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Transformation Methods for Static Field
Problems with Random Domains

D.H. Mac*, S. Clén€tand J.C. Mipd
Y 2EP/Arts et Métiers Paris Tech, 59000 Lille -Franc
2/ALEO-Systémes Electriques, 94000 Créteil-France

Abstract — The numerical solution of Partial Differential Equations onto random domains can be done by using aapping
transforming this random domain into a deterministic domain. The issue is then to determine this one bne random mapping. In this
paper, we present two methods - one based on thesadution of the Laplace equations, one based on aametric transformation - to
determine the random mapping. A stochastic magnettetic example is treated to compare these methods.

Index Terms— Electromagnetic analysis, Stochastic Finite Elerm¢ Method, Random Mapping, Random Domains

divB(x,0)=0
I. INTRODUCTION curl H(x,0) =0 (1)
The numerical resolution of the Maxwell equationsigles B(x,0) = u(x,0)H (x,0)

the development of accurate models of electromagnet
systems. To solve numerically these partial difféie where 0, the outcome, refers to randomness of the problem.

equations, the Finite Elements Method (FEM) hasiheidely 1€ uncertainties on the geometry can be take_raimunt by
used. In several cases, the available input datkrswn with andom interfaceg\(8) between two sub-domains Bnd D.
a finite level of confidence. These uncertaintias arise for | "€ permeability: depends on the positionand also on the

instance from the aging of the materials or frompénfections °utcome. Actually, for a pointx located close to a random
of the manufacturing processes. Since the numerizaels interfacel'y(0), the value of the permeability depends on which

are more and more accurate due to the improvement $d€ ofI'(6) the pointx belongs to. Therefore, the magnetic
numerical methods (in 3D for example) and also tughe field H and the magnetic flux _dens_ﬁ/are also random fields.
increase in  computer performances, some of theseWWe assume that the domain@p(is bounded by the surface
uncertainties cannot be considered negligible amyemin [ =, I ;on which the boundary conditions are given
several works, a probabilistic approach using ramgariables by:

is used in order to take into account these uriogiga [1]. B(x,0)M =0 onr, @)
Methods have been presented in the literature ke tato {H(x,f))xn =0 onf,®)andr, 0 2)

account the uncertainties on the behavior law [3&]. ) ) )

However, the case of uncertainties on the geomistrpuch Wheren is normal unit vector. The magnetomotive forge

less studied. In [4] one method which transformesihoblem PEtweenl’»(8) andI's(8) is imposed. This problem can be
solved by using either the scalar or the vectoreil

with uncertainties on the geometry into a problenthw ; . .
uncertainties on the behavior law is proposed. dtedlenge formulation. In the following, the scalar potentfafmulation
will be developed. If we denot€(x,0) the scalar potential

of this method is how to determine an efficient doeone
random mapping that transforms the random domaim én that is a random field such that:

deterministic domain. H(x,0) = —grad Q(x,0) 3)
In this paper, a comparison between two methods uation (1) can be written:
calculate the random mapping is proposed. Onesedan the div(u(x,0)gradQ(x,0)) = 0 (4)

resolution of the Laplace equations. The secorzhéed on a
geometric transformation. First, we present brietlye .
transformation method and we will show how the peob f (gradQ(x,0)) u(x,0)gradA(x,0)dx= 0 (5)
with uncertainties on the geometry can be transéorimto a b

problem with uncertainties on the behavior law gsirandom WhereA(x,0)is a scalar test function that is equal to zero on
mapping. Second, we will detail the two methods proposed t¢ ,and I',and the superscrift indicates the transpose of a
determine the random mapping addressed abovelyriti®lse atix |n [5] we show that if there exists a oneohe random

two methods are compared on a stochastic magntiad:ost%apping X = X(x0)which transforms the random domain

example. )
D(B) to a reference domain tr each outcom®, the weak

. TRANSFORMATIONMETHOD formulation (5) written on D can be written on E:
[(gradQ(X,0))' ¢/ (X,0)gradA(X)dX=10 (6)
E

We obtain the weak formulation:

In this part, we will recall briefly the transfortien method
[5] used to solve electromagnetic problems withdmm \here we have introduced the permeability tepsox,0):

domains. t
, M'(X,0) ( X,0)M( X, 0
The stochastic magnetostatic problem on a domai) D( M (X,0)= ( d)ﬂ( IM(X,6) @)
with random inner interfaces or boundaries can biten: | et(M(X 'Oj



with M(X,0) is the Jacobian matrix of the random mapping.

The initial problem (1) with uncertain dimensions the
domain D is equivalent to a problem with unceriamton a
modified behavior law (permeabilityx’(X,8)) on the
deterministic reference domain E. To solve thisbfgm, one
can use either intrusive methods (SSFEM) or norusite
methods (NIM) [2], [3]. In this paper, a non intiwes method -
projection method [2] - has been used and will biefly
presented in the following.

We are interested in calculating an output randaniable
W(0) (energy stored in D for example). This randonialze
is approximated by:

()= wH, (6 @®)

where {H(8)}, i=1,N a given orthogonal polynomial set \ya define K-

(polynomial chaos)[6] and w a real coefficient that is
determined by the projection method:

o < EIW@H, (0]
- E[H@)]
where E[X0)] is theexpectatiorof the random variable Rj.
The calculation of the denominator can be doneyéinally
whereas the calculation of the numerator can omlydbne
numerically using a quadrature method. For the ruiace
method, we consider several specific realizatiansadrature
points 8;) of the random variable W] that corresponds to
different deterministic geometries.

One can use the classical remeshing method (noinwafE
required): for each quadrature point corresponding new
geometry, the problem (5) is solved with a new médhis
method is very time consuming. With the transfoiorat
method, we solve the problem (6) on the referermeain E.
The permeability is revaluated using (7) for eaciadrature
point. The calculation is undertaken on a uniquehmef the
reference domain E, only the permeability distiitmitchanges
from a quadrature point to another. The difficutynow how
to determine the random mapping addressed abovéheln
following, we will discuss this aspect.

(9)

In the following, for simplicity, we will focus orthe 2D
case but an extension to 3D can be easily implesdetwe
consider a random domain @(which can be divided inta

RANDOM MAPPING DETERMINATION

PO Di (C,G)—» 6~ &= G B Ei (): (10)
where ¢ and ¢ are the curvilinear coordinates of the points P
and P’ on the interfac€p;(c,0) andI'g(c) respectively. The
equality between the curvilinear coordinates and ¢
establishes a link between the boundaries; @ 0(0) that

is required to calculate the transformati<,(e).

IﬂEl(c)
P (C) \
‘/FD.(c, 0) P’(c)
Kt
4—

Fig. 1. Random mapping
L(8) the random mapping that transforms the
domain E into the random domain ;®). In the following,
since it is easier to determine the random mapigifio) than
Ki(8), we will detail the calculation ok ™(8). The Jacobian
matrix M(X,0) of K;(8) is obtained easily by inverting the
Jacobian matrix oK™(8). We detail now two methods to
determine this random mappi#g"().

A. Laplace equations method

This method was proposed by D. Xiu and D. Tartakpvs
[4]. The random mapping:

Ki_l(e):{x: f(X,V,0) (11)
y=9(X,Y.0)
is determined by solving the Laplace equations:
0%t (X,Y,0) . 92 f(X,Y,0) -0
0°g(X,Y.0) , 0 (X ¥8) _
9%X 0%y

inside E and satisfying the following boundary conditions:
{Xp(0,9)= f(X (9, % (9.0)
¥e(c.0) = 9(X- (9, ¥ (9.0)
These boundary conditions enable the random magpi@)
that transforms the boundafyi(c) of E into the boundary
I'pi(c,0) of Di(0) to be imposed (see (10)). In [4] stochastic
differential equations (12) and (13) are rewritiesn several
deterministic differential equations by decomposfng, x
andyr under an expansion M mutually uncorrelated random

(13)

subdomains [9) (i=1,n) where the permeability is assumed tosariables A®), for example with, andf :

be constant. Each subdomaif(@) is bounded by the random
interfaceI'pi(c,0) where c is the curvilinear coordinate. The
random domain ) will be transformed by a one to one

random mapping into a deterministic reference dargaiThis
reference domain is also divided into n subdomalihs
bounded byl'gi(c) (Fig. 1). This random mapping (0) is

completely defined whem one to one random mappings
into E are determined. One

Ki(0) transforming [X0)
constraint is that the common interfacg n I, between two

subdomains @) and (@) must be transformed into a same
surface byK;(@) and by Ky(@®). The one to one random

mapping transforming’pi(c,0) into I'gi(c) can be defined by
following steps:

M
%(C.8) =2 %,;(9 UA(6)
e (14)
f(xy.8)=2 f(x Y)IA®)
j=1
Equations (12) and (13) yieM deterministic equations:
azfj(x,Y)+aZ (XY -0

2 2
2ax 26Y (15)
9%g,(X,Y) 9°q(X V) _

X o7y =0

inside E with the following boundary conditions:



% (€)= f,(X%:(9,%(9) (16)
Y5 (©) = g, (%.(9, ¥ (9)
A collocation method based on an approximatiorf; ahd g;
by a Tchebychev polynomial expansion is proposedoloe

these deterministic differential equations:

G
f(X,Y)=>a(XV
k=0 (17)

0,(X =Y RIT(X Y

whereT, (X,Y) is a Tchebychev polynomial of ordkra, and
b, are scalar coefficients that we have to determine.

The modeling of the boundary under the form (14has
necessarily obvious. With the NIM method, it is meguired
to know K™(8) for all outcomes® but only for theN

quadrature points@, (see section Il). Therefore we are

interested only in the solution of (12) and (18) N given
realizations @,
deterministic equations. The collocation methodedasn an

approximation off and g by a Tchebychev polynomial

expansion (17) could be directly applied here.

B. Geometric transformation method

We aim at finding for each point, Q’, located iresithe
domain E its transformation point, Q, in the domain Bor

this task, we consider that the domajnisEcomposed of a set

S(E) of uncountable segments (straight or curvedhe
intersection point- if it exists- of two segmendslacated only
at one of their end points (the point O’ in the.Fiy. Except
this point, all other points Q’ located inside domg; belong

to only one segment of SJEThis constraint yields a one to

one mappingK (). The domain Pis also divided in the

same way.K%(0) is determined now by the one to one

mapping defined onto SEo S(Q). The domain [¥0) in Fig.
1 is divided by a set of segments OB @and E by a set of
O'P’(c) where O is a fixed point located inside &d O’
inside E The image OP undé¢™(0) of O'P’ is obtained by
giving the same curvilinear coordinates c for P Bi{dee (10)

Equation (12) and (13) now become

that it doesn’t modify the connectivity between esdThe
connectivity modification adds additional variatyilion the
output data. Moreover, additional data processimgsh
calculation) of the remeshing method is requiredictvh
increases the time of calculation.

IV. NUMERICAL APPLICATION

We consider now a magnetostatic problem defined in
random domain O¥) presented in Fig. 2. The domain is
divided in 4 areas Di=1,4 with relative permeability; = p, =
ps =1000 andu, = 1. We impose a magnetomotive force
2A betweer’; andI', andB.n = 0 on the remaining boundary
[8], [9]. The uncertain dimensions (Fig. 2) are mled by the
uniform independent random variable®)r(r(0), r»(0), Xo(8),
Yo(B) where r and ¥ Yo are the radius and the position of the
disk Ds, r; and g are the radius of the inside surface of the two
teeth fronting of disk B The information of uniform
independent random variable®);,(r(0), rx(0), %(0), yo(0) is
given by the Table I. The aim is to calculate thergy W@)
stored in the domain BJ.

d
d/8 d/4 d/4  d/4 d/8

RARE
HL D4 i

D3

rll'YZO rz:,Y: Yo

o'\

" O(xo,Y0)
0(0,0)
Fig. 2. Magnetostatic system

In the following, we will detail the determinatioof the
mapping for one quadrature poifi (section Il) for each
method A (section Ill.A) and B (section 111.B). Weke the

). Consider a point Q’ inside;.EThere exists one O’P’ that Q' reference domain E with the following dimensiong=R;,

belongs to. The image Q of Q' undér;(6) is located on OP

and defined by:
00=o0pt2 Yl
|OP|
There are obviously several ways to divide a dornrgma set
of uncountable segments. The best choice is thehataives
the smoothest mapping and it depends on the ag@mahetry
of the system studied. The use of a fixed poinn® @' is not
mandatory as we will see in the application (seg IV
With this method, it seems difficult to obtain analytical

(18)

form of K%(0) and therefore, the Jacobian matrix can not be

calculated explicitly. Each component of the Jaanhinatrix

at a point Xo,Y0,0,) is calculated numerically using a finite

difference scheme where the mapping is calculatéd
(X0, Y0,0¢) and Ko+d Xo,Yo+d Yo,0¢).
The main advantage of the transformation methadpesed

to a method, based on the remeshing of each nemageg is

=Ry, =R, %=X, Yo=Y, Which are the mean values of these
random variables (see Table 1). The first step istgisin
dividing efficiently the reference domain E into vegal
subdomains £ The domain decomposition for this problem is
presented in Fig. 3.

Domain E

a Fig. 3. Division of domain E and the mapping defirby the method A

We focus on a random mapping that transforms the
subdomain Ecorresponding to,;#R; (domain bounded by N-
F-G-P in Fig. 3) into subdomain pDcorresponding to the
outcomeB, with r;=R;’.



For the method A, the mapping is obtained by sglvinA. It should be mentioned that for domains with @bex
equations (12) and (13) with the outcoBecorresponding to geometries, it is possible to divide the domaiio ielementary
r=R’';. We take ¢q=14 for (17). To calculate the subdomains (CAD tools naturally provide this decosifon)
coefficients aand k in (17), we have to choose 15 collocatioron which the method B can be applied to each ofmthe

points to obtain a non singular linear equatiortesys(Fig. 3).
The interior points (square points) satisfy (12)d athe
boundary points (round points) satisfy (13) prowglihat the
relationship between Bcated on the boundary of,@and P’
located on the boundary of i determined by (10).

P1’

Finally, in our example with a mesh of 4700 nodke,method
B is faster than the method A with a time calcolatratio of
about 2. However, we should mention that in theho@tB, an
infinity of geometric transformations give the saswdution in

the continuous domain but not in the discrete damlai fact,

it can be shown that the numerical error strongipethds on

\\ 5 the choice of the geometric transformation. Critesihould be
; defined in order to determine the transformatioratth
E1 e ‘ introduces the smallest numerical error.
,,,,, Dlf|a
' TABLE Il
_ |h _ |h METHOD A COMPARED WITH METHOD B
,—L__._a:__—l———"l::?"";; Method A Method B
ul P2 =R’ Information
rn=R; =R Scalar Vector Scalar Vector
formulation | formulation | formulation | formulation
Fig. 4. The mapping based on the method B Mean value 138.98 134.31 138.97 134.31
For the method Bdomain E and O can be considered as 3 Standard
set of straight parallel segmentgH3' and RP, respectively. | geviation 9.25 8.83 9.22 8.82

The curvilinear coordinate used here is the diganwith the
left vertical side GP of E (Fig.1 and Fig. 4). The

tralms_forn;z_mon Q' into Q is defined by the followin V. CONCLUSION
relationship:
P o8 OB We have presented and compared two methods tawleger
ﬁ = & (19) the random mapping used to solve the problem vétttom
QR QE domain. The example presented above shows thaethits
TABLE | obtained by the two methods are almost the sameeler the
INPUT DATA INFOMATIONS method B is simpler to implement and less timescoming.
r(cm) n(cm) n(cm) X (cm) y(cm)
Lower bound 49.97 50.27] 50.27 -0.003 -0.00B VI. REFERENCES
Upper bound 50.03 50.33 50.33 0.003 0.008 [1] R. Ghanem, P. D. SpanoStochastic Finite Elements: A spectral
Mean value 50 50.3 50.3 0 0 approach Mineola, NY: Dover 2003
[2] R. Gaignaire, S. Clenet, O. Moreau, and B. Sudr8D spectral
In Table II, we present the mean value and thedstah stochastic finite element method in electromagnetislEEE
deviation of the energy W) stored in the domain B) Trans.Magn. vol.43, no.4, pp. 1209-1212, 2007. _
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the vector potential formulations [7]. A mesh of087nodes 3/2006, pp. 81-92. (2006)
has been used. In this magnetostatic problem timeencal [4] D. Xiu and D. M. TartakovskyNumerical methods for differential
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