cascarfedlyze the empirical spread of files among peers in the light
depth distribution is well fitted by a power-law. Examining®f detailed network diffusion models mentioned, we need
individual cascades with high depth we realize that they aiet only the detailed chronological data of who transmitted
not typically big in terms of size. Second, most Spreadiﬁg information to whom (observable in the trace) but also
cascades are quite small, featuring one or few nodes ansl lifke social network on which the diffusion takes place. As
— these cascades are essentially trivial trees. The casca@inted outin [18] it is challenging to reconstruct the netkv
with higher number of links, however, display a richePn which the diffusion takes place. One strategy to unfold
structure. In fact, the ones with the highest number of linkgis network is to explore relations among peers and their
cannot be tree-like, since their number of links exceeds (§¢9Mmon shared files. Such strategy was hinted in [22] and

far) the maximum number of nodes observed in our datasef€veloped more substantially in [23], [24], [19], [25]. We
follow this approach to reconstruct the underlying social

N ) network as well.
C. Initial providers
Another relevant spreading data concerns timiial Focusing on information content diffusion among peers,
providers for each file F', namely the set of peers thatit is natural to consider thénterest graphin which each



0.2
== All peers
p Clients 0.9r
¥ 9 Providers B
n.2¢ o et
A A Initial provs. & 0 x ol
P i 5 2 0.8
4 \'3'{ / 5 o
2015 }{ \ H ‘t 507
E i ‘\ F 13 i
5 H v H 206
5 i %(l’ i 5]
Boao / £ i g
£ K XY b c03
/ £ X ¢ 2
& (%)
/ s ™, *‘ 0.4
0.05 )é /’ "\ % .
i t
¢ & X \ 03
o o \X
x T ae X Sy K o0z ‘ ‘ ‘ ‘
0.00 = . . i 0.0 0.2 0.4 0.6 0.8 1.0
10° 10’ 10 10 1 1e* Clustering coefficient
Degres
(a) Degree distributions on the interest graph. Superposed (b) Complementary cumulative clustering coefficient dis-
curves: all peers and clients, providers and initial prevsd tribution in the interest graph.

Fig. 3. Interest graph statistics

node represents a peer and each edge joining two peers star .

for common interest. Interests connecting peers may ieclud files

broad subjects such as open source software, folk rock ol A B C D

French literature or narrow ones such as movies by Quentir

Tarantino, a particular computer game or pictures of Bgijin —>
It is reasonable to suppose that peers store and share tonte 5

related to their interests and, likewise, peers will sedarh

content matching their interests. Hence the diffusion @fsfil peers inferred interest graph
among peers takes place on the interest graph and occur

from neighbor to neighbor. Indeed, if a peét provides

a file F' (corresponding to a music album for example) t6ig. 4. Interest graph as a projection of the bipartite grappeers and files
another peeP”’ then there is link between them in the interegionstructed from the trach.

graph, since both are interested in the same content, namely

It is beyond doubt extremely difficult in a large scaldéo the fact that99.63% of peers in our observations have
interaction network to know precisely whether any two inrequested at least one file, so the clients degree distibuti
dividuals have a common interest. Nonetheless, it is plessilis essentially the global degree distribution. A much more
to approximate this graph using the datalin the inferred restrictive category is the set gbroviders P such that
interest graph is given by the projectich= (P,£) of Bon (-, P,-,-) € D, ie., peers having supplied files during
P, connecting the peers who belong to the neighborhood obar measurements. Their degree distribution has a similar

common file in the bipartite graph, for each file: shape, but it is concentrated on larger values, indicated
, ' , by a median of 1821 and an average degree of 2906.54 —
E={(PP)ePxP:3F e F (PF)e AN(P,F) € A} with corresponding standard deviation of 3471.80. The last

See example in Fig. 4. For the sake of readability the inferr€Urve, superposing the curve corresponding to the prosider
interest graph will be henceforth called simphyerest graph fepresents the degree distribution of the initial prowder
We have also calculated the clustering coefficient [26] of
The interest graph obtained from the observed bipartit@e peers in the interest graph (Fig. 3b): we observe a wide
graph (as explained above and in Fig. 4) has a single gidAfge of clustering values, each represented by a sigrtifican
component containing essentially all nodésn.99%) and fraction of peers. Also, the distribution shows a relagvel
density 2.62 x 10~%. In Fig. 3a we have plotted the degreé“gh fr_act|on of peers with a high clustering _coefﬂuent -
distribution for the peers: considering the set of all pethe which is a feature of real complex networks, in contrast to
median degree is 118 and the mean value is 500.11, wigidom graphs.
corresponding standard deviation of 1271.42. We proceed to
a finer analysis of the degree distribution, grouping peers i We close this section with a brief summary: using the
categories (Fig. 3a). Let us consider first the setclidénts introduced framework, we were able to infer the interest
C € P such that(-,-,C,-) € D: i.e., peers having requestedyraph of peers, on which the spreading of files takes place.
files during our measurements. Their degree distributidrhis graph connects essentially all peers, which can be
superposes the degree distribution of all nodes. This is dguped in two categories: providers and clients. Most gpeer



in our observations are clients, but only a small fractionot) the characteristics of real traces, it has to be unoleast
supply files and there is a sharp distinction between clierds the ability of reproducing the characteristicsaiiserved
and providers in terms of their degree distribution. in the data, with their flaws. Another approach is to apply
detection techniques (such as [27]) in order to remove
abnormal events from the raw data before using the modeling
IV. SIMPLE SIRMODEL techniques presented in this paper. Although it could irmgro
As mentioned in the introduction, we have decided tge quality of the data, it would at the same time obfuscate
investigate the file spreading in the light of the simple SIBur conclusions as it adds another step which interferes in
model. In our setting, each file spreading corresponds to @@ analysis process. Thus, promising as it seems, we leave
independent epidemic in the interest graph, in which eagfis approach for a further study.
node is in one of the following statesusceptible infected
or non-interacting (sometimes denotedcemoved hence the  Secondly, we wish to compare the results with simulations
acronym SIR). Susceptible nodes do not possess the file @fdrandom networks to understand the role of the network
may receive it from an infected node, thus becoming infecte@pological structure on the shape of the spreading cascade
Each infected node, in turn, spreads the file to each of generated with the SIR model. With this aim, we have consid-
neighbors, independently, with probabilify and becomes ered the spreading of files in a sequence of random networks
promptly non-interacting thereafter. Although non-iat&ig derived from the interest graph, with increasing topolabic
nodes remain in this state, infected nodes may unsucclssfebmplexity (Fig. 5). More precisely we begin considering an
try to infect them sending the file. Erdos-Renyi (ER) random graph with the same density as our
interest graph, the simplest random graph in our sequence.
Supposing the observed diffusion trace was the result phen we have chosen a random graph with the same density
such a simple SIR epidemic we may estimate the spreadiagd degree distribution using the Configuration Model (CM)
parametep. Each neighbor-to-neighbor transmission trial cagpproach [8]. Next we have generated a random bipartite
be seen as a Bernoulli random variable, whose valueits graph, with the same density and degree distribution as our
case of success arfl otherwise and whose expected valugriginal bipartite graptB of peers and files [28]. Compared to
is p. Assuming each trial is independent and the paramete interest graph, the projection of this random bipagiteph
p is homogeneous for eack and I, we may estimate it (RB) has similar density, degree distribution and clusggri
by the empirical proportion of successes over all trialsic8i coefficient. In sum, for each new element of this sequence
each tuple iD accounts for a successful neighbor-to-neighb@f (uniformly chosen) random graphs we introduce a new
transmission,[D| is the number of successful trials for allconstraint to make it more realistic — in the sense that its
diffusion cascades. The total number of trials, in turn, i®pological properties will be closer to the interest graph
given by the sum of the degrees of all nodes involved in
the spreading of each file. Hence, we obtain the following 4 degree +  local

L *Fdistributi ustori
estimate, with @5% confidence intervap + 10~: Erdés """ Config. ~"'" Random __ Interest
Rényi Model Bipartite Graph
5 — _ -3
p= |D| / Z Z d(P) = 1.063 x 10 Fig. 5. Increasingly realistic random graphs derived fréw interest graph.
FeF PePr

Since the simple SIR model depends upon a singée Fil di imulati
parameter, namely the spreading probabilitywe have fully ~- lie Spreading simuiation

characterized it with the preceding estimation. Combining the network topology, the initial condition
information (the list of initial providersZp calculated for

) _ each fileF") and the calibrated spreading parameétave can
A. The underlying network influence proceed to the simulations for each underlying network: for
The goal of simulating the standard SIR model andach F', we begin with the initial providers in an infected

comparing the simulated cascades with the observed onestae and the other nodes in a susceptible state. At each
primarily to assess how realistic this model would perforrstep, infected nodes will infect each of its neighbors with
on the interest graph, in terms of size, depth and numbermbbability p, becoming non-interacting afterwards. The
links of the spreading cascades. Note that by realistic, vepidemic continues as long as there are active infectedsnode
mean able to reproduce the characteristics of the dataethde

although the data used in this study can be partial and/orThe first observation concerning the model simulation
biased, the present work is independent from the quality that the observed time (measured in seconds) has no
of the data itself. Indeed, the problem of improving theirect relation with the simulation time (humber of steps).
measurement process is different from the one of identifyifFurthermore, our dataset corresponds to an observation in
relevant models able to exploit the features observed in thebounded window of time of eight hours, so that we have
data, which is the focus of this paper. This means that whan reason to suppose that the file spreading cascades we
we further show the ability of the models to reproduce (abserve correspond to the whole spreading cascade of a file.



In other words, if we had measured a longer time window waepth for the simulations: we do not observe any cascade
would likely observe bigger cascades (in terms of size aw@pth bigger than 11 in the simulations. As for the number
depth) for the same files — due to, among other reasons, ngwlinks, we have two interesting situations. If we fix the
users who could eventually request the same files. Thisdepth (Fig. 6b) the number of links distribution resembles
also true for our SIR model: we observe increasingly biggetosely the size distribution (Fig. 6a). This is not comebgt
cascades as time increases. In fact, performing uncomstraisurprising, since the two quantities are related. In thiease
simulations we have obtained a distribution of significantlobserve a larger number of links for all simulations comgare
bigger cascades than the ones we have observed in the tedhe number of links in the real cascades since the sintllate
trace. Thus, in order to perform a suitable comparison wittascades themselves are bigger. If, in contrast, we fix the
the observed cascades, we have decided to hold one propestycade size to fit the observed cascades size (Fig. 6d), we
fixed and compare the other properties. More precisely, fobserve a typically smaller number of links. Combining thes
each file we generate a simulated cascade with the saofservations on both plots we conclude that real spreading
size (resp. depth) as the corresponding observed cascealgcades are denser than simulated ones, a clear qualitativ
and compare the depth (resp. size) and number of linksature not captured by the simple SIR model. Finally we
In practice, for each file we simulate the SIR epidemic awte that most cascades are simple, featuring depth equal to
described earlier and halt it when it reaches the size (regme and correspondingly small size.
depth) of the corresponding observed cascade.
To sum up, we have compared simple topological properties
We have generated populations of simulated cascades dbrreal spreading cascades and simulated cascades from a
each underlying network and constraint (on depth and sizeglibrated SIR model, with comparable depth and size. We
We have performed@01 280 file spreading simulations (onehave observed that simulated cascades are relatively fide
for each file inF) for each network and have selected everwhereas real cascades are relatively “elongated”, that is,
simulated file spreading cascade which attained the depdal cascades have a smaller size per depth ratio. Moreover,
(resp. size) of the real spreading cascade for the same fileeal cascades are typically denser than simulated ones. In
and have rejected the others for purpose of comparison. Wihms of interplay between underlying network structurd an
this procedure, each underlying network yields a differetite simple SIR spreading cascades, we have observed that
population of file spreading cascades, since the rejectesspecting the interest graph degree distribution was iy o
cascades may be different in each case. Howe8e30% of property that caused a striking change in simulations behav
the files have generated simulated cascades with the samehe considered random networks. Indeed we have observed
depth as the corresponding real cascades, for all networgsarp qualitative dissimilarities between the simulatiam
Similarly, 85.64% of the files have generated simulatedhe ER graph (different degree distribution) and no seasibl
cascades with the same size as the corresponding migkimilarities between the simulations on the CM, RB and
cascades, for all networks — except the ER network. Indeele interest graphs.
only 21.76% of the files have generated the contemplated size
in the ER graph. Furthermore the properties of these siedilat
cascades on the ER graph deviated significantly from the
properties of the cascades on the other graphs. Hence, in thi the previous section we have examined the adequacy of
following analysis we do not include the simulations for théhe simple SIR model to generate verisimilar file spreading
ER graph. Rather, we focus on the properties of the fileascades. We have also inspected the interplay between the
with comparable spreading cascade depth (resp. size) onualtlerlying network and the model simulating file spreading
networks but ER. in different networks. Given the generality and simplicily
the homogeneous model it is not entirely surprising that it
In Fig. 6a we plotted the complementary cumulativdoes not capture key properties of real spreading cascades
distribution of the size of cascades with comparable depth. our data. In order to fairly assess the relevance of the
We observe a divergence of the cascade size from the obser88& model in our context, in this section we consider natural
cascades: simulated cascades are typically much biggerekiensions of the SIR model considered previously, which
size for a given depth compared to real cascades. The rataa into account heterogeneous aspects found in the @aserv
of values in both categories is also striking: the biggesat redata. More precisely, we perform a complementary analysis,
cascade is at least two orders of magnitude smaller than theusing on a single underlying network (the interest gjaph
biggest simulated ones. Among the simulated cascadeg themd examining two heterogeneous versions of the SIR model,
is a remarkable matching in size values for the simulatiatharacterized by a distribution of spreading probabditie
on the CM and the interest graph (curves are superposed)inistead of a single homogeneous parameter. These models
Fig. 6¢c we plot the complementary cumulative distributidn dake into account the file popularity and peer behavior
the depth of cascades with fixed size. Real cascades featuteeerogeneity and are, thus, presumably better equipped to
much higher depth compared to simulations, holding cascauénic real spreading cascades.
size constant. In particular there is a cutoff on the cascade

V. HETEROGENEOUSSIR MODELS
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Fig. 6. Simulation of file spreading on different underlyingtworks: complementary cumulative distribution of cascadmpgrties

over all possible transmissions &f

B(F) = (- F)eD}|/ Y d(P)

PePr

A. File popularity

A first refinement of the simple SIR model consists in
introducing different spreading probabilities accordiogthe In Fig. 7a we plot the distribution of the heterogeneous
file being spread. The rationale in this case is to account fgpreading parameters depending on the files. The values of
different levels of popularity depending on the file. Exopes p are concentrated on the randgé~> to 102, indicating
reasons — such as a movie release or the death of an athiat there is a considerable fraction of cascades with a
— can change the supply and demand of a given file asnificantly different spreading regime (bigger than one
consequently alter its spreading probability. If we knowe thorder of magnitude). This distribution characterizes the
spreading probabilities for each file, i.¢n(F) : F € F}, the extended SIR model we use in the following simulations.
knowledge of the actual reasons that explain the heterdtgene
in file popularity are irrelevant to the characterizationtlo .
model. An estimate of these probabilities, in turn, can e Peer behavior
obtained from the trac® if we suppose it was generated by A second possible refinement is motivated by the fact that
a process following this extended SIR model. Indeed, sinpeers might have intrinsically distinct levels of “genetgs
each file spreading is independent of the others, it is plessibegarding file sharing. Under this hypothesis we extend the
to estimatep(F’) for eachF separately, with the same methodstandard SIR model assigning an heterogeneous spreading
used to derive the homogeneous parameter. Restricting fnebability to each peer, regardless of which file it is sigri
calculations to the spreading cascadeof(F') will be given Thus, we do not need any other information but the spreading
by the empirical proportion of successful transmissiong’of probability distribution to characterize the model. In sthi



context altruistic peers, who typically spread files to ajéar greater than one.

proportion of their neighbors, would feature a bigger sgieg

probability compared to the homogeneous spreading prbbabi The simulation results are plotted in Fig. 8: we have plotted
ity corresponding to the diffusion aggregates of all peBss. the complementary cumulative distributions of the spnegdi
the same token, the extreme case of free-riders would hazscade depth, size and number of links. Imposing a constrai
their spreading probability assigned to zero. Again we cam the depth for the simulated cascades and comparing
study transmissions as outcomes of Bernoulli trials tavestie  their size (Fig. 8a) we observe the contrast between the
the spreading probabilities. Lefp = {F € 7 : (P, F) € A} simulated and the real observed cascades with the same
be the files carried by the pedr; for each such file the depth: the former have a typically bigger size compared to
number of transmission trial® could perform corresponds tolatter. What is remarkable, however, is the agreement among
its degree in the interest graph, namé{yP). Hence, to obtain all the simulated cascade distributions — curves supetdpose
p(P) for each peerP we divide the number of successfulin Fig. 8a. Next, if we fix the size for the simulated cascades
transmissions ofP to other peers (of any file carried by) and examine their depth (Fig. 8c), we are faced with the same

over the total number of potential trials: qualitative similarity among simulated curves. Indeede th
curves corresponding to the heterogeneous SIR models also

A(P) = {(. P,-,-) € D}| feature a cutoff in depth, failing to reproduce the scaéefr
|Fp| x d(P) curve representing the depth of the observed real cascades.

o . . Finally, the cascade links distribution plotted in Fig. 8ida
We have plotted the distribution of the positive spreadlqgig_ 8d reveals the pattern observed previously, namely tha

probabilities estimates in this case (Fig. 7b). They actoupe opserved spreading cascades are typically denser than
for small fraction of all the peers, since the only peers WITEbrresponding simulated cascades.

have a positive spreading probability are those who pravide
a file at least once — nameliy33% cf. observations made in |, gite of the improvements in the SIR model, introducing

section II. Conversely, a large fraction of the peers do ngh peterogeneous spreading parameter to account foreditfer
share the file in this model. We observe a marked range ghyiie of files (respectively peers), simulations indicate
values, which is significantly greater than the one caledlaty, t this refinement does not change qualitatively the basic
for the homogeneous SIR. properties of simulated spreading cascades. Indeed we
observe a surprising similarity between the three SIR n®del
compared, notwithstanding the particularities of each ehod

VI. WEIGHTED INTEREST GRAPH

s / A In the previous section we have examined SIR model
f ; i i i extensions that take into account heterogeneous aspects of
/ s peers and files with the goal of generating more realistic
/' Vi N spreading cascades. Another approach is to keep the simple
ooprt s‘v.::m"m;m S = SIR model and enrich the social network inference. In this
() Depending on the files (b) Depending on the peers  S€ction we will address this question, proposing a way to
refine the interest graph taking into account thegree of
interestamong peers. In other words, we propose a method

to quantify the interest affinity among peers. The rationale

Our aim is to generate simulated cascades following bl ihat peers will be more likely to interact with other peers
extensions of the SIR model presented — with heterogeneqiig, whom they have greater affinity.
spreading probability depending on the files and on the peers
— and compare their properties with simulated cascades of
the simple SIR model and the real observed cascades.AnFile spreading simulation
th's Seﬁse’_ we apply the same methqdology as In previols, -oncrete terms, our affinity score between two peers will
simulations: we fix the depth (resp. size) for the S|mulate61| . :
. . . be defined by the number of common files peers shared or
cascades and examine the other two properties — the idea s . : C .
to compare similar spreading cascades in terms of the cho é%wded' Indeed, instead of approximating the intereaplyr
tp As di pd g v th eat maiority @ th y the gimple projection of3 on P, we consider a richer
Property. 7S CISCUSSEd previously, the gr jorty Inferred interest grapy = (P, £, W), given by theweighted
cascades is simple, with depth equal to one and a small size.. . RS
. : .mprgjectlon of B on P such that
Hence the simulated cascades corresponding to the simpl
observed cascades will likely correspond in terms of depth,— {(P,PYePxP:3F € F,(P,F) e AN(P',F) € A}
size and number of links. For this reason, we have decided

in this section to focus on the spreading cascades with depth W(P,P') = |{F € F: (P,F) € AN (P',F) € A}

Fig. 7. Heterogeneous spreading parameter distributions
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Fig. 8. Simulation of file spreading on the interest graph wiifferent SIR processes: complementary cumulative disiohubf cascade properties

In other words, peers belonging to the neighborhood ofBa Diffusion models

common file inB are connected ig;. If a peer P provides

a file F (corresponding to a music album for example) to The diffusion models we have used so far require

another peerP’, then there is a link between them in théddaptation to take into account the enhanced network

interest graph since both are interested in the same contéppology. We keep the main hypotheses of the SIR model,

namely . Furthermore, each edgeP P’) € £ has an that is, that each individual is in one of the following

integer weight given by the number of common files the§tates: susceptible infected or non-interacting (sometimes

have manifested interest in. In Fig. 9a we have plottetenotedremoved. Susceptible nodes do not possess the file

the distribution of weight values in the interest graph:sit iand may receive it from an infected node, thus becoming

heterogeneous, with weights ranging from 1 to 303 and suigfiected. Infected nodes, in turn, try to spread the file to

that the vast majority of edges feature small weights. Kinal€ach of its neighbors, independently, and become promptly

note that the weight scheme we have introduced is by A@n-interacting thereafter. Each infection attempt from a

means the only way to assign an affinity index to each edtjgected nodeP to the nodeP’ is successful with probability

of the interest graph. One could assign a greater affinigfw) < [0,1], depending on the weightv of the edge

to two peers who are both interested in “rarer” files tha@onnectingP and P’.

two peers interested to “common” files for instance; another

possibility is the Jaccard index of similarity. That saidiro It is reasonable to suppose that a pdemwill be more

choice is quite natural and is motivated by the hypothesisiccessful in spreading a file to the neighbors with whom

that peers will likely spread files to the neighbors with whorhe or she has a greater common interest. In terms of the

they have greater affinity, as we explain below. spreading probabilitys, this assumption translates itself as
supposingo(w) is increasing withw. Indeed, the weight
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Fig. 9. The interest graph connects peers who share commaestaeand attributes a weight between this connection piiopally to the the overlap
among their interests. Some peers have several common intesiéfststhers, but most peers have few shared interests. Gontagreads best among peers
with stronger connection.

connectingP and its neighbors is a measure of how similacorresponding to the spreading of each filec F contains
are their interests. Hence the more similar two peers aretire same number of transfers as the real observed trage of
terms of interest, the greater the weight of the edge comect
them and, in turn, the greater the spreading probability. Toln Fig. 10 we have plotted the complementary cumulative
verify this hypothesis we have estimated the valuesOf) distributions of cascade properties from real cascades,
for each value ofw, adapting estimation methods used itompared to the simulated cascades using the diffusion
sections IV, V. Each observed spreading cascade of a filmdels described above. The first general remark is that
F in the trace provides a set of estimated val§és (w)}: simulated cascades generated by both models are quite
as expected, we have found that the median value$ ofsimilar in terms of these metrics. Indeed, the curves of both
are increasing withv up to w = 25 (with the exception of simulations are superposed for the three plots. Compared
two values), after which they essentially reach a plateau tat the distribution of real cascades, the sharpest conisast
(w) = 0.5. In Fig. 9 (right) we have plotted the estimatoin terms of depth: the distribution for simulated cascades
values for all weights from 1 to 25 in terms of box plots. features only small values of depth, whereas the depth
distribution for real cascades is remarkably scale-free. W
Following the approach in [29], we have used a linealso find a discrepancy between simulated and real cascades
function to model the spreading probability on the weighteid terms of size and number of links: in the former the gap
graph, namelyr; (w) = ajw + by, with a; = 3.07 x 1073 and is sharper and in the latter both distributions follow glibpa
b, = 1.54 x 10~3 obtained with a least squares calibratiorthe same trend. Considered together the curves make clear
The number of edges with small weights is much greatdrat these models face a challenge to capture key topologica
than the number of edges with big weights in this graph — gfroperties simultaneously. Indeed, real cascades havepee sh
Fig. 9a. Indeed we observe a greater number of transmissiofaser to chain-email cascades [30], in the sense that tieey a
between peers connected by edges with smaller weigtelatively elongated compared to simulated cascadesnautai
Hence, the quality of the estimators is greater for smaliesl with these contagion models.
of w and we have taken into account primarily these values in
this model. We have also examined an alternative model for
o, which captures qualitatively the stagnation coffor large VII. CONCLUSION AND PERSPECTIVES
values ofw. In this case we have;(w) = azlog(w) + by We have presented a large-scale dataset from a real-world
with az = 14.10 x 1073 and b, = 0.58 x 10~ obtained with peer-to-peer network, featuring diffusion of files amongrse
the same calibration method. We have proposed a framework to study this dataset which
allows us to obtain, simultaneously, the interest graph of
peers — where the diffusion of content takes place — and the
spreading cascade. Guided by simulations we have examined
Equipped with the reconstructed social network of peespreading cascades generated by the simple SIR model and
(the weighted interest graph) and models for the diffusibn bave analyzed the interplay between this model and the
files (described above) we have simulated the spreading of raétwork topology. We concluded that simulated file diffusio
the files and compared the corresponding spreading cascatltesnot capture key qualitative properties of the observed
with the real, observed, spreading cascades. Simulatedstrespreading cascades. Furthermore, in terms of the studied

C. File spreading simulation
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Fig. 10. Spreading cascades profile in terms of: depth, sidenamber of links respectively. Both models yielded the sameatkes profile (simulation
curves superposed), contrasting with real spreading dasda terms of depth.

properties, the simple SIR model generates similar cascadeore context-dependent than currently thought, the precis
on random networks having the same degree distribution ra¢e of context in the choice of model and its parameters
the interest graph. We have also found that the addition of@mains open. In our case, we have focused primarily on
clustering coefficient constraint on the random graph ditd nthe interplay between the diffusion process and the network
change the properties of the spreading cascade qualiyativestructure and have neglected other potentially important

aspects in this context. Two aspects in particular could

The SIR model is an attractive choice to model thgXxplain W_hy SIR-based models fail to reproduce the profile
information spreading in complex networks: it was inspire@f Spreading cascades.
by classical epidemiological models, it is based upon few
assumptions and it can be characterized with few parametersThe first one concerns the time, which is not directly
This flexibility and simplicity explain its popularity asaddressed in such models except from a logical point of
a contagion model, but these characteristics are also \jisw. This aspect is however strongly related to the order in
weakness when used in specific contexts. In this sense, Hisich the underlying graph is explored during a contagion.
results of section IV, mentioned above, are not entirefghe logical nature of the time adopted here is similar to
surprising. What is surprising, though, is that simulate§ breadth-first-search exploration which yields short kdept
cascades from extensions of the SIR model (which takeuctures. This explains particularly the inadequacyeoked
into account the heterogeneity in file popularity and pegyhen the depth is involved in the evaluation of the model,
behavior) show similar properties as the simple homogeneaich as in Fig. 6a, Fig. 6c, Fig. 8a, Fig. 8c, and Fig. 10a. In
SIR model. In addition to these extensions, we have enrichgghtrast, figures corresponding to size and number of links
the reconstruction of the interest graph, introducing asue® show a clear improvement of the model efficiency. Thus, it
of affinity among peers. Again, simulations reveal anothgeems very promising to exploit more deeply the temporal
unexpected point: despite the enhanced social netwaRformation in our dataset. One possible way would be to
topology, the model simulations did not reproduce quaiat take into account the dynamic aspect of the social network by
features of real spreading cascades. filtering the interest graph with pairs of peers that havenbee

present at the same time in the network. Another way would

In sum, these results suggest that this model is not suite@ to incorporate time-related behavior to the contagion
to describe information spreading in our context. That iglynamics, that is to add a new features in the model itself
not even the natural extensions of this model, related to kéjat account for such temporal patterns. Though promising,
observed features of real spreading cascades, offer ar bette leave such approaches for further studies.
alternative in terms of the properties we have investigated

It is evidently hard to demonstrate that there is no possibleTnhe second aspect, which is by far more fundamental as
modification of this model capable of describing file spregdi jt questions the nature of the model itself, relies on the fac
cascade profiles in P2P systems, but our results show tisat {fiit epidemic models are based‘@ush” dynamics whereas
model is unlikely to describe spreading cascades gengrafféers in P2P systems tend“mull” content from each others.
as it is commonly taken for granted. In this sense, our Wofiyis might call for a fundamental perspective change on the
raises a cautionary message against the careless, Widéspfgnamics of the process. In particular, adoption/threghol
use of this model. models [13], [3] could be more pertinent in this case: we also
plan to evaluate this possibility in the future.
Although the spreading cascade modelling seems to be
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