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Chapter 1

Poromechanics of saturated
isotropic nanoporous materials

Romain Vermorel, Gilles Pijaudier-Cabot, Christelle Miqueu and Bruno Mendiboure,
Laboratoire des Fluides Complexes et leurs Réservoirs (UMR 5150),
Université de Pau et des Pays de I’Adour, FRANCE.

1.1 Abstract

Poromechanics offers a consistent theoretical framework for describing the mechanical response of
porous solids. When dealing with fully saturated nanoporous materials, which exhibit pores of the
nanometer size, additional effects due to adsorption and confinement of the fluid molecules in the
smallest pores must be accounted for. From the mechanical point of view, these phenomena result
into volumetric deformations of the porous solid, the so-called “swelling” phenomenon, and into a
change of the apparent permeability. The present work investigates how poromechanics may be
refined in order to capture adsorption and molecular packing induced effects in nanoporous solids.
The revisited formulation introduces an effective pore pressure, defined as a thermodynamic variable
at the representative volume element scale (mesoscale), which is related to the mechanical work of
the fluid at the pore scale (nanoscale). Accounting for the thermodynamic equilibrium of the system,
this effective pore pressure is obtained as a function of the bulk fluid pressure, the temperature and
the total and excess adsorbed masses of fluid. We derive the analytical swelling strains due to
sorption and molecular packing. A good agreement in the comparison with experimental data
dealing with the swelling of coal due to methane and carbon dioxyde sorption is observed, as a
preliminary stage towards modelling partially saturated solids and applications to cement paste.

1.2 Introduction

Poromechanics offers a consistent theoretical framework for describing the mechanical response of
porous solids saturated, or partially saturated with a fluid phase. The theory is based upon the
superposition of the solid and liquid phases. In the case of fully saturated porous solids, it is assumed
that the fluid-solid interaction is restricted to the influence of the pressure on the inner surface of
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the porous material. In partially saturated porous solid, additional forces, i.e. capillary forces
are introduced. Many authors have used this modern theoretical framework, which is thoroughly
described e.g. in the textbooks by [5, 6].

We are going to specifically focus on “nanoporous” materials, e.g. solids with pores down to
the nanometer size (< 2nm). Hardened cement paste or tight rocks are among those materials,
which can be used in construction, or may be encountered in the production of gas from very tight
reservoirs or coal seams. Aside from the classical fluid-solid interaction observed in macroporous
materials, there are additional effects that should be considered in such materials: (i) adsorption is
important because the inner surface of the pores is very large and surface forces cannot be neglected
anymore; (ii) in very small pores, the molecules of fluid are confined. Interaction between molecules
of fluid is modified, it cannot develop in the same way as if the fluid would be placed in a large
container. This effect, denoted as molecular packing, includes fluid-fluid and fluid-solid interactions.

From the macroscopic mechanical point of view, these phenomena result into volumetric defor-
mations of the porous solid. Swelling is commonly observed during sorption-desorption of several
gases such as carbon dioxide or methane in charcoal, see e.g. the paper by Levine [14] although
seminal experimental works of Meehan [15] or Bangham and Fakhroury [1] date back to the 1920s.
In the more complex context of unsaturated cement pastes, the variation of disjoining pressure
due to the variation of relative humidity is one of the most probable mechanism for dessication
induced shrinkage [3]. Disjoining pressures follow a similar scheme as adsorption effects, except
that a gas/fluid interface is involved in addition to the solid/fluid interface. Hence, shrinkage upon
dessication can be regarded as a volumetric deformation upon desorption.

In this chapter, we are going to investigate how the poromechanical theory may be refined to
take account for adsoprtion and molecular packing in nanopores. In order to provide the reader with
an illustration of these effects, we start with molecular simulations of a slit pore containing a simple
fluid. We examine the variation of pore pressure with the bulk fluid pressure to which it is connected
and with the pore width. Then, in view of the complexity of the local - atomistic - effects at this
scale, we turn towards averaged, macroscopic considerations. The formulation which is thoroughly
described in [23] introduces an effective pore pressure as a thermodynamical variable defined at
the representative elementary volume scale. Accounting for the thermodynamic equilibrium of the
system composed of the nanoporous skeleton, the interstitial and external bulk reference fluid, the
relation between the effective pore pressure and quantities measurable in experiments such as the
temperature, the bulk fluid pressure and the total and excess adsorbed mass of fluid is obtained. The
swelling of a porous material, saturated with a simple fluid, is obtained as a function of adsorption
and mechanical parameters. Finally, the case of fluid transport in such a nanoporous material is
considered. A Darcy type relation is derived, in which an effective intrinsic permeability appears.
This permeability is a function of the bulk fluid pressure and decreases as the bulk pressure increases.

In the illustrations, we will focus on activated carbon and coal saturated with a simple gas,
which are materials rather remote to cement paste. These examples should be understood as a first
step toward a formulation applicable to cement paste which is partially saturated. Physisorption
is considered only and electrical effects are neglected, which is a great simplification. Also, the
porous material is fully saturated, and preferential sorption is thus not considered (which is another
complexity of the problem). Yet, the foregoing discussion provides some insight on the pertinence of
the approach and sets the scene for more complex applications, those involved in the understanding
of the time-dependent response of cement-based materials.
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1.3 Results from molecular simulations

We consider a slit pore of width H as shown in Figure 1(a). Monte Carlo simulations are performed
in the Grand Canonical ensemble. The fluid-fluid interactions are described with a 12-6 Lennard-
Jones potential and the solid-fluid interaction by the integrated 10-4-3 potential. Numerous studies,
based on molecular simulations ( [16], [19], [13]) and DFT methods [24], focus on modeling the
spatial variations of the fluid properties, namely the fluid density, viscosity and pore pressure, at
the scale of a single nanopore. We are going to focus on the normal pressure inside the pore only.
The pore pressure P is the component perpendicular to the surface of the pore. In confined fluids,
the pressure is not a scalar and the tangent and normal pressures to the surface of the pore are
different. The normal pressure P is computed with the Viriel estimate as described by Varnik et
al. [22].

In the present calculations, the solid phase is graphite and the fluid phase is methane at 353
K. For a bulk pressure equal to 2 MPa, the evolution of the pore pressure with the pore width is
plotted in Figure 1(a). Oscillations corresponding to the structuration of the fluid into layers are
observed. This structuration effect result from the confinement of the fluid molecules between the
two infinitely rigid pore walls. Note the range of variation of the pore pressure, with very high
values for small pore sizes. Figure 1(b) shows the pore pressure versus the bulk pressure for several
pore sizes. This is clearly a nonlinear relation which is very much dependent on the pore size H.
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Figure 1.1: (a) Component of the pore pressure perpendicular to the pore wall versus the pore size,
for a bulk pressure equal to 2 MPa (methane into graphitic slit pores at 353K). Inserted figure:
Model of graphite parallel slit pore used in GCMC simulations. (b) Component of the pore pressure
perpendicular to the pore wall versus bulk pressure, for different pore sizes (methane into graphitic
slit pores at 353K). Dots stand for the molecular simulations results; solid lines are guides for the
eyes.

In summary, the GCMC molecular simulations indicate that adsorption and confinement of
the fluid molecules in the nanopores result in pressure differentials between the interstitial fluid
and the external bulk solution. From the mechanical point of view, these adsorption induced
pressure differentials are likely to provoke volumetric deformations of the nanoporous material.
The difficulty is that the pore pressure strongly depends on the geometry of the pores and on the
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pore size distribution. The smallest pores contribute the most to high pressures, only is the fluid
is not ordered in the pore. Therefore, it is rather difficult to provide an overall picture of the
mechanical effect of fluid confinement, upscaling results from molecular simulations directly. In the
following, we are going to show how the poromechanical theory may be refined in order to take into
account these singular effects in a global way, based on some energy equivalence.

1.4 Poromechanical model

In this section, we present the poromechanical model for saturated isotropic nano-porous solids.
After introducing the general nomenclature and definitions, we define the effective pore pressure.
Then, we derive the expressions for the dissipations following the theory of the thermodynamics
of porous continua proposed by O. Coussy [5]. Referring to the principle of thermodynamical
equilibrium, we derive an equation which relates the state variables of the interstitial fluid to those
of the bulk external fluid.

1.4.1 Nomenclature and definitions

The porous medium is an open thermodynamic system, which consists in the superposition of a
porous solid phase, the skeleton, and an interstitial fluid phase which can exchange fluid mass with
the external reference bulk solution. Hence, the use of a subscript s or f refers to a variable related
to the skeleton or to the interstitial fluid respectively. Moreover, the subscript b is used when
referring to the bulk solution. For instance, a quantity x, related to the phase w will write x ., with
m = f,s,b for the interstitial fluid, the skeleton and the bulk fluid respectively.

Poromechanics describes the behavior of a porous medium at the mesoscale of the representative
elementary volume (REV) at which the different variables are defined. Though, when dealing with
nanoporous solids, in which the thermodynamical state of the intersititial fluid depends locally on
the pore size and geometry, quantities defined at the nanoscale of the pores are involved as well.
Quantities related to the pore nanoscale are superscripted with the letter n. We emphasize that
the pore scale variables appearing in this work stand for the mean quantities calculated over the
volume of one pore of a specific size and geometry. For example, the pore scale fluid density P¥
which depends on the pore size and geometry, stands for the mean fluid density calculated over the
volume of the pore.

The porosity is defined as the ratio of the volume of the connected pores to the total volume
of the porous solid. In other words, the occluded pores are not accounted for in the definition of
the porosity. In the context of nanoporous materials, the proportion of occluded porosity might
depend on the nature of the saturating fluid, as only pores larger than the fluid molecules size are
accessible. We note ¢ and ¢ the lagrangian and eulerian porosity respectively, and we write:

1
o= o /Q Q0 ¢ (1.1)
©= % A Qe P (1.2)

where Qg and Q¢ stand for the lagrangian and eulerian REV. ¢P and P are, respectively, the
partial lagrangian and eulerian porosity, i.e the porosity related to all the pores of a specific size
and geometry in the REV. Relations (1) and (2) exemplify how mesoscale extensive quantities are
obtained from summation of their nanoscale counterparts over the REV.
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1.4.2 Effective pore pressure

Classical poromechanics account for the stress related to the skeleton and the one related to the fluid
separately. In a saturated porous solid, in which no confinement effects occur, the stress partition
in the eulerian frame is expressed as

2= (1—- )X + o5
=(1-p)Z—phl (1.3)

where X¢ is the global stress tensor related to the porous continuum in the eulerian frame, X¢ and
2; the skeleton and fluid stress tensors in the eulerian frame respectively, and P, the bulk fluid
pressure. Thus, the intrinsic averaged stress within the fluid is addressed through the spherical
tensor — P, 1. This comes down to consider that the fluid applies an isotropic pressure on the pores
walls, which is equal to the bulk pressure.

At the scale of the nanopores, molecular simulations clearly show that the fluid stress tensor
is anisotropic and depends locally on the size and the geometrical shape of the pores. With the
exception of some synthetic materials [11], nano-porous solids such as coal or cement paste usually
exhibit a continuous pore size distribution, with distributed pore geometries and spatial orientations.
The calculation of effective poromechanical properties based on micro-macro upscaling methods is
an open problem. Existing methods are often restricted to the description of model nanoporous
materials (e.g. in ref. [18]). Nevertheless, numerous experimental studies demonstrate that the
sorption induced strains in nanoporous solids are isotropic as long as the material structure is
isotropic [14, 7, 17]. Thus, in the case of isotropic saturated nanoporous materials, at the scale of
the REV we can consider that the interstitial fluid acts as an effective fluid exerting an isotropic pore
pressure Py on the pores walls. Let us point out that the effective pore pressure may be different
from the bulk fluid pressure P,. As a result, in the nanoporous material, the stress partition writes

L= (1 - 9)X5 + X}
(1 - )5 — Pl (1.4)

In the limit of small strains, the stress partition in the lagrangian frame reads [6]
E=(01-9)Z, — Pl (1.5)

Following a reasoning based on the conservation of the internal energy of the interstitial fluid,
the effective pore pressure can be expressed in terms of the nanoscale variables of the fluid. Because
it is an extensive quantity, the lagrangian Gibbs energy G of the interstitial fluid (defined per unit
REV volume) may be obtained by summation over the porous space:

1 n n
Gf = Q—O /QD dQ() ¢ppfgf (16)

where g% is the specific Gibbs energy (energy per unit mass) of the interstitial fluid at the pores
scale. Using the thermodynamic identity at the pores scale, the specific Gibbs energy may be
written in terms of the specific Helmholtz energy ¢} and specific fluid mechanical work wi:

gy =¥} +w}. (1.7)
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Consecutively, by substitution of (7) in (6) we obtain

1
Gr = [ a0 (00} + 0oju))
D Ja,
1
=Us4 — dQo ¢ pFwt. (1.8)

Qo Jo,

In addition, the Gibbs energy may be expressed using the thermodynamic identity at the REV scale
as follow:

Gp=Vy+oPs (1.9)
in which ¢P; stands for the interstitial fluid mechanical work at the REV scale. By identification
of equations (8) and (9), we find

1
o
The equation (10) relates the effective pore pressure to the fluid mechanical work at the pore scale.

Moreover, (10) ensures that the interstitial fluid mechanical work, expressed in terms of the REV
scale variables, equals the actual fluid mechanical work calculated from the nanoscale.

Py /Q dQo P pfw’y. (1.10)
0

1.4.3 Thermodynamical equilibrium condition

The poromechanical theory distinguishes three sources of dissipation: the skeleton dissipation, the
fluid dissipation and the thermal dissipation. The skeleton dissipation ®,, is expressed in the

lagrangian frame as [5]

dA - - ar— dv

P, =%:— g, V.M -5 >0 (1.11)

dt dt —
where A is the lagrangian strain tensor, M is the lagrangian relative flow vector of fluid mass, T
is the temperature, S and ¥ are the global entropy and global Helmholtz free energy of the porous
medium {skeleton; interstitial fluid} in the lagrangian frame respectively. This expression of the
skeleton dissipation is identical to the one encountered in standard poromechanics. Nevertheless,
in the case of the nanoporous continuum, the difference with standard poromechanics lies in the
expression of the specific Gibbs energy which involves the effective pore pressure instead of the bulk
fluid pressure:
oPy

mpy

gr =¥r + (1.12)

Let us consider now a nanoporous solid immersed in an adiabatic and infinitely rigid container
filled with a mass m of fluid. In such conditions, the system {skeleton; interstitial fluid; bulk
fluid} is an isolated thermodynamic system. In the limit of reversible transformations, the skeleton
dissipation of the open thermodynamic system {skeleton; interstitial fluid} vanishes and we can
write

av dA - o dr

—L V.M =o. (1.14)
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By identifying the specific Gibbs energy gy to the chemical potential 1y of the interstitial fluid, and
using (14), we can write the total differential of the Helmholtz free energy of the system {skeleton;
interstitial fluid}:

d¥ =3 : dA + pydmy — SdT. (1.15)

The differential of the Helmholtz free energy of the bulk fluid writes as
d¥y, = —Pydoy + pupdmy — SydT (116)

in which ¢ is the ratio of the volume occupied by the bulk fluid (i.e the volume of the container
minus the volume of the porous solid) to the volume of the container. In addition, up, my and Sy, are
the chemical potential, the mass and the entropy of the bulk fluid respectively. The conservation
of the total fluid mass m; = my + my, in the isolated system implies dmy = —dm;. Therefore, (16)
may be rearranged as

d\I/b = —Pbd¢b — ubdmf — deT. (1.17)

The isolated system {skeleton; interstitial fluid; bulk fluid} reaches thermodynamical equilibrium
when the global Helmholtz free energy of the system, ¥, = ¥ + ¥ is minimal. Using relations (15)
and (17), we can express the thermodynamical equilibrium condition that must be satisfied by the
fluid phase as the equality of the chemical potential of the interstitial fluid and bulk fluid:

[ = - (1.18)

In addition, the chemical potential p of the interstitial fluid at the REV scale, may be obtained
by summation of the nanoscale chemical potential p; over the porous space:

7
pp=— [ dQo¢?plu}. (1.19)
P = s o FH

The thermodynamical equilibrium condition (18) is then satisfied if u} = y,. When the system is
at equilibrium, the bulk solution is in chemical equilibrium with the interstitial fluid in each pore.
Interestingly, the poromechanical model yields the same equilibrium condition as most molecular
simulations dealing with pore scale modeling. Indeed, to address the thermodynamical state of
fluids at equilibrium, Grand Canonical Monte-Carlo simulation methods assume the equality of
the chemical potential throughout the fluid phase [9]. Furthermore, Molecular Dynamics studies
on fluid sorption in porous media, which do not impose any a priori equilibrium condition, yield
results in fair agreement with GCMC methods [21]. As a consequence, the equality of the chemical
potentials throughout the fluid phase stands as a consistent thermodynamical equilibrium condition.

1.4.4 Constitutive equation of the effective pore pressure

Accounting for the equation of conservation of the fluid mass (14), a rearranged expression for the
skeleton dissipation can be obtained:

<I>S:Z:% dmy AT ¥ _

We may also write

S 5.t myss (121
U=y, + mfz/)f. (1.22)
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In the limit of reversible transformations (no dissipation), by substituting (12), (21) and (22) in
(20), we obtain
AV, = X : dA + Ppde — S.dT. (1.23)

This is the general expression of the differential of the Helmholtz free energy of the skeleton.
Now, let ¢* be the corrected porosity defined as

1 Py
o* = —/ dQdg —¢P. 1.24
Qo Jo, Pb (1.24)
Thus we have my = py¢* and by substituting in (12), we obtain a rearranged expression of the
thermodynamic identity:
PPy

Po*
By considering the specific Gibbs energy equal to the chemical potential, g5 = jif, and if we account
for the thermodynamical equilibrium condition (18), then we can re-write the specific Helmholtz
free energy of the fluid as follow:

gr = Y5+ (1.25)

Y =V + Yint (1.26)
in which v, is a specific interaction energy related to the effects of adsorption and molecular
packing of fluid molecules in the nanopores, defined as

B P (¢> 7
wlnt b b ¢* . (1.2 )

In the same fashion, we can decompose the specific entropy of the interstitial fluid as
Sp = Sp + Sing (1.28)

in which sj, is the interaction entropy due to the effects of adsorption and confinement of fluid
molecules in the nanopores. This quantity and the interaction free energy will be discussed further
in the last section of this chapter.
In the limit of reversible transformations, by substituting (21), (22), (26), (27) and (28) in (20),
we obtain
dVs =X : dA — ¢"dP, + d(¢Pr) — (Ss + pp@" sing )dT (1.29)

This is the expression of the Helmholtz free energy of the skeleton in the restricted case of thermo-
dynamical equilibrium of the fluid phase. Upon comparing (29) and (23), we find the constitutive
equation of the effective pore pressure and interaction entropy in its incremental form

¢dPy — ¢*dPy — pp¢” sintdT = 0. (1.30)

Relation (30) relates the quantities resulting from adsorption and confinement of the fluid molecules,
(Pt ; sint), to measurable quantities (Py; T'; ¢; ¢*). In the limit of isothermal transformations, the
incremental constitutive equation reduces to

dPy = (¢> dP,. (1.31)
¢

The ratio ¢*/¢ is greater than unity if the mass of interstitial fluid is greater than the mass of

bulk fluid occupying the same volume. In other terms, the ratio ¢*/¢ quantifies the degree of

confinement of the interstitial fluid. Consecutively, the more the interstitial fluid is confined, the

higher the effective pore pressure.
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1.4.5 Effect on the volumetric strain

In reversible and isothermal conditions, the differential of the Helmholtz free energy of the nanoporous
skeleton is

d¥, =X : dA + Prdg. (1.32)
Classically, in the limit of a reversible response, the constitutive equations read
ov
Yij = aAS = {(K +b’N)e — bN¢} 6;; + 2Ge;; (1.33)
ij
oV,
Py = - = —bNe+ N 1.34
"= B0 e+ N¢ (1.34)

where A;; = e;; + (€¢/3) d;5, K is the apparent modulus of incompressibility, G the shear modulus,
b and N the Biot coefficient and modulus respectively.

Consider now that the nanoporous solid is placed in a container filled with a fluid at bulk
pressure P,. As a result, the stress tensor ¥ reduces to the hydrostatic bulk pressure acting on the

skeleton:
Y =-PF1. (1.35)

Moreover, the Biot coefficient is related to the apparent modulus of incompressibility K and to the

modulus of the material composing the skeleton matrix Kj:
K
b=1——. 1.
= (1.36)

From the above relations and from the constitutive equation of the effective pore pressure 31,
equations (33) and (34), in their incremental form, yield the volumetric deformation increment,
denoted as de, as a function of the increment of bulk pressure:

= {(1- ) ijan s

The swelling strain € is obtained by summation of de between Py and Py:

P, *
e—eoz/IDbOCl[(BJ{(l—IIé)Z—l} (1.38)

1.4.6 Effect on the permeability

In order to arrive at the equivalent of Darcy’s Law for nanoporous materials, let us consider the
fluid dissipation. In the eulerian frame, it reads [5]

P = {—66(91% +(f - ’Vf)} A0 >0 (1.39)

where §e(gf)T is the eulerian gradient of specific Gibbs energy of the fluid at temperature held
constant, f and ¥y are the body force density and fluid acceleration respectively, w is the eulerian

relative flow vector of fluid mass. Let v = go(V}- — V) be the filtration vector in the eulerian frame.
The relative flow vector of fluid mass is related to the filtration vector as

L my
W= —"7. (1.40)
¥®
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By definition, the eulerian fluid mass m$ and eulerian porosity ¢ are related to their lagrangian
counterparts as

m%dQ° = mydQo (1.41)

@dQ° = pd€Y. (1.42)

Using the above definitions and noting that my = py¢*, we write the flow vector of mass in terms
of the porosity ratio as follows

W= Pb (i) v. (143)

In addition, the differential of the specific free energy reads

dgy = <p:;> dP; — sdT. (1.44)

By substituting (43) and (44) in (39), we obtain a rearranged expression of the fluid dissipation:

e — e ¢* v — —
i~ {-v@+n (L) r-m} e (1.45)
Darcy’s law defines a linear relation between the filtration 7 and the force that drives the filtration.
According to equation (45), Darcy’s law reads

7= n{-Fep+m (%) 7~ (1.46)
where £ is the permeability of the nanoporous material.

Let us consider a bulk pressure gradient driving a flow through a nanoporous membrane, which
separates two bulk solutions. In the permanent regime, on each side of the membrane, we assume
that the interstitial fluid located at the borders of the nanoporous material is in thermodynamical
equilibrium with the neighboring bulk solution. Consecutively, by using equation (30) we relate the
bulk pressure differential to the effective pore pressure differential as follows

*

d(Py)r = (i) d(Py)r (1.47)
Substituting 47 in the Darcy law leads to the following expression
7= ng {=VB) + (7 =77} (1.48)

in which k¢ is the effective permeability of the nanoporous material, defined as

o= (5 ) (1.49)

Therefore, the effective permeability, as it accounts for fluid confinement effects, is greater than the
actual permeability x if the porosity ratio is greater than unity. In other terms, at a given bulk
pressure gradient, the more the interstitial fluid is confined, the greater the flux of fluid mass and
the greater the effective permeability.
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Figure 1.2: Sketch of the fluid density profile in a nanopore. The grey colored area stands for
the total number of interstitial fluid n, present in the pore. The dotted area stands for the excess
quantity of interstitial fluid which corresponds to the excess number of moles n,, of the Gibbs
adsorption isotherm.

1.5 Adsorption induced swelling and permeability change in
nanoporous materials

Let us show first how the effective pore pressure, the effective permeability and the swelling strain
may be deduced from adsorption measurements. As shown in Figure 2, the Gibbs adsorption
isotherm stands as a measurement of the number n., of adsorbate moles that exceeds the number
of fluid molecules at bulk conditions. Let n, be the total number of moles of interstitial fluid (see
Figure 2). Then, the ratio of porosities may be expressed as

¢

5 == Mo /1) ™ (1.50)
so that the effective pore pressure and effective permeability write as
Py
Py — Pyo = dPy(1 —ng/n,) " (1.51)
Pyo
kp=(1-ne/n) "k (1.52)

Equations (51) and (52) show that, at constant bulk pressure, the effective pore pressure and
effective permeability increase with the ratio n.,/n,. In the limit of weak adsorption and weak
confinement effects, n, > n., as the interstitial fluid is in the same thermodynamical sate as the
bulk fluid. In such conditions, equations (51) and (52) indicate that the effective pore pressure and
effective permeability equal the bulk fluid pressure and the actual permeability respectively.
Substituting (50) in (38) yields the expression of the volumetric strain as a function of n, and

Nyt
P qp, K)

€— ey = =2 (1-=)(1-n./n, —1—1}. 1.53

o= [ R (1-%) a=nam) (1.53)
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Data source  Gas type my (g) ps (kg.m=3) ) K (GPa) K, (GPa)

Day et al CO, 4.1 1358 0.148 5.64* 30.1%
Ottiger et al CH, 40.81 1265 0.1379* 3.0 30.1¢
Ottiger et al CO, 40.81 1265 0.1194* 3.0 30.1¢

* Adjusted. a Assumed.

Table 1.1: Summary of model parameters for coal swelling

As a result, knowledge of the nanoporous material poroelastic properties K and K, and measure-
ment of the sorbed fluid quantities n., and n, are necessary in order to compute the adsorption
induced volumetric strain. Most experimental studies of gas sorption on porous materials focus on
the measurement of the Gibbs adsorption isotherm [20]. Experimental adsorption studies do not
usually provide the total number of moles of interstitial fluid contained in the porous adsorbent
during sorption. The total number of interstitial fluid moles can still be estimated assuming that
the porous material undergoes small strains on sorption, which is consistent with most experimen-
tal studies found in the literature. Under the approximation of small strains, the porosity of the
material can be considered as constant and thus we have

N Ve
Ny ™ Ny + M
Ty 2 Ny + O Mt (1.54)
- 1—¢) M ps

where Vj is the connected porous volume of the material, M the molar mass of the adsorbed gas,
ms the adsorbent sample mass and p; the density of the material composing the solid matrix of the
porous adsorbent. In the following paragraphs, we use relation (54) to compute the total number
of interstitial fluid moles from adsorption isotherms data.

Experimental data on the swelling of saturated cement paste are rather scarce in the literature.
In order to provide the reader with some validation studies, we are going to focus on carbon dioxyde
and methane adsorption in coal. The fluids considered are simple fluids and a typical pore size
distribution of coal is not that far from cement paste, with pore sizes in the nanometer range. This
setting has the merit of providing a simple configuration on which future models should perform
well at least.

1.5.1 Comparison with data from Day and co-workers

[7, 8] performed adsorption experiments and swelling measurements on several Australian bitumi-
nous coals. More specifically, they used digital cameras and a pressure cell equipped with sight
windows to measure the swelling strain of a Bowen basin coal sample during sorption of carbon
dioxide, at T' = 55°C and up to P, = 15MPa [8]. In addition, they performed CO, adsorption
isotherms measurements on other Bowen basin coal samples at 7' = 53°C and up to P, = 16 MPa
with a gravimetric technique [7]. To compare the theoretical model predictions with the swelling
data from [8], we use the adsorption data from [7] corresponding to the Bowen basin coal sample
referred to as “Qld 5”7, whose porosity ¢ = 0.148 was measured by helium pycnometry. Figure
3(a) shows the measured excess adsorption isotherm n., of CO, on the Qld 5 sample as well as
the quantity n, deduced from n., and ¢ = 0.148 using the relation (54). The volumetric strain is
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Figure 1.3: (a) Adsorption isotherm of CO, on a Bowen basin coal. White circles stand for the
excess adsorption isotherm measured by [7]. Black squares stand for the total number of moles of
interstitial fluid, computed from n., data and the value of the coal sample porosity reported in [7].
The lines are guides for the eye. (b) Evolution of the swelling strain with the bulk pressure. White
circles stand for the swelling measured by [8]. The black squares represent the fit of the model
prediction.The solid line is a guide for the eye.

then computed using equation (38) and fitted to the swelling measurements from [8] with K and
K as adjustable parameters. Table 1 summarizes the model parameters used in the calculations.
Figure 3(b) superposes the experimental data with the fitting curve obtained for K = 5.64 GPa
and Ky = 30.1 GPa. For coal, the static Young modulus and Poisson ratio respectively range from
1 GPa to 3 GPa and from 0.25 to 0.45 [25, 10]. Consecutively, the fitted incompressibility modulus
of the porous skeleton, K = 5.64 GPa, falls in the range of the incompressibility modulus of coals.
Furthermore, the incompressibility modulus of the solid matrix K; = 30.1 GPa is consistent with
the typical value of 35 GPa found in the literature for graphite [12, 4]. In addition, as figure 3(b)
demonstrates, the model predicts the evolution of the swelling strain with the bulk pressure in fair
agreement with experimental observations.

1.5.2 Comparison with data from Ottiger and co-workers

[17] performed adsorption isotherms measurements of pure CO,, pure CH, and (CO,, CH,) mix-
tures on bituminous coal samples from the Sulcis Province (Italy) at 7' = 45°C and up to P, =
19 MPa, coupling manometric and gravimetric techniques. In addition, they used a pressure cell
equipped with sight windows and a digital camera to measure the swelling strain during sorption.
In their paper, Ottiger et al. do not report any measurement of the coal samples porosity. As a
consequence, we set the solid matrix incompressibility modulus to K = 30.1 GPa, as found in the
fitting of the data from S. Day et al, and we fit the model predictions to the swelling data with
K and ¢ as adjustable parameters. Figures 4 report the results for pure pure CH,. The fitted
parameters read K = 3.0 GPa, ¢ = 0.1379. We observe a good agreement between the theoretical
predictions and the experimental data.
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Figure 1.4: (a)Adsorption isotherm of CH, on a Sulcis province coal. White circles stand for the
excess adsorption isotherm measured by [17]. Black squares stand for the total number of moles of
interstitial fluid, computed from the n., data and the coal sample porosity ¢ = 0.1379, obtained
from the fit of the swelling data. The lines are guides for the eye. (b) Evolution of the swelling
strain with the bulk pressure. White circles stand for the swelling measured by [17]. The black
squares represent the fit of the model prediction. The solid line is a guide for the eye.

1.5.3 Variation of effective permeability

According to equation (52), the knowledge of the excess number of adsorbed moles 7., and the
total number of interstitial fluid moles is necessary to compute the effective permeability. Hence,
figure 5 reports the predicted permeability ratio x;/k, calculated from the adsorption data of [7]
and [17]. Equation (54) provides an approximation of the total number of interstitial fluid moles.
In this figure, we may observe that the effective permeability is always higher than the permeability
in the absence of confinement. On the other side, the mass density of the fluid increases with the
pressure, which explains why the effective permeability is decreasing with an increase of the bulk
pressure.

1.6 Discussion - Interaction energy and entropy

According to equation (26), The specific interaction energy is defined as the difference between the
specific Helmholtz energies of the interstitial and bulk fluids when the system reaches equilibrium. If
we consider isothermal transformations, equations (27) and (31) show that the sign of the interaction
energy is given by the following function F':

Py
HR%#HMH—A dP, () (1.55)

in which f is the function defined as

*

ﬂmz%zuwdmﬂ (1.56)



1.6. DISCUSSION - INTERACTION ENERGY AND ENTROPY 15

100 , . .
i
°
'n —— CO,,Dayetal
"\3\\] -8 CO,, Ottiger et al.
A —--  CH,, Ottiger et al.
“ 10l . g
\‘“ - v\\v \\*D\ i
* v \1\
v
v VD%\\
R
oy
D\. ] A vy .
0- g hs o ® o
1 L L L
0 5 10 15 20
P, (MPa)

Figure 1.5: Evolution of the permeability ratio xy/x with the bulk pressure in semi-log scale. The
permeability ratio is deduced from adsorption data found in the literature: black dots stand for the
CO, adsorption data from [7]; white squares stand for the CO, adsorption data from [17]; black
triangles stand for the CH, adsorption data from [17]. Lines are guides for the eyes.

The function F' is always negative if the function f monotonically decreases with P,. The derivative
of f with respect to P, reads

a o d (N
i = (1 —ng/n,)"2 P, (n ) (1.57)

Experimental data found in the literature and reported in figures 3(a) and 4(a) clearly shows
that the ratio n.,/n, decreases with P,. Consequently, we deduce from equation (57) that f is a
monotonic decreasing function of P, and thus F' is negative. As a result, the interaction energy is
negative as well and we find:

Y5 — by = ting < 0. (1.58)
Therefore, because of fluid-solid and fluid-fluid interactions in the nanopores, the interstitial fluid
cedes free energy to the skeleton under the form of mechanical work, which provokes the swelling
phenomenon. When adsorption and confinement effects become negligible, the ratio n.,/n, tends
to 0 and so does the interaction energy. In such conditions, the interstitial and bulk fluid specific
Helmholtz energies are equal.

A simplified poromechanical model which addresses fluid adsorption and molecular packing
effects in nanoporous materials has been proposed by Pijaudier-cabot and co-workers [19]. The
interaction free energy was introduced directly in the formulation, accounting for the same thermo-
dynamical equilibrium condition and an equivalent form of equation (29) was obtained:

AV, =X : dA + Pyd¢™ — dWipg (1.59)

where W;;¢ is the interaction energy, related to the specific interaction energy i as Wing = m ¢int-
While the approach was quite similar to the present study, the effective pore pressure was not
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introduced in this formulation. The interaction energy W;,; was directly related to the true pore

pressure at the pore scale. More specifically, the interaction energy was set as a function of the

corrected porosity ¢* only, and consecutively an interaction pressure Pt was defined as:
_ 8\IIint

nt — ad)*

This interaction pressure plays exactly the same role as the effective pore pressure. A prototype

constitutive equation was also postulated:

B (1.60)

Pt = —kn., (1.61)

where k is a proportionality constant. This empirical constitutive relation was based on the exper-
imental observation of Levine, who pointed out the relation of proportionality between the Gibbs
adsorption isotherm and the swelling strain of coal at low bulk pressures [14].

As observed in the comparisons with experimental results, this approximation breaks down at
high bulk pressures, as the swelling strain is monotonic whereas the Gibbs adsorption isotherm
reaches a maximum and then decreases (see figure 3). Therefore, the knowledge of the adsorbed
excess number of moles n., is not sufficient to accurately predict the pressure inducing the swelling.

Let us now focus on the sign of the interaction entropy sj,; in the general case of non-isothermal
transformations. By rearranging equation (30), we obtain

1 ¢ dPy dP,
Sint = o <¢* a7 dT) . (1.62)

Several experimental studies point out that the swelling strain, as well as the adsorbed excess
number of fluid molecules, decrease upon increasing the temperature [17, 2]. If we consider the
paradigm of §0.4.3, these results suggest that the effective pore pressure P; and the number of bulk
fluid moles in the external bulk solution, n;, respectively decreases and increases with temperature
(dPy/dT < 0 and dny/dT > 0). Moreover, in the case of small swelling strain, the volume V
occupied by the external bulk fluid (i.e the volume of the fluid container minus the volume of the
porous solid) does not significantly vary upon swelling (dV}, ~ 0). Consecutively, assuming the bulk
fluid behaves as an ideal gas, the derivative of the bulk fluid pressure with respect to temperature

reads
de ~ R?’Lb gdnb

dT v, V, dT°
In such conditions, the bulk fluid pressure increase with temperature (dP,/dT > 0). Therefore,
considering the above remarks and the expression of the interaction entropy (62), we find:

(1.63)

Sint < 0. (1.64)
By using the definition of the interaction entropy (28), relation (64) leads to
S < Sp. (1.65)

This result makes sense as the order in the fluid continuum increases due to the confinement of
the fluid molecules in the nanopores, and consecutively, the increase of the fluid density. Thus the
interaction entropy quantifies the loss of entropy of the interstitial fluid with respect to the bulk
reference state. When adsorption and confinement effects become negligible, as the ratios ¢/¢* and
P; /P, asymptotically tends to unity. In these conditions, equation (62) shows that the interaction
entropy vanishes.
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1.7 Conclusions

We have shown how the poromechanical theory should be refined in the context of saturated isotropic
nanoporous solids.

e Because of fluid adsorption and confinement effects in the nanopores, the interstitial fluid
pressure is greater than the bulk fluid pressure Py, which eventually leads to the swelling of
the porous solid. We have defined an effective pore pressure Py in order to account for this
effect of adsorption and molecular packing of fluid in small pores.

e When a nanoporous material is immersed in a container filled with a bulk fluid, at thermo-
dynamical equilibrium the interstitial fluid is in chemical equilibrium with the external bulk
solution. The chemical potentials throughout the fluid phase are equal.

e In the case of isothermal sorption induced swelling of nanoporous materials, the effective pore
pressure Py has been related to the excess number of adsorbed moles n.,, the total number
of moles of interstitial fluid n, and to the bulk pressure P,.constitutive

e The sorption induced volumetric strain is computed by inserting the effective pressure in
the standard poromechanical constitutive equations for the solid phase. A fair agreement
between the fit of the theroretical predictions and several sets of experimental data found in
the literature is obtained.

Full experimental validation of the model is left for future work, before addressing more complex
issues dealing with non satutation of the pores, complex fluids such as water and electrical effects
due to the presence of ions in the interstitial solution of cement paste.
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