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Abstract. A spatial geometrically exact finite element based on the fixed-pole approach of an arbitrary order is
presented. In contrast to the original formulation by Bottasso and Borri, this formulation uses standard kinematic
unknowns and is therefore combinable with standard finite elements. Preliminary results show that when updating
displacements and rotations at integration points, this formulation may yield more accurate results.
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1 INTRODUCTION

For a load-free beam of length L in motion the power balance reads

∫ L

0

[
(v′ + r̂′w) · n + w′ ·m

]
dx+

∫ L

0

(
v · k̇ + w · π̇

)
dx = 0 , (1)

where n and m are vectors of spatial stress and stress-couple resultants, k = Aρv and π = RJρR
tw are the

vectors of specific momentum and angular momentum with respect to the beam reference axis at a cross-section, r
and R are the position vector of the reference line and the orientation tensor of the principal axes of the cross-section
with respect to their position in the reference state, a dot and a dash indicate differentiation with respect to time t
and the beam-length parameter x, a superimposed hat indicates a cross-product operator, v = ṙ and w for which
ŵ = RtṘ are the velocity and the angular velocity vectors, A and ρ are the cross-sectional area and density of the
material, and Jρ the tensor of cross-sectional moments of inertia.
Originally [1], only the velocity fields in the power-balance equation have been interpolated using Lagrangian poly-
nomials Ii(x) via v(x) =

∑N
i=1 I

i(x)vi and w(x) =
∑N
i=1 I

i(x)wi. For arbitrary nodal velocities, this has
resulted in the nodal balance gi ≡ qii + qim = 0 at any node i = 1, . . . , N with the nodal internal and inertial force
vectors qii and qim as

qii =

∫ L

0

[
Ii

′
I 0

−Iir̂′ Ii
′
I

]{
n
m

}
dx and qim =

∫ L

0

Ii
{
k̇
π̇

}
dx , (2)

The system of non-linear equations gi ≡ qii + qim = 0 (for i = 1, . . . , N ) may now be solved for the kinematic
unknowns r(x) and R(x) using the Newton–Raphson solution procedure in which the linear part of the changes in
these unknowns may be interpolated in a manner which is kinematically consistent with the applied interpolation
for v(x) and w(x). This approach turns out to be incompatible with algorithmic preservation of strain invariance
with respect to a rigid-body motion, or simultaneous conservation of energy and the momentum vectors during a
free motion of an unloaded beam.
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2 THE FIXED-POLE THEORY
In [2, 3] Borri and Bottasso thoroughly investigated the idea of replacing the stress-couple resultant m and the
specific angular momentum π, which are defined with respect to the beam reference axis at a cross-section, with
another stress-couple resultant m̄ and specific angular momentum π̄, which are to be defined with respect to a unique
point for the whole structure - the fixed pole - naturally taken to be the origin of the spatial frame, i.e. m̄ = r×n+m

and π̄ = r × k + π. Substituting this into (1) results in
∫ L
0

(v̄′ · n + w′ · m̄) dx +
∫ L
0

(
v̄ · k̇ + w · ˙̄π

)
dx = 0,

where the ’new’ velocity v̄ = v + r ×w is nothing but the relative velocity vector of the reference line at a cross-
section as seen by the observer rigidly attached to the frame rotating with the cross-section. Choosing to interpolate
v̄(x) as well as w(x), an alternative nodal balance ḡi ≡ q̄ii + q̄im = 0 is obtained with the corresponding nodal
internal and inertial force vectors q̄ii and q̄im as

q̄ii =

∫ L

0

Ii
′
{
n̄
m̄

}
dx and q̄im =

∫ L

0

Ii
{

˙̄k
˙̄π

}
dx (3)

Different implementations of this general concept result in the algorithms which naturally inherit the strain-invariance
of the underlying formulation with respect to a rigid-body motion [2] or are capable of simultaneous conservation
of energy and both momentum vectors [3].
It should be noted, however, that in the lower halves of these vectors we now have the nodal internal and inertial
moment vectors with respect to the fixed-pole, rather than the reference line at the cross-section. As a result, at
least in the classical Bubnov–Galerkin approach, the linear part of the changes in kinematic unknowns is to be
interpolated consistently with the applied interpolation for v̄(x) and w(x). The translational kinematic unknown
thus ceases to be the standard position vector r(x), which makes the algorithm untypical and not easy to merge with
existing finite-element codes.
The benefits of the fixed-pole approach may be easily combined with the standard choice of the unknowns in the
earlier ’moving-frame’ approach by simply expressing the relative velocity vectors at the nodal points in terms of
the (absolute) velocity vectors and the angular velocities via v̄i = vi + ri ×wi for each i = 1, . . . , N . The power
balance equation thus turns into

N∑
i=1

∫ L

0

Ii
′
[(vi + ri ×wi) · n + wi · m̄] dx+

N∑
i=1

∫ L

0

Ii
[
(vi + ri ×wi) · k̇ + wi · ˙̄π

]
dx = 0 ,

which eventually leads to the nodal balance g̃i ≡ q̃ii + q̃im = 0 with the corresponding nodal internal and inertial
force vectors q̃ii and q̃im as

q̃ii =

∫ L

0

Ii
′
[

I 0

r̂− ri I

]{
n
m

}
dx and q̃im =

∫ L

0

Ii
[

I 0

r̂− ri I

]{
k̇
π̇

}
dx . (4)

This is equivalent to using non-linear velocity interpolation v(x) =
∑N
i=1 I

i(x) [vi + (ri − r(x)) ×wi] in the
original power balance (1).
In static analysis, q̃im = 0 and the nodal vector of external forces reads

q̃ie =

∫ L

0

Ii
[

I 0

r̂− ri I

]{
ne
me

}
dx+ δi1

{
F0

M0

}
+ δiN

{
FL
ML

}
, (5)

where ne, me are vectors of applied distributed forces and torques and F0, FL,M0, ML are applied concentrated
forces at ends of the beam.

3 SOLUTION PROCEDURE
The non-linear equation g̃i ≡ q̃ii− q̃ie = 0 is solved using the Newton-Raphson solution procedure. When lineariz-
ing either of these equations, account has to be taken of the fact that ∆R = ∆ϑ̂R [4] where ∆ϑ is the spin vector.
In order to complete the solution procedure the unknown functions r and/or their iterative changes ∆r must be in-
terpolated in some way. Three different solution procedures are considered which arise as a consequence of the fact
that the velocity vector v(x) has been interpolated in a non-linear manner, dependent on the actual position vector r
not only at the nodal points, but also at x (i.e. the integration point).
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3.1 Interpolation option 1

The incremental displacements ∆r and spin vectors ∆ϑ are interpolated in a same manner as v and w respectively.

∆r =

N∑
j=1

Ij [∆rj + (rj − r) × ∆ϑj ] and ∆ϑ =

N∑
j=1

Ij∆ϑj , (6)

while the unknown displacement functions are interpolated using the Lagrangian polynomials:

r =

N∑
k=1

Ikrk . (7)

The interpolation (7) is in contradiction with the interpolation for ∆r in (6) which necessarily results in the loss of
quadratic convergence of the Newton-Raphson solution process.

3.2 Interpolation option 2

Within this option r is interpolated using the Lagrangian polynomials (7). Interpolation of the displacement incre-
ments follows consistently by linearizing r and ∆ϑ is interpolated using the Lagrangian polynomials:

∆r =

N∑
j=1

Ij∆rj , ∆ϑ =

N∑
j=1

Ij∆ϑj . (8)

This option makes the tangent stiffness matrix strongly non-symmetric because different interpolations have been
used for test and trial functions.

3.3 Interpolation option 3

Within this option, r is not interpolated, but updated as follows:

rnew(x) = rold(x) + ∆r(x) , (9)

where rold(x) is the last known value for r(x), not necessarily associated with an equilibrium state and, ∆r(x) is
given in (6). This is a consistent choice which yields a tangent stiffness matrix. In this case the values of r at both
integration and nodal points must be saved.

4 NUMERICAL EXAMPLE
We consider a hinged right-angle frame given in [5], with cross-sectional moment of inertia and area I = 2, A = 6,
respectively, Young’s modulus Y = 7.2 × 106, Poisson’s ratio ν = 0.3, and length of each leg l = 120. The frame
is divided into ten quadratic elements, five along each leg. The horizontal leg of the frame is loaded with a point
force P = 15000 as shown in Figure 1.

Figure 1: Lee’s frame [5]

The reference solution for this example is obtained using 40 quadratic elements by Simo and Vu-Quoc [4], 20 along
each leg with reduced Gaussian integration employed for evaluation of the integrals. The displacements of the
loaded node are shown in Table 1 and the deformed shape of the structure in Figure 2.
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u v
Reference solution 8.028174 -25.892510

10 linear Simo Vu-Quoc 6.460728 -22.486339
10 linear FP 1 6.460728 -22.486339
10 linear FP 2 6.460728 -22.486339

10 linear FP 3 8.593919 -26.028418

Table 1: Displacements of the loaded node

Figure 2: Lee’s frame displacements

5 CONCLUSIONS
The proposed elements are spatial, geometrically non-linear, use standard kinematic unknowns and are generalized
to an arbitrary order. The preliminary results indicate that the the third of the interpolation options considered may
yield higher accuracy than the standard Simo and Vu-Quoc [5] element, while the first two interpolation options
give the same results. As shown by Bottasso and Borri [2, 3] the fixed-pole approach is particularly effective in
non-linear dynamics. The modification of this approach along the lines given here will be shown in future works.
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