L. Addadi, D. Joester, F. Nudelman, and S. Weiner, Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes, Chemistry - A European Journal, vol.26, issue.4, pp.980-987, 2006.
DOI : 10.1002/chem.200500980

A. Appellöf, Die Schalen von Sepia, Spirula, and Nautilus. Studien über den Bau und das Wachstum, Kongl Svenska Vetensk Acad Handl, vol.25, pp.1-106, 1893.

E. Barbieri, K. Barry, A. Child, and N. Wainwright, Antimicrobial Activity in the Microbial Community of the Accessory Nidamental Gland and Egg Cases of Loligo pealei (Cephalopoda: Loliginidae), The Biological Bulletin, vol.193, issue.2, pp.275-276, 1997.
DOI : 10.1086/BBLv193n2p275

M. Bégovic and C. Copin-montégut, Processes controlling annual variations in the partial pressure of CO 2 in surface waters of the central northwestern Mediterranean Sea (Dyfamed site), 2002.

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proceedings of the Royal Society B: Biological Sciences, vol.264, issue.1380, pp.461-4650066, 1997.
DOI : 10.1098/rspb.1997.0066

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1688267

E. Beniash, L. Addadi, and S. Weiner, Cellular Control Over Spicule Formation in Sea Urchin Embryos: A Structural Approach, Journal of Structural Biology, vol.125, issue.1, p.4081, 1998.
DOI : 10.1006/jsbi.1998.4081

J. Bijma, B. Honisch, and R. Zeebe, The impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on ''Carbonate ion concentration in glacial-age deep waters of the Carribbean Sea, Geochem. Geophys. Geosyst, vol.3, issue.11, p.106410, 1029.

J. Birchall and N. Thomas, On the architecture and function of cuttlefish bone, Journal of Materials Science, vol.54, issue.7, pp.2081-2086, 1983.
DOI : 10.1007/BF00555001

J. Blackford, Predicting the impacts of ocean acidification: Challenges from an ecosystem perspective, Journal of Marine Systems, vol.81, issue.1-2, pp.12-18, 2010.
DOI : 10.1016/j.jmarsys.2009.12.016

S. Boletzky, Sepia officinalis cephalopod life cycles species account Cephalopod Life Cycle, pp.31-52, 1983.

S. Boletzky, Recent Studies on Spawning, Embryonic Development, and Hatching in the Cephalopoda, Adv Mar Biol, vol.6, pp.86-109, 1989.
DOI : 10.1016/S0065-2881(08)60188-1

S. Boletzky, Biology of Early Life Stages in Cephalopod Molluscs, Adv in Mar Biol, vol.44, issue.03, pp.143-203, 2003.
DOI : 10.1016/S0065-2881(03)44003-0

P. Bustamante, R. Cosson, I. Gallien, F. Caurant, and P. Miramand, Cadmium detoxification processes in the digestive gland of cephalopods in relation to accumulated cadmium concentrations, Marine Environmental Research, vol.53, issue.3, pp.227-241, 2002.
DOI : 10.1016/S0141-1136(01)00108-8

URL : https://hal.archives-ouvertes.fr/hal-00186609

P. Bustamante, J. Teyssié, B. Danis, S. Fowler, P. Miramand et al., Uptake, transfer and distribution of silver and cobalt in tissues of the common cuttlefish Sepia officinalis at different stages of its life cycle, Marine Ecology Progress Series, vol.269, pp.185-195, 2004.
DOI : 10.3354/meps269185

URL : https://hal.archives-ouvertes.fr/hal-00186607

P. Bustamante, J. Teyssié, S. Fowler, and M. Warnau, Contrasting bioaccumulation and transport behaviour of two artificial radionuclides ( 241 Am and 134 Cs) in cuttlefish eggshell, Vie Milieu, vol.56, issue.2, pp.153-156, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00130557

M. Byrne, Impact of ocean warming and ocean acidification on marine invertebrate life history stages, Oceanogr Mar Biol Annu Rev, vol.49, pp.1-42, 2011.
DOI : 10.1201/b11009-2

D. Checkley, A. Dickson, M. Takahashi, J. Radich, N. Eisenkolb et al., Elevated CO2 Enhances Otolith Growth in Young Fish, Science, vol.324, issue.5935, pp.1683-1683, 2009.
DOI : 10.1126/science.1169806

S. Comeau, J. Gattuso, A. Nisumaa, and J. Orr, Impact of aragonite saturation state changes on migratory pteropods, Proceedings of the Royal Society B: Biological Sciences, vol.52, issue.6967, 2011.
DOI : 10.1038/nature02164

S. Craig and J. Overnell, Metals in squid, Loligo forbesi, adults, eggs and hatchlings. No evidence for a role for Cu- or Zn-metallothionein, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.134, issue.3, pp.311-317, 2003.
DOI : 10.1016/S1532-0456(02)00274-0

E. Cronin and R. Seymour, Respiration of the eggs of the giant cuttlefish Sepia apama Buoyancy of the cuttlefish, Mar Biol Gilpin-Brown JB Nature, vol.136, issue.184, pp.863-8701330, 1038.

E. Denton, J. Gilpin-brown, E. Denton, J. Gilpin-brown, and J. Howarth, The Buoyancy of the Cuttlefish, Sepia Officinalis (L.), Journal of the Marine Biological Association of the United Kingdom, vol.41, issue.02, pp.319-342351, 1017.
DOI : 10.1017/S0025315400023948

A. Dickson and F. Millero, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Research Part A. Oceanographic Research Papers, vol.34, issue.10, pp.1733-1743, 1987.
DOI : 10.1016/0198-0149(87)90021-5

A. Dickson, C. Sabine, and J. Christian, Guide to best practices for ocean CO 2 measurements, p.191, 2007.

S. Dupont and M. Thorndyke, Impact of CO<sub>2</sub>-driven ocean acidification on invertebrates early life-history ??? What we know, what we need to know and what we can do, Biogeosciences Discussions, vol.6, issue.2, pp.3109-3131, 2009.
DOI : 10.5194/bgd-6-3109-2009

S. Dupont, O. Ortega-martínez, and M. Thorndyke, Impact of near-future ocean acidification on echinoderms, Ecotoxicology, vol.39, issue.3, pp.449-62, 2010.
DOI : 10.1007/s10646-010-0463-6

S. Dupont, N. Dorey, M. Stumpp, F. Melzner, and M. Thorndyke, Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis, Marine Biology, vol.157, issue.9, pp.10-1007, 2012.
DOI : 10.1007/s00227-012-1921-x

V. Fabry and W. Balch, Direct measurments of calcification rates in planktonic organisms Guide for best practices in ocean acidification research and data reporting, pp.201-212, 2010.

H. Findlay, H. Wood, K. Ma, J. Spicer, R. Twitchett et al., on calcium carbonate structures in different marine organisms, Marine Biology Research, vol.252, issue.6, pp.565-575, 2011.
DOI : 10.5194/bg-6-1671-2009

J. Forsythe, P. Lee, L. Walsh, and T. Clark, The effects of crowding on growth of the European cuttlefish, Sepia officinalis Linnaeus, 1758 reared at two temperatures, Journal of Experimental Marine Biology and Ecology, vol.269, issue.2, pp.173-185, 2002.
DOI : 10.1016/S0022-0981(02)00006-0

F. Gazeau, J. Gattuso, C. Dawber, A. Pronker, F. Peene et al., Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis, Biogeosciences, vol.75194, pp.2051-2060, 2010.

F. Gazeau, J. Gattuso, M. Greaves, H. Elderfield, J. Peene et al., Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas) PLoS one 6:e23010, 2011.

F. Gomi, Y. Masamich, and T. Nakazawa, Swelling of egg during development of the cuttlefish, Sepiella japonica, Zool Sci, vol.3, issue.4, pp.641-645, 1986.

G. Ra, C. Harley, and E. Tang, Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm, P Natl Acad Sci, vol.106, pp.9316-9321, 2009.

A. Guerra, Ecology of Sepia officinalis, Vie milieu, vol.56, issue.2, pp.97-107, 2006.

M. Gutowska, H. Pörtner, F. Melzner, M. Gutowska, and F. Melzner, Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2, Marine Ecology Progress Series, vol.373, issue.156, pp.303-309515, 2008.
DOI : 10.3354/meps07782

M. Gutowska, F. Melzner, M. Langenbuch, C. Bock, G. Claireaux et al., Acid???base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia, Journal of Comparative Physiology B, vol.200, issue.6, pp.323-335, 2010.
DOI : 10.1007/s00360-009-0412-y

M. Gutowska, F. Melzner, H. Pörtner, and S. Meier, Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis, Marine Biology, vol.71, issue.7, pp.1653-1663, 2010.
DOI : 10.1007/s00227-010-1438-0

O. Hoegh-guldberg, P. Mumby, . Hoote, and . Aj, Coral Reefs Under Rapid Climate Change and Ocean Acidification, Science, vol.318, issue.5857, pp.1737-1742, 2007.
DOI : 10.1126/science.1152509

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.335.7506

M. Hu, E. Sucré, M. Charmantier-daures, G. Charmantier, M. Lucassen et al., Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods, Cell and Tissue Research, vol.277, issue.3, pp.571-83, 2010.
DOI : 10.1007/s00441-009-0921-8

M. Hu, Y. Tseng, M. Stumpp, M. Gutowska, R. Kiko et al., Elevated seawater pCO 2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis, Am J Physiol, vol.300, pp.1100-1114, 2010.

M. Hu, Y. Tseng, L. Lin, P. Chen, M. Charmantier-daures et al., New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid-base regulation during embryogenesis Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Am J Physiol, vol.301, pp.1700-1709, 2007.

D. Jacob, R. Wirth, A. Soldati, U. Wehrmeister, and A. Schreiber, Amorphous calcium carbonate in the shells of adult Unionoida, Journal of Structural Biology, vol.173, issue.2, 2011.
DOI : 10.1016/j.jsb.2010.09.011

J. Kleypas, R. Feely, V. Fabry, C. Langdon, C. Sabine et al., Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, report of a workshop St Petersburg, FL, sponsored by NSF, NOAA, and the US Geological Survey http Review and Synthesis: Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms, Ecol Lett, vol.13, pp.1419-1434, 2005.

K. Hlabarthe, T. Warnau, M. Oberhänsli, F. Teyssié, J. Koueta et al., Effects of CO 2 -driven ocean acidification on the early developmental stages of invertebrates Differential bioaccumulation behaviour of Ag and Cd during the early development of the cuttlefish Sepia officinalis, Mar Ecol Prog Ser Aquat Toxicol, vol.37312, issue.86, pp.275-284437, 2007.

T. Lacoue-labarthe, S. Martin, F. Oberhänsli, J. Teyssié, S. Markich et al., Effects of increased pCO 2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis, Biogeosciences, vol.65194, pp.2561-73, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00474436

T. Lacoue-labarthe, M. Warnau, F. Oberhänsli, J. Teyssié, and P. Bustamante, Contrasting accumulation biokinetics and distribution of 241Am, Co, Cs, Mn and Zn during the whole development time of the eggs of the common cuttlefish, Sepia officinalis, Journal of Experimental Marine Biology and Ecology, vol.382, issue.2, pp.131-138, 2010.
DOI : 10.1016/j.jembe.2009.10.008

URL : https://hal.archives-ouvertes.fr/hal-00445618

T. Lacoue-labarthe, L. Bihan, E. Borg, D. Koueta, N. Bustamante et al., Variation of acid phosphatases and cathepsins activities in the cuttlefish (Sepia officinalis) eggs: specific activity and effects of Ag , Cd , Cu exposures, ICES J Marine Sci, vol.7, pp.1517-1523, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525456

T. Lacoue-labarthe, R. Villanueva, C. Rouleau, F. Oberhänsli, J. Teyssié et al., Radioisotopes Demonstrate the Contrasting Bioaccumulation Capacities of Heavy Metals in Embryonic Stages of Cephalopod Species, PLoS ONE, vol.6, issue.11, 2011.
DOI : 10.1371/journal.pone.0027653.t002

URL : https://hal.archives-ouvertes.fr/hal-00645126

T. Lacoue-labarthe, E. Réveillac, F. Oberhänsli, J. Teyssié, R. Jeffree et al., Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo vulgaris, Aquatic Toxicology, vol.105, issue.1-2, 2011.
DOI : 10.1016/j.aquatox.2011.05.021

URL : https://hal.archives-ouvertes.fr/hal-00785214

C. Langdon and M. Atkinson, Effect of elevated pCO 2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment, J Geophys Res, vol.110, pp.10-1029, 2005.

H. Lavigne, J. Gattuso, M. Leersnyder, . De, and J. Lemaire, seacarb: seawater carbonate chemistry with R. R package version 2.4, Cah Biol Mar, vol.13, pp.429-472, 1972.

J. Lemaire, Table de développement embryonnaire de Sepia officinalis L (Mollusque Céphalopode), B Soc Zool Fr, vol.95, issue.4, pp.773-782, 1970.

S. Levitus, J. Antonov, T. Boyer, E. Lewis, and D. Wallace, Warming of the World Ocean, Program Developed for CO 2 System Calculations, 1955.
DOI : 10.1126/science.287.5461.2225

U. S. Dept, O. Energy, . Ridge, S. Richier, M. Pedrotti et al., Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO 2 -driven acidification, ornl.gov Martin S The J Exp Biol, vol.214, pp.1357-68, 2011.

C. Mehrbach, C. Culberson, J. Hawley, and R. Pytkowicz, MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1, Limnology and Oceanography, vol.18, issue.6, pp.897-907, 1973.
DOI : 10.4319/lo.1973.18.6.0897

F. Melzner, J. Forsythe, P. Lee, J. Wood, U. Piatowski et al., Estimating recent growth in the cuttlefish Sepia officinalis: are nucleic acid-based indicators for growth and condition the method of choice?, Journal of Experimental Marine Biology and Ecology, vol.317, issue.1, pp.37-51, 2005.
DOI : 10.1016/j.jembe.2004.11.011

F. Melzner, C. Bock, and H. Pörtner, Temperature-dependent oxygen extraction from the ventilatory current and the costs of ventilation in the cephalopod Sepia officinalis, Journal of Comparative Physiology B, vol.200, issue.1, pp.607-621, 2006.
DOI : 10.1007/s00360-006-0084-9

F. Melzner, C. Bock, and H. Pörtner, Allometry of thermal limitation in the cephalopod Sepia officinalis, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.146, issue.2, pp.149-54, 2007.
DOI : 10.1016/j.cbpa.2006.07.023

F. Melzner, M. Gutowska, M. Langenbuch, S. Dupont, M. Lucassen et al., Physiological basis for high CO 2 tolerance in marine ectothermic animals: preadaptation through lifestyle and ontogeny?, Biogeosciences, vol.65194, pp.2313-2331, 2009.

W. Miller, A. Reynolds, C. Sobrino, and G. Riedel, Shellfish face uncertain future in high CO 2 world: influence of acidification on oyster larvae calcification and growth in estuaries, PloS One, vol.4, 2009.

P. Miramand, P. Bustamante, D. Bentley, and N. Koueta, Variation of heavy metal concentrations (Ag, Cd, Co, Cu, Fe, Pb, V, and Zn) during the life cycle of the common cuttlefish Sepia officinalis, Science of The Total Environment, vol.361, issue.1-3, pp.132-143, 2006.
DOI : 10.1016/j.scitotenv.2005.10.018

URL : https://hal.archives-ouvertes.fr/hal-00202433

P. Munday, V. Hernaman, D. Dixson, and S. Thorrold, Effect of ocean acidification on otolith development in larvae of a tropical marine fish, Biogeosciences, vol.8, 2011.

J. Orr, V. Fabry, O. Aumont, L. Bopp, S. Doney et al., Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, vol.437, issue.7059, pp.681-687, 1038.
DOI : 10.1038/nature04095

URL : https://hal.archives-ouvertes.fr/hal-00124807

A. Palmer, Calcification in marine molluscs: how costly is it? P Natl Acad Sci, pp.1379-1382, 1992.

L. Parker, P. Ross, O. Connor, W. Borysko, L. Raftos et al., Adult exposure influences offspring response to ocean acidification in oysters, Global Change Biology, vol.417, issue.1, pp.82-92, 2012.
DOI : 10.1111/j.1365-2486.2011.02520.x

P. Pierce, G. Allcock, L. Bruno, and I. , Cephalopod biology and fisheries in Europe Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase, Integr Comp Biol ICES Cooperative Research Report ICES Science, vol.46, issue.306, pp.323-3331161, 2004.

H. Pörtner and A. Farrell, ECOLOGY: Physiology and Climate Change, Science, vol.322, issue.5902, pp.690-692, 2004.
DOI : 10.1126/science.1163156

H. Pörtner, Ecosystem effects of ocean acidification in times of ocean warming: a physiologist???s view, Marine Ecology Progress Series, vol.373, issue.407, pp.203-217364, 2000.
DOI : 10.3354/meps07768

J. Ries, A. Cohen, and D. Mccorkle, Marine calcifiers exhibit mixed responses to CO 2 induced ocean acidification, Geology, vol.37, 2009.

P. Rodhouse, Physiological Progenesis in Cephalopod Molluscs, The Biological Bulletin, vol.195, issue.1, pp.17-20, 1998.
DOI : 10.2307/1542771

R. Rodolfo-metalpa, F. Houlbrèque, and É. Tambutté, Coral and mollusc resistance to ocean acidification adversely affected by warming, Nature Climate Change, vol.122, issue.6, pp.308-312, 2011.
DOI : 10.1038/nclimate1200

A. Rodriguez-y-baena, M. Metian, J. Teyssié, C. Debroyer, and M. Warnau, Experimental evidence for 234 Th bioaccumulation in three Antarctic crustaceans: Potential implications for particle flux studies, Marine Chem, vol.100, 2006.

R. Rosa and B. Seibel, Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator, Proceedings of the National Academy of Sciences, vol.105, issue.52, pp.20776-800806886105, 2008.
DOI : 10.1073/pnas.0806886105

B. Seibel and P. Walsh, CARBON CYCLE: Enhanced: Potential Impacts of CO2 Injection on Deep-Sea Biota, Science, vol.294, issue.5541, pp.319-320, 2001.
DOI : 10.1126/science.1065301

B. Seibel and V. Fabry, Marine biotic response to elevated carbon dioxide, Adv Appl Biodivers Sci, vol.4, pp.59-67, 2003.

B. Seibel and P. Walsh, Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance, Journal of Experimental Biology, vol.206, issue.4, 2003.
DOI : 10.1242/jeb.00141

K. Sherrard, Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae), The Biological Bulletin, vol.198, issue.3, pp.404-414, 2000.
DOI : 10.2307/1542696

J. Shiao, L. Lin, J. Horng, P. Hwang, and T. Kaneko, How can teleostean inner ear hair cells maintain the proper association with the accreting otolith?, The Journal of Comparative Neurology, vol.223, issue.3, pp.331-341, 2005.
DOI : 10.1002/cne.20578

H. Spero, J. Bijma, D. Lea, and B. Bemis, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, vol.390, issue.6659, pp.497-5001037333, 1038.
DOI : 10.1038/37333

M. Stumpp, J. Wren, F. Melzner, M. Thorndyke, and S. Dupont, CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.160, issue.3, pp.331-340, 2011.
DOI : 10.1016/j.cbpa.2011.06.022

M. Stumpp, K. Trübenbach, D. Brennecke, M. Hu, and F. Melzner, Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO 2 induced seawater acidification, Aquat Toxicol, pp.110-111194, 2012.

J. Thomsen and F. Melzner, Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis, Marine Biology, vol.158, issue.12, pp.2667-76, 2010.
DOI : 10.1007/s00227-010-1527-0

J. Thomsen, M. Gutowska, J. Saphörster, A. Heinemann, K. Trübenbach et al., Calcifying invertebrates succeed in a naturally CO<sub>2</sub>-rich coastal habitat but are threatened by high levels of future acidification, Biogeosciences, vol.7, issue.11, pp.3879-3891, 2010.
DOI : 10.5194/bg-7-3879-2010-supplement

F. Touratier and C. Goyet, Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea, Deep Sea Research Part I: Oceanographic Research Papers, vol.58, issue.1, pp.1-15, 2011.
DOI : 10.1016/j.dsr.2010.10.002

V. Tunnicliffe, K. Davies, D. Butterfield, R. Embley, J. Rose et al., Survival of mussels in extremely acidic waters on a submarine volcano, Nature Geoscience, vol.52, issue.5, pp.344-352, 2009.
DOI : 10.1016/0198-0149(87)90021-5

R. Villanueva and P. Bustamante, Composition in essential and non-essential elements of early stages of cephalopods and dietary effects on the elemental profiles of Octopus vulgaris paralarvae, Aquaculture, vol.261, issue.1, 2006.
DOI : 10.1016/j.aquaculture.2006.07.006

URL : https://hal.archives-ouvertes.fr/hal-00143815

G. Waldbusser, H. Bergschneider, and M. Green, Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp., Marine Ecology Progress Series, vol.417, pp.171-182, 2010.
DOI : 10.3354/meps08809

I. Weiss, N. Tuross, L. Addadi, and S. Weiner, Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite, Journal of Experimental Zoology, vol.328, issue.5, pp.478-91, 2002.
DOI : 10.1002/jez.90004

H. Wood, J. Spicer, and S. Widdicombe, Ocean acidification may increase calcification rates, but at a cost, Proceedings of the Royal Society B: Biological Sciences, vol.101, issue.1-2, p.343, 2008.
DOI : 10.1038/365119a0