
HAL Id: hal-00857377
https://hal.science/hal-00857377

Submitted on 3 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A dynamic bandwidth allocator for virtual machines in a
cloud environment

Ahmed Amamou, Manel Bourguiba, Kamel Haddadou, Guy Pujolle

To cite this version:
Ahmed Amamou, Manel Bourguiba, Kamel Haddadou, Guy Pujolle. A dynamic bandwidth allocator
for virtual machines in a cloud environment. CCNC 2012 - IEEE Consumer Communications and Net-
working Conference, Jan 2012, Las Vegas, United States. pp.99–104, �10.1109/CCNC.2012.6181065�.
�hal-00857377�

https://hal.science/hal-00857377
https://hal.archives-ouvertes.fr

A Dynamic Bandwidth Allocator for Virtual

Machines in a Cloud Environment

Ahmed Amamou, Manel Bourguiba, Kamel Haddadou and Guy Pujolle

LIP6, Pierre & Marie Curie University

4 Place Jussieu

75005 Paris, France

Email: {ahmed.amamou, manel.bourguiba, kamel.haddadou, guy.pujolle}@lip6.fr

Abstract—Cloud computing is an emergent paradigm that
allows to customers to rent infrastructure, platforms and soft-
ware as a service. With resource sharing and reuse through
virtualization technology, cloud environments become even more
effective and flexible. Nevertheless, networking within virtualized
cloud still presents some challenges in performance and resource
allocation. In this paper, we propose to integrate an SLA-based
Dynamic Bandwidth Allocator (DBA) in a vitualized cloud envi-
ronment. DBA manages bandwidth allocation efficiently through
allocating bandwidth according to the application requirements
and the established agreement. It also adjusts the allocated band-
width dynamically upon change and reduces physical resources
usage by dropping packets in the virtual machines rather than the
driver domain. Through experimental evaluation we showed the
efficacy of the proposed algorithm and the agreements respect.

I. INTRODUCTION

Cloud computing is a new technology trend that is reshaping

the information technology landscape and gaining much of the

interest of industry as well as academia. Cloud computing

enables providers to deliver software, platform and infras-

tructure as a service to remote customers over the network.

The need behind the cloud computing is the deployment of

large scale data centers at low costs. Henceforth, customers

do not need to plan for provisioning anymore; they rent

computing and networking resources on demand and increase

those resources and pay for them on a short-term basis as

needed [1]. Cloud computing offers cost effectiveness and

high availability of resources. The provider owns a pool of

resources that it configures, adjusts and offers to customers

according to Service Level Agreements (SLAs).

When coupled with virtualization, the cloud computing

model even enables higher utilization rates while reducing

dedicated hardware costs. Virtualization is an old technology

that gained renewed interest recently. It basically offers a parti-

tioning technique to run multiple and isolated virtual machines

on a single physical machine. Thus, virtualization optimizes

hardware usage through resource reuse and multiplexing which

decreases the cost of power, hardware and network bandwidth.

Furthermore, through on demand virtual machine creation and

migration and dynamic resource allocation it enables flexible,

scalable and cost effective virtualized data centers deployment.

A Virtual Machine Monitor (VMM) is a software layer

that manages resource sharing among the concurrent virtual

machines (VMs) and ensures that diverse and different ap-

plications run in isolated environments. The driver domain

is a special virtual machine that is in charge of managing

the shared access to the devices, especially the network

interface card (NIC). The driver domain handles networking

by multiplexing outgoing and demultiplexing incoming traffic.

This additional layer in the packets path obviously incurs an

additional overhead. The I/O mechanism of the VMM consists

in copying the packets to the shared memory between the

driver domain and the virtual machine. This costly mechanism

is behind this additional overhead.

Although there are compelling advantages behind virtualiz-

ing the cloud computing infrastructure, there are still perfor-

mance issues that need to be addressed before virtualizing the

data centers could be fully advantageous. Indeed, concurrent

applications share equally the available bandwidth. Current

VMMs only offer a static allocation of the bandwidth. In

this paper, we propose an SLA aware Dynamic Bandwidth

Allocation algorithm that dynamically manages bandwidth

allocation among virtual machines according to their priorities

while minimizing physical resources consumption.

The remainder of this paper is organized as follows: Section

2 describes the background of our work. We state the problem

in section 3 and introduce related work in section 4. In section

5 we detail the proposed solution and its experimental eval-

uation. Finally, section 6 concludes the paper and introduces

our future work.

II. OVERVIEW AND BACKGROUND

A. Cloud computing environment

Cloud computing refers to both the applications delivered

as services over the Internet and the hardware and systems

software in the data centers that provide those services[9].

Services in the Cloud can be: Software (SaaS), Platform

(PaaS), or Infrastructure (IaaS). The distinction is made based

on the level of abstraction presented to the client and the

level of management of resources. To better understand the

performance limitations of a cloud computing infrastructure,

we first need to understand how cloud platforms are designed.

A cloud platform is basically composed of multiple data

centers with a web portal, connected through a WAN. The

data center is composed of multiple physical nodes connected

through a LAN. Inside the data center, the infrastructure can be

Fig. 1. Virtualized Cloud Platform

virtualized (Figure 1) in which case each node supports mul-

tiple isolated virtual machines. These virtual machines share

the same hardware and storage, and can be migrated from one

physical machine to another in the same data center or even

in a remote data center. In native virtualization technologies,

virtual machines also share the access to the network device,

and the available bandwidth. This latter is equally allocated

among the concurrent virtual machines. Different applications

(game server, media server..) run over these virtual machines

and users have direct access to those applications through

the web portal. The user can either have access to only the

application, or the the development platform or even the whole

stack.

B. Virtualization technology

Most deployed virtualization technologies include Xen,

VMWare, OpenVZ, and Linux VServer. OpenVZ and

LinuxVServer offer operating system (OS) level virtualization,

where the OS supports multiple isolated user-space instances

called containers. They share the same kernel. Xen and

VMWare fall into the full and para-virtualization categories

respectively. In both categories, the Virtual Machine Monitor

(VMM) presents software interfaces to VMs. The main

difference between these two categories is that the guest

OS must be ported in para-virtualization and not in full-

virtualization. A VMM enables multiple virtual machines to

share the same physical machine. The VMM must provide

shared access to the network interface and ensure isolation.

Shared access is offered by a special virtual machine called

I/O domain or driver domain (DD).

Xen [2] is a popular open source VMM for the x86

architecture that uses this networking model. Guests in a

Xen environments are called Unprivileged domains (DomU).

One special privileged domain called Domain0 (Dom0) is

responsible for managing (creating, migrating, destroying...)

the other guest machines. The driver domain is a dedicated

domain (that can be either one DomU or Dom0 itself)

responsible of the shared access to devices especially the

network device. The driver domain is usually Dom0 itself.

Xen offers a high level of isolation through its memory

sharing secure mechanism. The driver domain is responsible

for protecting I/O access and is trusted to transfer traffic to

the appropriate virtual machine. Moreover, high flexibility

Fig. 2. Packet transmission in a Xen environment

is also offered since it is possible to customize data planes

by modifying the network stack in the kernel, which is

not possible in container-based virtualization since only

the application level is virtualized and all virtual instances

share the same kernel. In our work, we will use Xen as a

virtualization layer and Dom0 as the driver domain. In the

text Dom0 and driver domain are used interchangeably.

C. Adopted Xen network I/O architecture

In this section, we will detail networking with Xen. In

addition to real device drivers, virtual drivers are implemented

in both Dom0 and the guest domains. A virtual driver is

split into the netback (in Dom0) and the netfront (in each

DomU). In each virtual machine, the netfront corresponds to a

virtual interface (vif) which is characterized by a transmission

bandwidth. All the virtual interfaces are connected to the

bridge through the netback. The bridge demultiplexes the

incoming traffic to the different netbacks and multiplexes the

outgoing traffic to the NIC. Inter-domain communication as

well as communication between the hypervisor and the virtual

machines is ensured by the event channel. It is a notification

mechanism that is particularly used by the hypervisor to

notify Dom0 of the arrival of a packet, or by Dom0 to

notify the DomU destination that a packet was placed in

its memory space. Shared memory pages are used to really

transfer the packet between domains. Network transmissions

and receptions are achieved as illustrated by Figure 2.

In this paper we are only interested in traffic transmission, we

below detail packets transmission path. Whenever a virtual

machine has a packet to transmit, it copies the packet to a

memory page and issues a grant through the VMM in order

to inform the Dom0 that he is allowed to access that page.

Then it sends a notification to the Dom0 to inform him that the

packet has been copied to the memory page. When scheduled,

the Dom0 will se the notification and handle it by accessing

the memory page in order to get the packet. The Dom0 notifies

then the virtual machine and the packet is henceforth handled

by the bridge, which will relay the packet to the NIC. As

soon as the virtual machine gets the notification, it revokes

the grant. Incoming packets will basically follow the opposite

path.

III. RELATED WORK

Over the last few years, a fair number of research efforts

has been dedicated to the enhancement of I/O virtualization

technology in the context of virtualized cloud environments.

In both [3] and [4], the authors conducted extensive mea-

surements to evaluate the performance interference among

virtual machines running network I/O workloads that are either

CPU or network bound. They showed how different resources

scheduling and allocation strategies and workloads may impact

the performance of a virtualized system. In [5] the authors

proved that cache and memory architecture, network architec-

ture and virtualization overheads can be scalability bottlenecks

in a virtualized cloud, depending on whether the application

is compute or memory or network I/O intensive respectively.

None of these works proposed new techniques to improve I/O

performance. [6] proposed several optimizations to the mem-

ory sharing mechanism implemented in Xen. They improved

the cache locality by moving the grant copy operation from

the driver domain to the guest. Besides, they proposed to relax

the memory isolation property to reduce the number of grant

operations performed. In this case, performance would come

at the cost of isolation, one of the most attractive benefits

of the Xen architecture. In [7], the author shows that the

out-of-the-box network bandwidth to another host is only

71% and 45% of non-virtualized performance for transmit

and receive workloads, respectively. These bottlenecks are

present even on a test system massively over-provisioned in

both memory and computation resources. Similar restrictions

are also evident in commercial clouds provided by Amazon,

showing that even after much research effort I/O virtualization

bottlenecks still challenge the designers of modern systems.

In[8], Kesavan and Al formalize the way in which hypervisors

support proportional sharing for I/O requests, by developing

and presenting the novel notion of Differential Virtual Time

(DVT). A specific technical problem addressed by DVT and

elaborated in this paper is that in the case of proportional

sharing of network I/O, the presence of a conventional I/O

scheduler introduces an additional delay into the network pro-

cessing path. Moreover, the delay experienced by individual

VMs changes with the number of other concurrently active

VMs and with their traffic patterns. In [10], the authors used

the SLA approach to propose an architecture for resources

provisioning in the context of a virtualized cloud. The paper

mainly addresses issues related to negotiation and brokering

for virtual resources provision. However no practical perfor-

mance evaluation has been conducted to show the effectiveness

of the solution. Our contribution represents an enhancement of

the networking performance of virtual machines in the cloud.

This enhancement takes into consideration the agreements set

up between the customer and the provider. Experiments show

its feasibility with respect to the established agreement.

IV. PROBLEM STATEMENT

In a virtualized cloud, multiple virtual machines are ded-

icated to different types of applications while sharing the

same physical machine and network device. The sum of

rates at which the virtual interfaces transmit can not thus

exceed the physical NIC bandwidth. Some applications like

vido streaming servers are required to sustain an acceptable

throughput so that the contract with the customer could be

respected. The video server thus requires a bandwidth that

may not be guaranteed in the presence of concurrent flows.

Virtual machines share the available bandwidth equally. Then,

instantiating new virtual machines may compromise the QoS

required by already running applications. The native system

of Xen only offers a tool to statistically set a cap on the

bandwidth a virtual machine can enjoy. The whole system

need to be restarted after each reconfiguration. To encounter

this problem, we propose to integrate an SLA-based Dynamic

Bandwidth Allocator (BDA) that will be run in the driver

domain to dynamically adjust the transmission bandwidth of

each virtual machine according to the established service level

agreements and the available bandwidth.

Furthermore, in current VMM implementations, when one

virtual machine transmits at a rate exceeding the available

bandwidth, the driver domain drops the packets (in the net-

back). Packets are then dropped after they have been trans-

ferred through the memory from the netfront to the netback.

In [12], the authors have shown that the memory access is

the bottleneck preventing the transmission throughput from

scaling up to line rates. Indeed, the I/O mechanism of Xen

involves much operations including granting the memory page,

revoking the grant, copying the packet and notifying the

netback of the packet transfer. All of these operations are

shown to require multiple memory transactions and CPU

cycles. In order to minimize this resource consumption, we

further propose to drop packets in the netfront (rather than

the netback) whenever the packet is dedicated to be dropped

due to bandwidth passing. Thus we eliminate unnecessary and

costly packet copies and notifications between the netfront and

the netback.

V. DBA: DYNAMIC BANDWIDTH ALLOCATOR

A. Algorithm

We consider a virtualized system with a driver domain and

multiple virtual machines hosting different applications with

different QoS requirements. Each virtual machine transmits

traffic through its virtual interface (vif). Each vif is connected

to the physical interface through the bridge. A virtual machine

is instantiated with a set of characteristics defined in the

Service Level Agreement (SLA) established between the

customer and the provider. The SLA specifies the system

physical resources allocated to the virtual machine and the

networking parameters. Physical resources include CPU cycles

and memory and networking parameters include bandwidth,

packets delay and jitter,etc. In order to guarantee an acceptable

bandwidth to virtual machines hosting applications requiring

QoS (for example: video streaming servers), we propose a

differentiation mechanism operating at the driver domain

that dynamically readjusts transmission bandwidth according

to the SLAs. This mechanism classifies the different virtual

interfaces into classes that are characterized by a priority and

by a maximum and minimum bandwidth. The aim of the

proposed mechanism is to guarantee to each virtual machine

a minimum bandwidth at which it can transmit and to prevent

it from exceeding a cap bandwidth not to compromise the

rest of the machines QoS.

We denote by:

• N the number of virtual machines.

• vifi virtual interface i, i=1..N

• Bp the physical interface maximum bandwidth of the

physical interface P.

• Bi the bandwidth at which vifi is transmitting, i=1..N

• Bmax
i the maximum bandwidth at which vifi is allowed

to emit, set in the SLA.

• Bmin
i the minimum guaranteed bandwidth of vifi, set in

the SLA.

• Bex
p is the available physical interface bandwidth.

• Ci the class of vifi.

For each physical interface P, the DBA browses each vifi
attached to P starting with the ones belonging to the highest

priority class. The DBA measures Bi for each vifi. In the

case where multiple virtual interfaces belong to the same

class, the DBA will start with the first created one.

For each vifi, if Bi is between Bmax
i and Bmin

i (Bmax
i <

Bi < Bmin
i), then no change is made.

In the case where Bi exceeds Bmax
i (Bi > Bmax

i) then Bi

will be readjusted to Bmax
i and the available bandwidth Bex

P

will be augmented by the resulting difference of Bi-B
max
i .

Bex
P ← Bex

P +(Bi - Bmax
i)

Bi ← Bmax
i

Finally in the case where Bi went below Bmin
i then

the DBA checks whether there still is available bandwidth

(Bex) on the physical interface and whether (Bi - Bmin
i) <

Bex or not.

If so, Bmin
i is readjusted to Bi and Bex

P is diminished by the

difference Bmin
i - Bi.

Bex
P ← Bex

P - (Bmin
i - Bi)

Bi ← Bmin
i

If not, in the case where the current virtual interface

belongs to the least important class, it readjusts the bandwidth

of all the other virtual interfaces vifj , j=1..N belonging to

the same class to Bmin
j so that Bi could reach Bmin

i .

for (j in 1..N){
Bj ← Bmin

j

Bex
P ← Bex

P +(Bj - Bmin
j) }

if (Bex
P > Bmin

i){
Bex

P ← Bex
P - (Bmin

i - Bi)

Bi ← Bmin
i

} else{ Bi ← Bex
P

Bex
P ← 0 }

In the case where there are other less prioritized classes Cx,

x=1..N, then the bandwidth of each virtual interface belonging

to the class Cx is also readjusted to the minimum bandwidth

of the class Cx: Bmin
x starting with the least prioritized class.

for (x in 1..N){
for (j in 1..Nx){ Bj ← Bmin

j

Bex
P ← Bex

P +(Bj - Bmin
j)}

if (Bex
P > Bmin

i){
Bex

P ← Bex
P - (Bmin

i - Bi)

Bi ← Bmin
i

} else{ Bi ← Bex
P

Bex
P ← 0 }

Finally if the remaining available bandwidth Bex > 0

then it will be reallocated to the different virtual interfaces

based on their priorities.

B. Performance Evaluation

We have developed the proposed DBA as module that we

integrated to the driver domain. It consists of a daemon that

periodically executes the algorithm we described, checks the

rates at which the different virtual interfaces are transmitting

and configures them accordingly. Below we present the exper-

imental evaluation of our system.

1) Experimental setup: For our experiments, we used a Dell

PowerEdge 2950 server, with two Intel Quad-core CPUs with

a frequency of 2490Mhz for each core. Pairs of cores share

the same L2 cache of 8MB, and all 8 cores share the same

main DDR2 667Mhz memory. Networking is handled by one

gigabit card using a PCI x4 channel. The e1000 driver was

used with NAPI enabled. Xen 3.4.0 is used as a hypervisor.

We developed the proposed mechanism with language C, as a

module that we integrated to the driver domain. The sink of

the traffic is a Nec PC, with a 2400 Mhz core 2 duo processor

and a DDR2 667Mhz memory also equipped with one Gigabit

card. For traffic emission and reception we used Click [11].

We instantiated 3 virtual machines for traffic transmission,

allocated one core and 1GB of memory each. The Dom0 is

allocated the rest of the cores and memory and is playing the

role of driver domain. One UDP flow is generated within each

virtual machine. Packets size is set to 1500 bytes.

Scenario:

We first evaluated the throughput achieved by the 3 virtual

machines with the native system with the following scenario:

Each virtual machine belongs to a different class. MVi belongs

to class Ci, i=1..3. We set the minimum bandwidth to 300

Mb/s, 100 Mb/s and 0 Mb/s and the maximum bandwidth

to 600 Mb/s, 300 Mb/s and 100 Mb/s for C1, C2 and C3

respectively. The traffic generation lasts for 300s and the

transmission rate is distributed as follows: MV1 transmits at

800 Mb/s for the first 100 s. Then at 200 Mb/s for the next 40

s. The input rate is increased to 600 Mb/s for the next 30 s and

decreased to 200 Mb/s during the next 20 s. After that, MV1

transmits at 500 Mb/s during 60 s and finally at 800 Mb/s

during 50 s. However, both of MV2 and MV3 transmit at a

constant bit rate of 800 Mb/s during the whole test duration.

C. Experimental Results

1) System throughput: Figures 3 and 4 show the throughput

of the native system and DBA-enhanced system respectively

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

R
a

te
 (

M
b

/s
)

Time (S)

Class C1
Class C2
Class C3

Fig. 3. Native System throughput

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

R
a

te
 (

M
b

/s
)

Time (S)

Class C1
Class C2
Class C3

Fig. 4. System with DBA throughput

for a readjustment period of 100ms . Note that with the native

system the bandwidth is globally equally shared between the

three virtual machines. However, when three of the virtual

machines transmit at the same rate, we can notice that MV1

achieves a slightly better throughput (350 Mb/s against 300

Mb/s for MV2 and MV1). This is due to the fact that MV1 was

the first machine to be started which allows it to be scheduled

first to execute jobs on the CPU. Furthermore, we note from

figure 3 that after diminution in the transmission rate of one

virtual machine (MV1 after 100s), the remaining bandwidth is

shared between the other two virtual machines. Globally, the

packet loss for the C1 class traffic is about 55.87% with the

basic system.

From figure 4, with the DBA-system we can notice first that

the most prioritized virtual machine is allowed to transmit at

only 600 Mb/s although its generated traffic at 800 Mb/s. The

DBA adjusted its transmission rate to Bmax
1

(during the first

100s). A decrease in the MV1 from 600 Mb/s to 200 Mb/s

input rate incurs an increase in MV2 and MV3 throughput

to 500 and 200 Mb/s respectively. Notice that although MV1

transmits at 200 Mb/s, MV2 and MV3 are prevented from

enjoying the totality of the remaining bandwidth (800 Mb/s).

In fact, since the DBA adjusted the B1 to Bmin
1

(300 Mb/s),

MV2 and MV3 can only share the remaining 700 Mb/s. We

can conclude then that globally our algorithm respects the

agreements on the minimum guaranteed bandwidth and the

maximum allowed bandwidth. Furthermore, the C1 class loss

rate has dropped to 16.56% with the DBA system (against

55.87% with native system).

2) Resources consumption: Our mechanism drops packets

emitted beyond the allocated bandwidth in the netfront before

being transferred to the netback. We expect then the system

to consume less physical resources (CPU cycles and memory

transactions). We profiled the resources (CPU cycles and

memory transactions) usage using Xenoprof [13] with both the

 0

 2000

 4000

 6000

 8000

 10000

 100 200 300 400 500 600 700 800 900 1000

C
P

U
 C

y
c
le

s
 (

M
C

/s
)

Readjustment Period (ms)

Native System
System with DBA

Fig. 5. CPU consumption

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 100 200 300 400 500 600 700 800 900 1000

M
e

m
o

ry
 T

ra
n

s
a

c
ti
o

n
s
 (

M
T

/s
)

Readjustment Period (ms)

Native System
System with DBA

Fig. 6. Memory transactions gain

native system and DBA system and determined the impact of

the readjustment period on the system throughput and physical

resources usage. Figure 5 illustrates total CPU usage as a

function of the readjustment period size. However, for memory

transactions we only presented memory transactions achieved

by the I/O part as a function of the readjustment period size

too. We notice that for a period of less than 100 ms, our

algorithm consumes much CPU, which will impact the system

throughput, note the high packet loss rate for this period in

Figure 7. For periods lasting more than 100 ms, our system

CPU consumes as much CPU as the native system. Nev-

ertheless, our system reduces memory transactions achieved

by the I/O part involving transferring the packets from the

netfront to the netback. Note that for a period of less than

100 ms, the system suffers from high packet loss rate. Packets

are then dropped in the netfront which eliminates memory

transactions that would have been necessary to transfer packets

to the netback. Globally, and even for periods longer than 100

ms, the DBA allows reducing necessary memory transactions.

Finally, we can conclude from figure 7 that our DBA-system

notably reduces packet loss rate for periods beyond 100ms.

Note also that the packet loss rate of 16,6% for MV1 traffic is

relative to the scenario we considered, where MV1 transmits at

rates higher than its maximum allowed bandwidth set in the

agreement. Our system then totally respects this agreement

while reducing achieved memory transactions. This leads to

an optimal resource allocation among virtual machines and

then higher system scalability [12].

VI. CONCLUSION

Virtualized clouds are definitely a compelling technology

for both users and providers. They offer flexible service to the

customer according to the pay-as-you-use model. Virtualiza-

tion allows providers to optimize hardware through resource

sharing and reuse and thus reduce hardware and power costs.

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

L
o

s
s
 r

a
te

 (
%

)

Readjustment Period (ms)

Native System
System with DBA

Fig. 7. Packet loss rate

In a virtualized data-center, several virtual machines share

the same network device. Access to the NIC is handled by

the driver domain and bandwidth is statically allocated to the

different virtual machines. In this paper we have proposed and

developed DBA, a dynamic bandwidth allocator for virtual

machines. Virtual machines are classified into classes that

are differentiated by the required bandwidth of transmitted

flows. DBA guarantees to each virtual machine to transmit

at the required bandwidth as agreed in the SLA. Remaining

bandwidth is also shared between the concurrent virtual ma-

chines according to their priorities. DBA updates the allocation

periodically in order to react as fast as possible to traffic

changes. Furthermore, it optimizes physical resources usage

(CPU and memory) through dropping packets beyond the

allowed transmission bandwidth at the virtual machine instead

of the driver domain. Thus it prevents transferring packets

destined to be dropped through the I/O channel and then extra

memory transactions and CPU cycles. Experimental evaluation

of our module shows that DBA indeed respects the service

level agreements and considerably reduces the packet loss.

We intend next to extend our algorithm to establish SLA

based on flows classes rather than virtual machines classes.

Furthermore, our proposal could be extended to define classes

according to multiple QoS parameters like packet delay and

jitter in order to enable virtualized cloud totally respond to

customers expectations.

REFERENCES

[1] L. M.Vaquero, L. Rodero-Merino, J.Caceres, M.Lindner, A Break in the
Clouds: Towards a Cloud Definition, ACM SIGCOMM Communication
Review, vol 39, no. 1, Jan. 2009, pp. 50-55.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R.Neugebauer, I.Pratt, and A. Warfield, Xen and the art of virtualization,
19th ACM Symposium on Operating Systems Principles, October 2003.

[3] P. Xing, L. Ling, M. Yiduo, A. Menon, S. Rixner, A.L Cox, W.
Zwaenepoel, Performance Measurements and Analysis of Network I/O
applications in Virtualized Cloud, International Conference on Cloud
Computing, 2010.

[4] P. Xing, L. Ling, M. Yiduo, S. Sivathanu, K. Younggynm, P. Calton,
Understanding Performance Interference of I/O Workload in Virtualized
Cloud Environments. International Conference on Cloud Computing,
2010.

[5] M. Hasan Jamal, A. Qadeer, W. Mahmood, A. Waheed, J.J. Ding,
Virtual Machine Scalability on Multi-Core Processors Based Servers for
Cloud Computing Workloads, International Conference on Networking,
Architecture and Storage, 2009.

[6] JR. Santos, Y. Turner, G. Janakiraman, I. Pratt, Bridging the gap between
software and hardware techniques for I/O virtualization, USENIX An-
nual Technical Conference, 2008.

[7] J. Shafer, I/O Virtualization Bottlenecks in Cloud Computing Today,
Workshop on I/O Virtualization (WIOV 2010), Pittsburgh, 2010

[8] M. Kesavan, A. Gavrilovska and K. Schwan, Differential virtual time
(DVT): rethinking I/O service differentiation for virtual machines,
Proceedings of the 1st ACM symposium on Cloud computing, 2010

[9] M. Armbrust, A. Fox, R. Griffith, A.D Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, A.Zaharia, ”Above the Clouds: A
Berkeley View of Cloud Computing”, Technical Report No. UCB/EECS-
2009-28, February 10, 2009.

[10] A. Kertesz, G. Kecskermeti, and I. Brandic ”An SLA-based Resource
Virtualization Approach for On-demand Service Provision”, Interna-
tional Workshop on Virtualization Technologies in Distributed Comput-
ing, Jue 2009, Barcelona, Spain.

[11] E. Kohler, R. Morris, B. Chen, J. Jahnotti, and M. F. Kasshoek, The
click modular router, ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263-297, 2000.

[12] M. Bourguiba, K. Haddadou, and G. Pujolle, A Container-based Fast
Bridge for Virtual Routers on Commodity Hardware, IEEE GlobeCom,
2010, Miami, USA.

[13] A. Menon, G. Janakiraman, JR. Santos, and W. Zwaenepoel, ”Diagnos-
ing performance overheads in the Xen virtual machine environment”,
VEE 2005.

