M. Aida, T. Vernoux, M. Furutani, J. Traas, and M. Tasaka, Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo, Development, vol.129, pp.3965-3974, 2002.

L. Bach, The plant very long chain hydroxy fatty Acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development, Proc. Natl. Acad. Sci, vol.105, pp.14727-14731, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02664902

S. Barik, Immunophilins: for the love of proteins, Cell. Mol. Life Sci, vol.63, pp.2889-2900, 2006.

S. Baud, Y. Bellec, M. Miquel, C. Bellini, M. Caboche et al., gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase, EMBO Rep, vol.5, pp.1-6, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682755

S. Baud, V. Guyon, J. Kronenberger, S. Wuillè-me, M. Miquel et al., Multifonctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acids elongation and embryo development in Arabidopsis, Plant J, vol.33, pp.75-86, 2003.

F. Beaudoin, X. Wu, F. Li, R. P. Haslam, J. E. Markham et al., Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase, Plant Physiol, vol.150, pp.1174-1191, 2009.

E. Benkova, M. Michniewicz, M. Sauer, T. Teichmann, D. Seifertova et al., Local, efflux-dependent auxin gradients as a common module for plant organ formation, Cell, vol.115, pp.591-602, 2003.

M. J. Bissell and D. Radisky, Putting tumours in context, Nat. Rev. Cancer, vol.1, pp.46-54, 2001.

G. H. Borner, D. J. Sherrier, T. Weimar, L. V. Michaelson, N. D. Hawkins et al., Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts, Plant Physiol, vol.137, pp.104-116, 2005.

R. Bouchard, A. Bailly, J. J. Blakeslee, S. C. Oehring, V. Vincenzetti et al., Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins, J. Biol. Chem, vol.281, pp.30603-30612, 2006.

Y. Boutte, M. T. Crosnier, N. Carraro, J. Traas, and B. Satiat-jeunemaitre, The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins, J. Cell Sci, vol.119, pp.1255-1265, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00189089

S. Casson, M. Spencer, K. Walker, L. , and K. , Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis, Plant J, vol.42, pp.111-123, 2005.

M. Chen, G. Han, C. R. Dietrich, T. M. Dunn, and E. B. Cahoon, The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase, Plant Cell, vol.18, pp.3576-3593, 2006.

M. Chen, J. E. Markham, C. R. Dietrich, J. G. Jaworski, and E. B. Cahoon, Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis, Plant Cell, vol.20, pp.1862-1878, 2008.

A. Colon-carmona, R. You, T. Haimovitch-gal, and P. Doerner, Technical advance: Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein, Plant J, vol.20, pp.503-508, 1999.

M. D. Curtis and U. Grossniklaus, A gateway cloning vector set for high-throughput functional analysis of genes in planta, Plant Physiol, vol.133, pp.462-469, 2003.

M. Da-costa, L. Bach, I. Landrieu, Y. Bellec, O. Catrice et al., , 2006.

, Arabidopsis PASTICCINO2 is an antiphosphatase involved in regulation of cyclin-dependent kinase A, Plant Cell, vol.18, pp.1426-1437

T. Desprez, M. Juraniec, E. F. Crowell, H. Jouy, Z. Pochylova et al., Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, vol.104, pp.15572-15577, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00198484

T. M. Dunn, D. V. Lynch, L. V. Michaelson, and J. A. Napier, A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana, Ann. Bot. (Lond.), vol.93, pp.483-497, 2004.

M. Estelle and C. Somerville, Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology, Mol. Gen. Genet, vol.206, pp.200-206, 1987.

J. D. Faure, P. Vittorioso, V. Santoni, V. Fraisier, E. Prinsen et al., , 1998.

, The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation, Development, vol.125, pp.909-918

R. Franke, R. Hofer, I. Briesen, M. Emsermann, N. Efremova et al., The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds, Plant J, vol.57, pp.80-95, 2009.

J. Friml, A. Vieten, M. Sauer, D. Weijers, H. Schwarz et al., Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis, Nature, vol.426, pp.147-153, 2003.

A. Fu, Z. He, H. S. Cho, A. Lima, B. B. Buchanan et al., A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, vol.104, pp.15947-15952, 2007.

M. Furutani, T. Vernoux, J. Traas, T. Kato, M. Tasaka et al., PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis, Development, vol.131, pp.5021-5030, 2004.

N. Geldner, N. Anders, H. Wolters, J. Keicher, W. Kornberger et al., The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth, Cell, vol.112, pp.219-230, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00134323

N. Geldner, J. Friml, Y. D. Stierhof, G. Jurgens, and K. Palme, Auxin transport inhibitors block PIN1 cycling and vesicle trafficking, Nature, vol.413, pp.425-428, 2001.

M. Grebe, J. Xu, W. Mobius, T. Ueda, A. Nakano et al., Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes, Curr. Biol, vol.13, pp.1378-1387, 2003.

G. Haberer, S. Erschadi, and R. A. Torres-ruiz, The Arabidopsis gene PEPINO/PASTICCINO2 is required for proliferation control of meristematic and non-meristematic cells and encodes a putative anti-phosphatase, Dev. Genes Evol, vol.212, pp.542-550, 2002.

Y. Harrar, Y. Bellec, C. Bellini, and J. D. Faure, Hormonal control of cell proliferation requires PASTICCINO genes, Plant Physiol, vol.132, pp.1217-1227, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02676219

Y. Harrar, C. Bellini, and J. D. Faure, FKBPs: At the crossroads of folding and transduction, Trends Plant Sci, vol.6, pp.426-431, 2001.

A. M. Heape, J. J. Bessoule, F. Boiron-sargueil, B. Garbay, C. et al., Sphingolipid metabolic disorders in Trembler mouse peripheral nerves in vivo result from an abnormal substrate supply, J. Neurochem, vol.65, pp.1665-1673, 1995.

A. M. Heape, H. Juguelin, F. Boiron, C. , and C. , Improved one-dimensional thin-layer chromatographic technique for polar lipids, J. Chromatogr. A, vol.322, pp.391-395, 1985.

I. Hillig, M. Leipelt, C. Ott, U. Zahringer, D. Warnecke et al., Formation of glucosylceramide and sterol glucoside by a UDP-glucose-dependent glucosylceramide synthase from cotton expressed in Pichia pastoris, FEBS Lett, vol.553, pp.365-369, 2003.

D. Hoekstra, O. Maier, J. M. Van-der-wouden, T. A. Slimane, and S. C. Van-ijzendoorn, Membrane dynamics and cell polarity: The role of sphingolipids, J. Lipid Res, vol.44, pp.869-877, 2003.

T. Igaki, R. A. Pagliarini, and T. Xu, Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila, Curr. Biol, vol.16, pp.1139-1146, 2006.

A. Izhaki and J. L. Bowman, KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis, Plant Cell, vol.19, pp.495-508, 2007.

Y. Jaillais, I. Fobis-loisy, C. Miege, C. Rollin, and T. Gaude, , 2006.

, AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis, Nature, vol.443, pp.106-109

P. D. Jenik and M. K. Barton, Surge and destroy: The role of auxin in plant embryogenesis, Development, vol.132, pp.3577-3585, 2005.

J. Joubes, S. Raffaele, B. Bourdenx, C. Garcia, J. Laroche-traineau et al., The VLCFA elongase gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling, Plant Mol. Biol, vol.67, pp.547-566, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01607787

T. Kajiwara, M. Furutani, K. Hibara, and M. Tasaka, The GURKE gene encoding an acetyl-CoA carboxylase is required for partitioning the embryo apex into three subregions in Arabidopsis, Plant Cell Physiol, vol.45, pp.1122-1128, 2004.

M. Laloi, Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells, Plant Physiol, vol.143, pp.461-472, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170585

L. J. Macala, R. K. Yu, A. , and S. , Analysis of brain lipids by high performance thin-layer chromatography and densitometry, J Lipid Res, vol.24, pp.1243-1250, 1983.

J. Marion, L. Bach, Y. Bellec, C. Meyer, L. Gissot et al., Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings, Plant J, vol.56, pp.169-179, 2008.

J. E. Markham and J. G. Jaworski, Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase highperformance liquid chromatography coupled to electrospray ionization tandem mass spectrometry, Rapid Commun. Mass Spectrom, vol.21, pp.1304-1314, 2007.

J. E. Markham, J. Li, E. B. Cahoon, and J. G. Jaworski, Plant sphingolipids: Separation and identification of major sphingolipid classes from leaves, J. Biol. Chem, vol.281, pp.22684-22694, 2006.

A. A. Millar and L. Kunst, Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme, Plant J, vol.12, pp.121-131, 1997.

S. Mongrand, J. Morel, J. Laroche, S. Claverol, J. P. Carde et al., Lipid rafts in higher plant cells: Purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane, J. Biol. Chem, vol.279, pp.36277-36286, 2004.

G. K. Muday, W. A. Peer, and A. S. Murphy, Vesicular cycling mechanisms that control auxin transport polarity, Trends Plant Sci, vol.8, pp.301-304, 2003.

K. Nikovics, T. Blein, A. Peaucelle, T. Ishida, H. Morin et al., The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis, Plant Cell, vol.18, pp.2929-2945, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02379724

L. K. Nyasae, A. L. Hubbard, and P. L. Tuma, Transcytotic efflux from early endosomes is dependent on cholesterol and glycosphingolipids in polarized hepatic cells, Mol. Biol. Cell, vol.14, pp.2689-2705, 2003.

J. J. Reina-pinto, D. Voisin, S. Kurdyukov, A. Faust, R. P. Haslam et al., Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process, Plant Cell, vol.21, pp.1252-1272, 2009.

H. Schaller, New aspects of sterol biosynthesis in growth and development of higher plants, Plant Physiol. Biochem, vol.42, pp.465-476, 2004.

C. Smyczynski, F. Roudier, L. Gissot, E. Vaillant, O. Grandjean et al., The C terminus of the immunophilin PASTICCINO1 is required for plant development and for interaction with a NAC-like transcription factor, J. Biol. Chem, vol.281, pp.25475-25484, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02663337

T. Steinmann, N. Geldner, M. Grebe, S. Mangold, C. L. Jackson et al., Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF, Science, vol.286, pp.316-318, 1999.

R. Swarup, J. Friml, A. Marchant, K. Ljung, G. Sandberg et al., Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex, Genes Dev, vol.15, pp.2648-2653, 2001.

H. Tanaka, P. Dhonukshe, P. B. Brewer, and J. Friml, Spatiotemporal asymmetric auxin distribution: A means to coordinate plant development, Cell. Mol. Life Sci, vol.63, pp.2738-2754, 2006.

B. Titapiwatanakun, ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis, Plant J, vol.57, pp.27-44, 2009.

B. S. Treml, S. Winderl, R. Radykewicz, M. Herz, G. Schweizer et al., The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo, Development, vol.132, pp.4063-4074, 2005.

E. Truernit, H. Bauby, B. Dubreucq, O. Grandjean, J. Runions et al., High-resolution wholemount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis, Plant Cell, vol.20, pp.1494-1503, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663189

Y. Tsegaye, C. G. Richardson, J. E. Bravo, B. J. Mulcahy, D. V. Lynch et al., Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate, J. Biol. Chem, vol.282, pp.28195-28206, 2007.

M. Valachovic, B. M. Bareither, M. Shah-alam-bhuiyan, J. Eckstein, R. Barbuch et al., Cumulative mutations affecting sterol biosynthesis in the yeast Saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid profiles, Genetics, vol.173, pp.1893-1908, 2006.

T. Vernoux, J. Kronenberger, O. Grandjean, P. Laufs, and J. Traas, PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem, Development, vol.127, pp.5157-5165, 2000.

P. Vittorioso, R. Cowling, J. D. Faure, M. Caboche, and C. Bellini, Mutation in the Arabidopsis PASTICCINO1 gene, which encodes a new FK506-binding protein-like protein, has a dramatic effect on plant development, Mol. Cell. Biol, vol.18, pp.3034-3043, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02689908

V. Willemsen, J. Friml, M. Grebe, A. Van-den-toorn, K. Palme et al., Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function, Plant Cell, vol.15, pp.612-625, 2003.

H. Zheng, O. Rowland, and L. Kunst, Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis, Plant Cell, vol.17, pp.1467-1481, 2005.

, Supplemental Table 1. Relative sterol and sterol glycoside levels in pas1 and pas3 mutants Col 0

, Sterols and Sterol-glycosides are expressed as % of total lipid mass. Each value is the mean of several experiments (n) ±SEM