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Abstract. In this paper, beam finite elements based on the absolutel modedinate formulation (ANCF) are
presented, in which the orientation of the cross sectioraimmeterized by means of slope vectors only. Resulting,
no singularities due to an angle parameter occur and the nmaasix is advantageously constant. A continuum
mechanics as well as a structural mechanics based fornouldir the elastic forces are investigated. Static as well
as dynamic examples show accuracy and high order conveggefitbe presented beam finite elements.
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1 INTRODUCTION

The absolute nodal coordinate formulation (ANCF) has bemreldped for the modeling of large deformations
in multibody dynamics problems by Shabana [14, 15]. In @msitto classical nonlinear beam finite elements in
literature, the ANCF does not use rotational degrees ofdfreeand therefore does not necessarily suffer from
singularities emerging from angular parameterizationsmg@ared to the classical formulation, in which the mass
matrix is not constant with respect to the generalized doatds, ANCF elements generally lead to a constant mass
matrix, which is advantageous in dynamic analysis.

In the present approach, a linear and a quadratic ANCF bedim élements are presented, in which the orienta-
tion of the cross section is parameterized by means of slep®wrs. The elements serve as the three-dimensional
generalization of existing planar shear deformable ANC&béinite elements presented in [12]. Since the nodal
vector of degrees of freedom includes the displacemenbtwectd the two transversal slope vectors only, the ele-
ments belong to the group of so-called "gradient deficielgirents. The latter elements are alternatives to so-called
"fully-parameterized” elements, in which the nodal cooates are based on three slope vectors, representing the
position gradient, see e. g. [5, 6]. A similar choice of nod@brdinates has been presented by Kardn et al. [7]

for a two-dimensional two-noded ANCF element and Gaiéallejo et al. [4] presented a three-noded analogue.
The deformed geometry of the proposed ANCF beam finite elesnedefined by position and two slope vectors in
each node, see Fig. 1 for a sketch of the elements. The thdes aoe chosen at the end points and at the midpoint of
the beam axis. Since the slope vectt),(r% andr"?) are no unit vectors, a cross section deformation is not pitetul.

In the two-noded linear element, the displaéement alondpétaan axis is interpolated with linear shape functions,
while the three-noded quadratic element uses quadratgedhactions for the displacement interpolation. The ori-
entation of the cross section is interpolated linearly ithlements. The shape functions are chosen as the standard
Lagrange polynomials presented by Zienkiewicz and Taylér Eq.(8.18)].

The geometric description of the proposed ANCF beam finkenehts, the precise definition of the degrees of
freedom and a continuum mechanics as well as a structurdlanars based formulation for the elastic forces have
been presented in a previous work [10]. The existing ANCRdirlements in the open literature showed signifi-
cant problems regarding the formulation of elastic fordegferent approaches for the work of elastic forces are
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Figure 1: The geometric description of the elements is based position vector(?) and two slope vectomf;?

andr'?” in thei-th node. These vectors are defined on a scaled and straighgmee element, given in coordinates

(&n,0).

presented and compared to the formulations in literatureo®inuum mechanics based formulation is discussed
and extended in order to avoid Poisson locking. In additostructural mechanics based formulation of the elastic
forces is discussed, which includes a term accounting fiscsection deformation, which is not considered in the
classical theory. The decision, which formulation showddibed for an application, depends on the utilized material
law. Concerning the elastic forces, it has been already shthat the structural mechanics based formulation is in
accordance with well established nonlinear rod elemen&rob and Vu-Quoc [17].

The ANCF elements have been implemented in the frameworkeofrtultibody and finite element research code
HOTINT?. Several static examples and an eigenfrequency analysestieen already performed and a compari-
son to results provided in the literature have shown acgusad high order convergence in static applications, see
[9, 10]. In a further paper [11], the performance of the psmgabbeam finite element in dynamics is investigated in
several stability examples. Complex buckling tests of éngyris [1] can be solved accurately and efficiently. For
details on the dynamic analysis of the presented beam fileiteemts see [11].

The present paper shows an state-of-the-art review orreliff@NCF elements in literature and compare choice of
degrees of freedom and the formulation for the elastic ®toethe present approach, see Fig. 2 in the following
section.

1.1 Overview of structural beam and continuum mechanics/d@ beam finite elements

Here, a selection of different beam parameterizationsesqted, see Fig. 2 for an overview of structural beam
and continuum mechanics/solid beam finite elements. Fig(8&) shows the degrees of freedom of the classical
structural beam finite element by Simo and Vu-Quoc [17].

The rotation is defined as the general mapping of local toajlobentation by means ok (£) € SQ(3) [17]. The
parameterization of the rotatiok could be e.g. Euler angles or Euler parameters.

The classical continuum mechanics based ANCF has beernogedeby Yakoub and Shabana [18] and Fig. 2(C1)
shows the according nodal degrees of freedom. This soechlly/-parameterized element incorporates the full
position gradient as nodal degrees of freedom.

In [3, 13], a solid beam finite element is presented whichiiporates the position vectors of each of the eight nodes
as degrees of freedom, see Fig. 2(C2). In order to avoid ttiérlg phenomenon, the strain field is modified by
a combination of an assumed natural strain method and ameeth@assumed strain method [3]. Figure 2(C) and
(S) show the degrees of freedom of the proposed gradientatgfiseam finite elements [8]. A solid continuum
mechanics based formulation as well as a hybrid structusdhanics based formulation for ANCF beams are
presented in Chapter 5.2.2 and 5.2.4 of [8] for the 2D and 3prbrmulations, respectively.

A hybrid formulation can also be found in the work of Betscld &teinmann [2], which combines the modeling
of [18] and the configuration space of [17], see Fig. 2(SC) Tdtational parameterization with directors (12
coordinates) is reduced by a projection method and thexefidly three degrees of freedom result for the rotation [2].

Lhttp:/Avww.hotint.org/
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Figure 2: Overview of a selection of structural beam andiooiim mechanics/solid beam finite elements.

The obtained equations constraining the so-called directan be avoided by incorporating a null space method.

2 CONCLUSIONS

In the present paper, improved beam formulations are pregewhich are mainly used for flexible multibody dy-
namics. A locking-free continuum mechanics based formanats well as a structural mechanics based formulation
including an correction term for shear and cross sectioordwition are presented. The performance of the pro-
posed two- and three-dimensional finite beam elements ésiigated by the analysis of several static and dynamic
examples. In contrast to many previous investigations, revergence analysis, coupled three-dimensional large
deformation examples and buckling problems are studiegl. ercomparison to results provided in the literature,
to analytical solutions, and to the solution found by conmuiaffinite element software shows high accuracy and
high order of convergence. Therefore the presented ANGRazies have high potential for large deformation three-
dimensional structural problems. A comparison of the psgpidformulation to approaches in literature is given and
the advantages of the proposed elements are emphasized.
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