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Abstract. The reduced basis method recent progress have permitted to make the computations reliable thanks
to a posteriori estimators . However, it may not always be possible to use the code to perform all the “off-line”
computations required for an efficient performance of the reduced basis method. We propose here an alternating
approach based on a coarse grid finite element, the convergence of which is accelerated through the reduced basis
and an improved post processing.
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1 INTRODUCTION

For the real-time or many-query context classical discretization techniques such as finite element methods are gener-
ally too expensive. The reduced basis method [6, 8, 10, 12] exploits the parametric structure of the governing PDEs
to construct rapidly, convergent and computationally efficient approximations. Previous work on the reduced basis
method in numerical fluid dynamics has been carried out by [7, 9, 13] and more particularly for the steady Navier-
Stokes equations [3, 4, 11, 14] which requires treatment of non-linearities and non-affine parametric dependence.
These methods rely on the fact that when the parameters vary, the set of solutions is often of small (Kolmogorov)
dimension. In this instance, there exists a set of parameters (µ1, · · · , µN ) in the parameter spaceD, from which one
can build a basis. This basis, called reduced basis, is made of the solutions (u(µ1), · · · , u(µN )) and can approach
any solution u(µ), µ ∈ D. Thus, when the µi are well chosen, the size of the reduced basis is quite smaller compared
to the number of degrees of freedom of the problem discretized by a classical method (finite element, finite volume,
or other). In an industrial framework, for optimization processes for instance these reduced basis methods have a
great potential. One of the keys of this technique is the decomposition of the computational work into an off-line
and on-line stage. However in some situation, it’s not possible to perform all the off-line computations required with
an efficient performance of the reduced method. For example when the simulation code is used as a black box, one
won’t be able to perform a very fast and cheap online stage. For this reason, in [1, 2] we proposed an alternative
method. The aim of this work is to provide tests to validate and generalize our method to fluid dynamics problems.
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2 GOVERNING EQUATIONS
The governing equations are the incompressible steady state Navier-Stokes equations and are given by :

−ν∆−→u +
1

ρ
∇p+ (−→u · ∇)−→u =

−→
Fe and div(−→u ) = 0 (1)

where is ν the kinematic viscosity, ρ the density and
−→
Fe the external forces.

Let us consider a physical domain Ω with its boundary ∂Ω = Γin ∪ Γwall ∪ Γout. On Γin, a velocity −→vin is
prescribed, which has a parabolic profile : −→vin = Vin f(−→x )−→n |Γin

. On Γwall we impose homogeneous Dirichlet
boundary condition and on Γout we impose homogeneous Neumann boundary condition.
Here, we are interested in studying the non intrusive reduced method [1, 2] applied to the steady-state Navier-Stokes
equation parametrized by the velocity magnitude Vin of the inlet flow. We will denoted by µ the parameter and D
the parameter space. Let be X ⊂ H1(Ω), V ⊂ [H1(Ω)]2, M ⊂ L2(Ω), and {Th}h a family of regular triangulation
of Ω, we denoted by Xh, Vh and Mh the following finite element spaces :

Xh = {v ∈ X,∀K ∈ Th, v|K ∈ P2(K)}, Vh = Xh ×Xh and Mh = {v ∈M,∀K ∈ Th, v|K ∈ P1(K)}.
The finite element (FE) formulation of the problem (1) is : given µ ∈ D, for all −→v h ∈ Vh and qh ∈ Mh, find
−→uh(µ) ∈ Vh and ph(µ) ∈Mh such that

∫
Ω

(
−→uh(µ) · ∇

−−−→
uh(µ)

)
−→v h + ν

∫
Ω

∇−→u h(µ) : ∇−→v h +
1

ρ

∫
Ω

∇ph(µ) · −→v h =

∫
Ω

−→
Fe · −→v h + LV (−→v h;µ),∫

Ω

∇qh · −→u h = 0

(2)
where the linear form LV (−→v h;µ) is due to the non homogenous Dirichlet boundary conditions on Γin.

3 NON INTRUSIVE REDUCED BASIS METHOD
The reduced basis method rely on the fact that when the parameters vary, the set of solutions is often of small
Kolomgorov dimension. In that case, for any ε > 0 there exist a set of parameters (µ1, µ2, · · · , µN ) ∈ D such that

∀µ ∈ D, ∃(σi(µ)) ∈ RN , ‖−→u (µ)−
N∑
i=1

σi(µ) −→u (µi)‖Y ≤ ε. (3)

We denoted by V N
h = span{−→u h(µ1), · · · ,−→u h(µN )} the reduced basis space. The reduced basis approximation of

(2) is obtained by using a Galerkin approach on V N
h . For a stable implementation of the reduced basis method, it

is required to build a better basis than the one composed with the −→u h(µi), usually by a Gramm-Schmidt method.
Here we replace it by the resolution of an eigenvalue problem that will provide L2 and H1 orthogonal functions.
Let denotes by {

−→
φ N

i }i=1,··· ,N these orthonormalized basis of V N
h , the reduced basis solution −→u N

h (µ) can be ex-

pressed as a linear combination of the basis functions {
−→
φ N

i } : −→u N
h (µ) =

N∑
i=1

σh
i (µ)

−→
φ N

i .

Let the matricial formulation of the Galerkin approach of (2) on V N
h be : find UN

h (µ) such that

AN
h (UN

h (µ)) UN
h (µ) = BN

h (µ). (4)

Considering that the dimension of the reduced basis space is quite smaller compared to the finite element space’s
size, solving the previous system (4) is less expensive than the true finite element problem (2). Indeed, all the ex-
pensive computations are done off-line which allows us to have online computations of small complexity.
However, since the construction of the matrix AN

h and the vector BN
h has to be done for each new value of µ, to per-

form efficiently the online stage, one has to be able to isolate their parametric contributions so that all µ independent
matrices and vectors can be build only once and saved during the offline stage. This part of the offline stage require
to enter in the simulation code used to compute the truth finite element approximations. Unfortunately, when this
code is used as a black box, which is often the case in the industrial framework, the parametric decomposition is
not possible, which prevent us from build each new matrix quickly for a new value of µ. This take away the benefit
of the reduced basis method, thus to overcome it, we proposed an alternative method : a non intrusive reduced
basis method (NIRB). The standard reduced basis method aims at evaluating the coefficients σh

i (µ) intervening in
the decomposition of −→u N

h (µ) in the basis of the φNi , those can appears as a substitute to the optimal coefficients
γhi (µ) = < −→u N

h (µ),
−→
φ N

i > intervening in the decomposition of the L2-projection of −→u n
h(µ) on Y N

h . Our alterna-
tive method consists in proposing an other surrogate to the γhi (µ) defined by γHi (µ) = < −→u N

H(µ),
−→
φ N

i > . Since
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the computation of −→u N
H(µ), for H >> h is less expensive than the one of −→u N

h (µ), using the industrial code with
the mesh size H (chosen adequately) to construct the γHi (µ) is still cheap enough. Then for each new value of µ,
one can computes the coefficients γHi (µ) and build a new approximation of the solution of (2)

−→u N
H,h(µ) =

N∑
i=1

γHi (µ)φNi . (5)

Besides, to improve even further the accuracy of this technique we propose to do a simple post-processing of
the results. This treatment will insure that for each new value of the parameters µi, i = 1, · · · , N , used in the
construction of the reduced basis, the method return exactly the L2-projection of −→u h(µi) on the V N

h . Indeed,
contrarily to the−→u h(µ), that we don’t want to compute for a large number of values of µ, the truth solutions−→u h(µi)
have been actually already computed to build the basis. To do this, let consider the following linear application R
defined by:

R : RN → RN(
γH1 (µi), · · · , γHN (µi)

)t

7→
(
γh1 (µi), · · · , γhN (µi)

)t

,

where the values of the parameters µi are the one used to build the reduced basis. We denote by TN the matrix
associated to this transformation such that: TN


 γH1 (µ1) · · · γH1 (µN )

...
...

...
γHN (µ1) · · · γHN (µN )

 =

 γh1 (µ1) · · · γh1 (µN )
...

...
...

γhN (µ1) · · · γhN (µN )

 .

For each new value of µ,we will replace the γHi (µ) coefficients by γ̃Hi (µ) =

N∑
k=1

TN
ik γ

H
k (µ).

4 NUMERICAL EXPERIMENT
We are interested in the evaluation of the velocity vector −→u (µ) = (ux, uy) for any set of parameters µ = Vin.

The OFFLINE procedure is divided in 3 stages :

1: Construction of a reduced approximation’s
space for the velocity.
2: Orthonormalisation in L2 and H1-norm
of the reduced basis functions.
3: Preparation for the post-processing.

The ONLINE procedure is divided in 3 stages :

1: Using the black box software to solve the problem
on a coarser mesh and extract the velocity vector and
temperature.
2: Compute the coefficient γHi (µ) for any values of µ
3: Apply the post-processing on the γHi (µ).

Let denote by −→uh(µ) velocity solutions of the discretized problem solved on Th. We compared this solutions for a
fixed µ with different reduced solutions (see FIGURE 1).

• Case 1: In this example, we want to see the error due only to the reduced basis size N . We build a NIRB
solution using the finite element solution computed on reference mesh, which the projection of the finite
element solution on the reduced basis space V N

h . For a given N , those solutions are the best approximation
that we can expect in the reduced basis.

• Case 2, 3 and 4: In those examples, we wanted to see how the choice of the coarse mesh TH affect the NIRB
method. We build three coarse meshes THi

, i = 1, 2, 3 used to build the reduced solution in respectively the
case 2, 3 and 4. We notice that as N goes larger the error between the different reduced solution and the finite
element solution goes smaller to finally reach a threshold. This is due to the fact that the finite element’s error
become more significant than the reduced basis size’s error.

• Case 2 + PP, 3 + PP and 4 +PP: In those examples we wanted to see the influence of the post-processing on
the reduced solution. We observe that with this post - processing we were able to reach the same accuracy as
if we have projected the reference finite element solution on the reduced basis space, even with the coarsest
mesh.
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Figure 1: Relative error between the finite element solution of reference obtained on the fine mesh and the various
reduced solutions measured in H1-norm.
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