Linear multifractional multistable motion: LePage series representation and modulus of continuity
Hermine Biermé, Céline Lacaux

To cite this version:

HAL Id: hal-00855092
https://hal.archives-ouvertes.fr/hal-00855092
Submitted on 28 Aug 2013
Linear multifractional multistable motion: LePage series representation and modulus of continuity

HERMINE BIERMÉ AND CÉLINE LACAUX

Abstract - In this paper, we obtain an upper bound of the modulus of continuity of linear multifractional multistable random motions. Such processes are generalizations of linear multifractional α-stable motions for which the stability index α is also allowed to vary in time. In the case of linear multifractional α-stable motions, we improve the recent result of [2]. The main idea is to consider some conditionnally sub-Gaussian LePage series representations to fit the framework of [5].

Key words and phrases : stable and multistable random fields, modulus of continuity.

Mathematics Subject Classification (2010) : 60G17 60G22 60G52

1 Introduction

Self-similar random fields are required to model persistent phenomena in internet traffic, hydrology, geophysics or financial markets, e.g. [1, 22]. The fractional Brownian motion ([15, 9]) provides the most famous self-similar model. Nevertheless, in image modeling, in finance or in biology for example, the phenomena under study are rarely Gaussian. Then, α-stable random processes have been proposed as an alternative to Gaussian modeling, since they allow to model data with heavy tails, such as in internet traffic [16].

The linear fractional stable motion, which has been proposed in [21, 14], is one of the numerous stable extensions of the fractional Brownian motion. Let us recall how this self-similar random motion can be defined through a stochastic integral representation. To this way, let us consider $H_1 \in (0,1)$, $\alpha_1 \in (0,2)$ and M_{α_1} a real-valued symmetric α_1-stable random measure with Lebesgue control measure (see [17] p.281 for details on such measures). Then, a linear fractional stable motion is defined by

$$X_{\alpha_1,H_1}(t) = \int_{\mathbb{R}} f_+(\alpha_1, H_1, t, \xi) M_{\alpha_1}(d\xi), \quad t \in \mathbb{R}$$ (1.1)

where f_+ is defined by

$$f_+(\alpha_1, H_1, t, \xi) = (t - \xi)_+^{H_1-1/\alpha_1} - (-\xi)_+^{H_1-1/\alpha_1}$$ (1.2)
with for $c \in \mathbb{R}$,
\[
(x)_c^+ = \begin{cases}
 x^c & \text{if } x > 0 \\
 0 & \text{if } x \leq 0.
\end{cases}
\]

Since the self-similarity property is a global property which can be too restrictive for applications, a multifractional generalization $X_{\alpha_1, h}$ of this process has also been introduced by [18] to model internet traffic, by replacing H_1 by a real function h with values on $(0, 1)$. Some necessary and sufficient conditions for the stochastic continuity of the linear multifractional stable motion $X_{\alpha_1, h}$ have been given in [18] and its Hölder sample path regularity has been studied in [19]. The Hölder sample path properties have also been improved in [2] by establishing upper and lower bounds for the modulus of continuity. In the following, we will improve the upper bound, using the results we established in [5]. Let us mention that in the case where $h \equiv H_1$ is constant, that is when $X_{\alpha_1, h}$ is a linear fractional stable motion, sample path regularity properties have previously been studied in [17, 20, 10].

Moreover, the framework of [5] allows to study $X_{\alpha_1, h}$ as well as some multistable generalizations for which the stability index α_1 is also allowed to vary with t. Multistable processes have been defined in [7] using sums over Poisson processes or in [6] using a Klass-Ferguson LePage series.

In this paper we consider a random field S_m defined using a Lepage series representation of the linear fractional α_1-stable motion and such that
\[
S_m(\alpha(t), h(t), t), \quad t \in \mathbb{R}
\]
is a linear multifractional multistable motion. This auxiliary random field S_m allows to study the variations due to the functions α, h and to the position t separately. Then, to study sample path regularity of linear multistable motions, our first step is to establish an upper bound for the modulus of continuity of the field S_m considering a conditionally sub-Gaussian representation and applying [5]. The main property of sub-Gaussian random variables, which have been introduced by [8], is that their tail distributions decrease exponentially as the Gaussian ones. This property is one of the main tool used in [5] to study the sample path regularity property of conditionally sub-Gaussian random series.

The paper is organized as follows. Section 2 introduces LePage series random fields under study. An upper bound of their modulus of continuity and a rate of convergence are stated in Section 3. Section 4 focuses on linear multifractional multistable motions. Some technical proofs are postponed to the appendix for reader convenience.

2 LePage series models

In order to define LePage series, let us introduce some notation.
Hypothesis 2.1 Let \((g_n)_{n \geq 1}, (\xi_n)_{n \geq 1}\) and \((T_n)_{n \geq 1}\) be three independent sequences of random variables satisfying the following conditions.

1. \((g_n)_{n \geq 1}\) is a sequence of independent identically distributed (i.i.d.) real-valued symmetric sub-Gaussian random variables, that is such that there exists \(s \in [0, +\infty)\) for which
 \[
 \forall \lambda \in \mathbb{R}, \quad \mathbb{E}(e^{\lambda g_n}) \leq e^{\frac{s^2 \lambda^2}{2}}.
 \] (2.3)

2. \((\xi_n)_{n \geq 1}\) is a sequence of i.i.d. random variables with common law
 \[
 \mu(d\xi) = m(\xi) d\xi
 \]
equivalent to the Lebesgue measure (that is such that \(m(\xi) > 0\) for almost every \(\xi\)).

3. \(T_n\) is the \(n\)th arrival time of a Poisson process with intensity 1.

Let us now introduce the random field \((S_m(\alpha, H, t))_{(\alpha, H, t) \in (0, 2) \times (0, 1) \times \mathbb{R}}\) we study in this paper.

Proposition 2.1 (LePage series representation) Assume that Hypothesis 2.1 is fulfilled and let \(f_+\) be defined by (1.2). Then, for any \((\alpha, H, t) \in (0, 2) \times (0, 1) \times \mathbb{R}\), the sequence
\[
S_{m,N}(\alpha, H, t) = \sum_{n=1}^{N} T_n^{-1/\alpha} f_+(\alpha, H, t, \xi_n) m(\xi_n)^{-1/\alpha} g_n, \quad N \geq 1
\] (2.4)
converges almost surely and its limit is denoted by
\[
S_m(\alpha, H, t) := \sum_{n=1}^{+\infty} T_n^{-1/\alpha} f_+(\alpha, H, t, \xi_n) m(\xi_n)^{-1/\alpha} g_n.
\] (2.5)

Proof. Let \((\alpha, H, t) \in (0, 2) \times (0, 1) \times \mathbb{R}\). Then, since Hypothesis 2.1 holds, the variables
\[
W_n := f_+(\alpha, H, t, \xi_n) m(\xi_n)^{-1/\alpha} g_n, \quad n \geq 1,
\]
are i.i.d., symmetric and such that
\[
\mathbb{E}(|W_1|^\alpha) = \mathbb{E}(|g_1|^\alpha) \int_{\mathbb{R}} |f_+(\alpha, H, t, \xi)|^\alpha d\xi < +\infty,
\]
since \(g_1\) and \(\xi_1\) are independent (see e.g. [17]). Therefore, by Theorem 5.1 of [13], the sequence
\[
\left(\sum_{n=1}^{N} T_n^{-1/\alpha} W_n\right)_{N \geq 1}
\]
converges almost surely as $N \to +\infty$, that is $(S_{m,N}(\alpha,H,t))_{N \geq 1}$ converges almost surely. \hfill \square

Let us conclude this section by some remarks.

Remark 2.1 According to Proposition 5.1 of [5], the finite dimensional distributions of S_m do not depend on m as soon as Condition 2 of Hypothesis 2.1 holds. Moreover, when studying the sample path regularity of S_m, Proposition 5.1 of [5] allows us to change m by a more convenient function \tilde{m} if necessary.

Remark 2.2 When $\alpha = \alpha_1 \in (0, 2)$ is fixed, $(S_m(\alpha_1,H,t))_{(H,t) \in (0,1) \times \mathbb{R}}$ is an α_1-stable symmetric random field, which can also be represented as an integral under an α_1-stable random measure M_{α_1} with Lebesgue control measure. More precisely, for every $\alpha_1 \in (0, 2)$,

$$\tag{2.6}(S_m(\alpha_1,H,t))_{(H,t) \in (0,1) \times \mathbb{R}} = \mathcal{D}(Y_{\alpha_1}(H,t))_{(H,t) \in (0,1) \times \mathbb{R}},$$

where \mathcal{D} means equality of finite distributions and

$$\tag{2.7} Y_{\alpha_1}(H,t) := \int_{\mathbb{R}} f_+(\alpha_1,H,t,\xi)M_{\alpha_1}(d\xi), \quad (H,t) \in (0, 1) \times \mathbb{R},$$

for M_{α_1} a real-valued symmetric α_1-stable random measure with Lebesgue control measure and

$$\tag{2.8} d_{\alpha_1} := \mathbb{E}(|g_1|^{\alpha_1})^{1/\alpha_1} \left(\int_0^{+\infty} \frac{\sin x}{x^{\alpha_1}} dx\right)^{1/\alpha_1}.$$

One can check Equation (2.6) following the proof of Proposition 5.1 of [5] or Proposition 4.2 of [4], which is a consequence of Lemma 4.1 of [11].

3 Sample path properties

Several papers [20, 10, 18, 19, 2] have already investigated sample path properties of the linear fractional stable motion $X_{\alpha_1,H}$ defined by Equation (1.1) or of its multifractional generalization $X_{\alpha_1,h}$ defined on \mathbb{R} by

$$\tag{3.9} X_{\alpha_1,h}(t) := Y_{\alpha_1}(h(t),t), \quad t \in \mathbb{R}$$

where $\alpha_1 \in (0, 2)$, Y_{α_1} is given by (2.7) and h is a function with values in $(0,1)$. In the following, we improve the upper bound of the global modulus of continuity of $X_{\alpha_1,h}$ stated in [2]. Our first step is to establish an upper bound for the global modulus of continuity of the field S_m defined by (2.5) on a compact set K of $(0, 2) \times (0, 1) \times \mathbb{R}$. To obtain our upper bound, we use
the results we established in [5] on conditionally sub-Gaussian random series.

Let us first recall (see [17] for example) that the α_1-stable random process $X_{\alpha_1,H_1} = (Y_{\alpha_1}(H_1,t))_{t \in \mathbb{R}}$ is unbounded almost surely on each compact set with non-empty interior when $H_1 < 1/\alpha_1$. A similar result holds for S_m as stated in the following proposition.

Proposition 3.1 Assume that $K = [\alpha_1, \alpha_2] \times [H_1, H_2] \times [a, b] \subset (0, 2) \times (0, 1) \times \mathbb{R}$ with $0 < \alpha_1 \leq \alpha_2 < 2$, $0 < H_1 \leq H_2 < 1$ and $a < b$.

1. If $H_1 < 1/\alpha_1$, then the random field S_m is almost surely unbounded on K.

2. If $H_1 = 1/\alpha_1$, then S_m does not have almost surely continuous sample paths on the compact set K.

Proof. By Equation (2.6)

$$ (S_m(\alpha_1,H_1,t))_{t \in \mathbb{R}} \overset{fdd}{=} d_{\alpha_1}(X_{\alpha_1,H_1}(t))_{t \in \mathbb{R}}, \quad (3.10) $$

where d_{α_1} is defined by Equation (2.8) and X_{α_1,H_1} is the linear fractional stable motion given by (1.1).

Let us first assume that $H_1 < 1/\alpha_1$. Then, since $a < b$, by Corollary 10.2.4 of [17], $(S_m(\alpha_1,H_1,t))_{t \in \mathbb{R}}$ is unbounded almost surely on the compact set $[a, b]$. It follows that

$$ \sup_{(\alpha,H,t) \in K} |S_m(\alpha,H,t)| = +\infty \text{ a.s.} $$

since $\sup_{(\alpha,H,t) \in K} |S_m(\alpha,H,t)| \geq \sup_{t \in [a,b]} |S_m(\alpha_1,H_1,t)|$.

Let us now assume that $H_1 = 1/\alpha_1$ (which implies that $\alpha_1 > 1$). Then,

$$ X_{\alpha_1,H_1} = (M_{\alpha_1}([0,t]))_{t \geq 0} + M_{\alpha_1}((t,0])\mathbb{1}_{t < 0})_{t \in \mathbb{R}} $$

is a Lévy α_1-stable motion and by Equation (3.10), so is the process $(S_m(\alpha_1,H_1,t))_{t \in \mathbb{R}}$. Since $\alpha_1 < 2$, the stable motion $(S_m(\alpha_1,1/\alpha_1,t))_{t \in \mathbb{R}}$ is not a Brownian motion and then does not have almost surely continuous sample paths (see Exercise 2.7 p.64 of [12] for instance). This concludes the proof. \[\square\]

Therefore, it remains to study the sample paths on a compact set

$$ K = [\alpha_1, \alpha_2] \times [H_1, H_2] \times [-A, A] \subset (0, 2) \times (0, 1) \times \mathbb{R} $$

such that $H_1 > 1/\alpha_1$, which implies that $\alpha_1 \in (1, 2)$ and $H_1 > 1/2$.

The main result of this paper is the following theorem, which states an upper bound for the modulus of continuity of S_m on K, and for some m a rate of uniform convergence on K for the series $S_{m,N}$ defined by (2.4).
Theorem 3.1 Assume that Hypothesis 2.1 is fulfilled. Let \(S_{m,N} \) and \(S_m \) be defined by (2.4) and (2.5) and let us consider the compact set
\[
K = [\alpha_1, \alpha_2] \times [H_1, H_2] \times [-A, A] \subset (1, 2) \times (1/2, 1) \times \mathbb{R}
\]
with \(A > 0 \) and \(H_1 > 1/\alpha_1 \).

1. As \(N \to +\infty \), the series \((S_{m,N})_{N \geq 1} \) converges uniformly on \(K \) to \(S_m \) and almost surely
\[
\sup_{x, x' \in K} \frac{|S_m(x) - S_m(x')|}{\tau(x - x') \sqrt{\log (\tau(x - x'))}} < +\infty
\]
with \(\tau(z) = |\alpha| + |H| + |t|^{H_1 - 1/\alpha_1} \) for \(z = (\alpha, H, t) \in \mathbb{R}^3 \).

2. For \(\eta > 0 \), let us consider \(m = m_\eta \) defined by
\[
m_\eta(\xi) = c_\eta |\xi|^{-1} (1 + |\log(|\xi|)|)^{-1-\eta},
\]
with \(c_\eta > 0 \) such that \(\int_{\mathbb{R}} m_\eta(\xi) d\xi = 1 \). Then, almost surely
\[
\sup_{N \geq 1} N^\varepsilon \sup_{x \in K} |S_{m_\eta,N}(x) - S_{m_\eta}(x)| < +\infty
\]
for any \(\varepsilon \in (0, 1/\alpha_2 - 1/2) \).

Proof. For all \(x = (\alpha, H, t) \in (0, 2) \times (0, 1) \times \mathbb{R} \) and all integer \(n \geq 1 \), we consider
\[
V_{m,n}(x) := f_+(\alpha, H, t, \xi_n) m(\xi_n)^{-1/\alpha},
\]
so that
\[
S_{m,N}(x) = \sum_{n=1}^{N} T_n^{-1/\alpha} V_{m,n}(x) g_n \quad \text{and} \quad S_m(x) = \sum_{n=1}^{+\infty} T_n^{-1/\alpha} V_{m,n}(x) g_n.
\]
Let us also remark that for all \(x = (\alpha, H, t) \in (0, 2) \times (0, 1) \times \mathbb{R} \),
\[
\mathbb{E}(|V_{m,n}(x)|^\alpha) = \int_{\mathbb{R}} |f_+(\alpha, H, t, \xi)|^\alpha d\xi < +\infty.
\]
Note that if in Equation (2.3) the sub-Gaussian parameter \(s \) of \(g_n \) is less than 1, Equation (2.3) also holds for \(s = 1 \). Moreover, if \(s \) is greater than 1 we may write \(V_{m,n}(x) g_n = (s V_{m,n}(x)) g_n / s \) so that \(g_n / s \) is sub-Gaussian with parameter 1. Hence without loss of generality we may and will assume that \(s = 1 \). It follows that \((g_n)_{n \geq 1} \), \((T_n)_{n \geq 1} \) and \((V_{m,n})_{n \geq 1} \) are three independent sequences that satisfy Assumption 4 in [5] on \((0, 2) \times (0, 1) \times \mathbb{R} \). Then, by Theorem 4.2 of [5], the result follows once we prove \(\mathbb{E}(|V_{m,1}(x_0)|^2) < +\infty \).
for some $x_0 \in K$ and Equation (15) of [5] for $p = 1$, namely (in our setting) if there exists $r > 0$ such that

$$
\mathbb{E} \left(\sup_{x,x' \in K} \left[\frac{|V_{m,1}(x) - V_{m,1}(x')|}{\tau(x - x')} \right]^2 \right) < +\infty. \quad (3.13)
$$

The following proposition, whose proof is postponed to the appendix, allows to find some m satisfying such conditions.

Proposition 3.2 There exists a finite deterministic constant $c_{3.1}(K) > 0$ such that a.s. for all $x, x' \in K = [\alpha_1, \alpha_2] \times [H_1, H_2] \times [-A, A]$,

$$
|V_{m,1}(x) - V_{m,1}(x')| \leq c_{3.1}(K) \tau(x - x') h_{m,K}(\xi),
$$

with, for almost every $\xi \in \mathbb{R}$,

$$
h_{m,K}(\xi) = \max \left(m(\xi)^{-1/\alpha_1}, m(\xi)^{-1/\alpha_2} \right) \left(1 + |\log(m(\xi))| \right) \left(1 + |\log(1_{|\xi| < e})| \right). \quad (3.14)
$$

Let us first consider $m = m_\eta$ given by (3.11) for some $\eta > 0$. In view of Proposition 3.2, since $\nu_{m_\eta}(\alpha, H, 0) = 0$ for all $(\alpha, H, 0) \in K$, up to use a finite covering of K, it is enough to prove that there exists $r > 0$ with

$$
\mathbb{E} \left(h_{m_\eta,K}(\xi_1)^2 \right) < +\infty, \quad (3.15)
$$

for $K = [\alpha_1, \alpha_2] \times [H_1, H_2] \times [-A, A]$ with $\alpha_2 - \alpha_1 \leq r$. One has

$$
\mathbb{E}(h_{m_\eta,K}(\xi_1)^2) = \int_{\mathbb{R}} h_{m_\eta,K}(\xi)^2 m_\eta(\xi) d\xi
= \int_{|\xi| \leq e} + \int_{|\xi| > e} := I_1 + I_2.
$$

On the one hand,

$$
I_1 = \int_{|\xi| \leq e} m_\eta(\xi) \max(m_\eta(\xi)^{-2/\alpha_1}, m_\eta(\xi)^{-2/\alpha_2})(1 + |\log(m_\eta(\xi))|)^2 d\xi
\leq c_{3.2}(\eta, K) \int_{|\xi| \leq e} |\xi|^{-1+2/\alpha_2} (1 + |\log(|\xi|)|)^{1+\eta} (\xi)^{1+\eta}(1 + |\log(m_\eta(\xi))|)^2 d\xi,
$$

with $c_{3.2}(\eta, K)$ a positive finite constant. It follows that $I_1 < +\infty$ since $\alpha_2 > 0$. On the other hand,

$$
I_2 = \int_{|\xi| > e} m_\eta(\xi) \max(m_\eta(\xi)^{-2/\alpha_1}, m_\eta(\xi)^{-2/\alpha_2})(1 + |\log(m_\eta(\xi))|)^2 |\xi|^{2(\alpha_2-1)/\alpha_1 - 2} \log(|\xi|)^2 d\xi
\leq c_{3.3}(\eta, K) \int_{|\xi| > e} |\xi|^{2(\alpha_2-1/\alpha_1 - 2) - 3} \log(|\xi|)^{1+\eta}(1+2/\alpha_1 + 2(1 + |\log(m_\eta(\xi))|)^2 d\xi,
$$

with $c_{3.3}(\eta, K)$ a positive finite constant.
with $c_{3,3}(\eta, K)$ a positive finite constant. Since $\alpha_1 > 1$, note that $\alpha_2 - \alpha_1 < 1 - H_2$ implies that $H_2 + 1/\alpha_1 - 1/\alpha_2 < H_2 + \alpha_2 - \alpha_1 < 1$ and thus $I_2 < +\infty$. Therefore choosing $r \in (0, 1 - H_2)$, Equation (3.15) and then (3.13) hold for $m = m_\eta$. By Theorem 4.2 of [5], $(S_{m_\eta, N})_{N \geq 1}$ and S_{m_η} satisfy 1. and 2. of the theorem. Since for almost every $\xi \in \mathbb{R}$ the map $(\alpha, H, t) \mapsto f_+(\alpha, H, t, \xi)$ is continuous on K, by Assertion 2. of Proposition 5.1 of [5], S_η satisfies Assertion 1.

\begin{remark}
Assertion 2. in Theorem 3.1 holds for any m satisfying Equation (3.15) instead of m_η.
\end{remark}

4 Linear multifractional multistable and stable motions

From now on let us consider $\alpha : \mathbb{R} \mapsto (0, 2)$ and $h : \mathbb{R} \mapsto (0, 1)$ two continuous functions. Under Hypothesis 2.1, by Proposition 2.1, we may consider the linear multifractional multistable motion defined on \mathbb{R} by

$$\tilde{S}_m(t) := S_m(\alpha(t), h(t), t),$$

with S_m given by (2.5).

4.1 Regularity and rate of convergence

We may also define $\tilde{S}_{m,N}(t) := S_{m,N}(\alpha(t), h(t), t)$, for all $N \geq 1$. The following theorem is a direct consequence of Theorem 3.1.

\begin{theorem}
Let us consider $\alpha : \mathbb{R} \mapsto (0, 2)$ and $h : \mathbb{R} \mapsto (0, 1)$ two continuous functions and two real numbers $a < b$. Then let us set

$$\alpha_1 = \min_{t \in [a, b]} \alpha(t), \quad \alpha_2 = \max_{t \in [a, b]} \alpha(t) \quad \text{and} \quad H_1 = \min_{t \in [a, b]} h(t).$$

Assume that $H_1 > 1/\alpha_1$ and that α and h are $(H_1 - 1/\alpha_1)$-Hölder continuous functions on $[a, b]$.

1. Then, as $N \to +\infty$, the series $\left(\tilde{S}_{m,N}\right)_{N \geq 1}$ converges uniformly on $[a, b]$ to \tilde{S}_m and almost surely

$$\sup_{t, t' \in [a, b], t \neq t'} \frac{\left|\tilde{S}_m(t) - \tilde{S}_m(t')\right|}{|t - t'|^{H_1 - 1/\alpha_1} \sqrt{\log |t - t'|} + 1} < +\infty.$$
Moreover if \(m = m_\eta \) is defined by (3.11) with \(\eta > 0 \), then, almost surely
\[
\sup_{N \geq 1} \sup_{t \in [a,b]} N^\varepsilon \sup_{t' \in [a,b]} \left| \tilde{S}_{m_\eta, N}(t) - \tilde{S}_{m_\eta}(t') \right| < +\infty
\]
for any \(\varepsilon \in (0, 1/\alpha_2 - 1/2) \).

Note that one can use \(\tilde{S}_{m_\eta, N} \) to simulate \(\tilde{S}_{m_\eta} \). The error of approximation is then given by \(N^\varepsilon \).

4.2 Stochastic integral and series representation

Assuming that \(\alpha \) is a constant function equal to \(\alpha_1 \), we have already seen that \(\tilde{S}_m \overset{\text{fdd}}{=} d_{\alpha_1} X_{\alpha_1, h} \) where \(X_{\alpha_1, h} \) is the linear multifractional \(\alpha_1 \)-stable motion defined by (3.9) and \(d_{\alpha_1} \) is given by (2.8). Using the previous theorem we will prove the following one.

Theorem 4.2 Let \(\alpha_1 \in (0, 2) \) and \(h : \mathbb{R} \rightarrow (0, 1) \) be a continuous function. Let us also consider \(X_{\alpha_1, h} \) the linear multifractional \(\alpha_1 \)-stable motion defined by (3.9) and two real numbers \(a < b \). If \(H_1 := \min_{t \in [a,b]} h(t) > 1/\alpha_1 \) and if \(h \) is \((H_1 - 1/\alpha_1)\)-Hölder continuous on \([a, b]\), then there exists a continuous modification \(X_{\alpha_1, h}^* \) of \(X_{\alpha_1, h} \) such that almost surely
\[
\sup_{t, t' \in [a,b] \cup \mathcal{D}} \frac{|X_{\alpha_1, h}^*(t) - X_{\alpha_1, h}^*(t')|}{|t - t'|^{H_1 - 1/\alpha_1} \sqrt{\log |t - t'|} + 1} < +\infty,
\]

Proof. Let \(\alpha : \mathbb{R} \rightarrow (0, 2) \) be the constant function equal to \(\alpha_1 \) and let \(\tilde{S}_m \) be defined by (4.16). Since \(\tilde{S}_m \overset{\text{fdd}}{=} d_{\alpha_1} X_{\alpha_1, h} \) with \(d_{\alpha_1} \neq 0 \) defined by (2.8), by Theorem 4.1, we already know that a.s.
\[
\sup_{t, t' \in [a,b] \cup \mathcal{D}} \frac{|X_{\alpha_1, h}(t) - X_{\alpha_1, h}(t')|}{|t - t'|^{H_1 - 1/\alpha_1} \sqrt{\log |t - t'|} + 1} < +\infty,
\]
where \(\mathcal{D} \) is the dense set of dyadic real numbers. Moreover, since \(h \) is continuous with values in \((0, 1)\), the stochastic continuity of the linear multifractional \(\alpha_1 \)-stable motion \(X_{\alpha_1, h} \) has been established in \([19]\). This implies that there exists a modification \(X_{\alpha_1, h}^* \) of \(X_{\alpha_1, h} \) such that
\[
\sup_{t, t' \in [a,b] \cup \mathcal{D}} \frac{|X_{\alpha_1, h}^*(t) - X_{\alpha_1, h}^*(t')|}{|t - t'|^{H_1 - 1/\alpha_1} \sqrt{\log |t - t'|} + 1} < +\infty,
\]
see e.g. Section D.2 of [5] for the construction of $X_{\alpha_1,h}^*$. Then, the proof is complete. □

In [2], using a wavelet series expansion, under our assumptions of Proposition 3.9, the authors obtained a continuous modification $X_{\alpha_1,h}^*$ satisfying a.s. for all $\eta > 0$,

$$\sup_{t, t' \in [a, b]} \frac{|X_{\alpha_1,h}^*(t) - X_{\alpha_1,h}^*(t')|}{|t - t'|^{H_1 - 1/\alpha_1} (|\log |t - t'|| + 1)^{2/\alpha_1 + \eta} + \eta} < +\infty.$$

Since $1/2 < 2/\alpha_1$, our result is sharper. Moreover it is quasi-optimal since, for $\eta > 0$, one can find h such that a.s.

$$\sup_{t, t' \in [a, b]} \frac{|X_{\alpha_1,h}^*(t) - X_{\alpha_1,h}^*(t')|}{|t - t'|^{H_1 - 1/\alpha_1} (|\log |t - t'|| + 1)^{-\eta} + \eta} = +\infty,$$

by Theorem 6.1 of [2]. Let us also quote that following our method based on [5], one may obtain an upper bound for the global modulus of continuity of linear fractional stable sheets, which is sharper than the one given in [3].

A Proof of Proposition 3.2

Let us consider $K = [\alpha_1, \alpha_2] \times [H_1, H_2] \times [-A, A] \subset (1, 2) \times (1/2, 1) \times \mathbb{R}$ such that $1/\alpha_1 < H_1 \leq H_2 < 1$. Let us note that it is enough to prove Proposition 3.2 for A large enough. Then, in this proof, we assume, without loss of generality that $A > e$ (so that $\log \xi > 1$ for $\xi > A$).

For all $x = (\alpha, H, t) \in K$, we set

$$\beta(x) = H - 1/\alpha \in (0, 1)$$

and remark that $\beta(x) \in [\beta_1, \beta_2] \subset (0, 1)$ with

$$\beta_1 = H_1 - 1/\alpha_1 \quad \text{and} \quad \beta_2 = H_2 - 1/\alpha_2.$$

Moreover, for all $x = (\alpha, H, t) \in K$ and all $\xi \in \mathbb{R}$, let us note that

$$f_+(\alpha, H, t, \xi) = g(\beta(x), t, \xi)$$

with g defined on $(0, 1) \times \mathbb{R} \times \mathbb{R}$ by

$$g(\beta, t, \xi) := (t - \xi)^\beta_+ - (-\xi)^\beta_+.$$

Let us now consider $x = (\alpha, H, t) \in K$ and $x' = (\alpha', H', t') \in K$. Then, by (3.12),

$$V_{m,n}(x) - V_{m,n}(x') = \left(g(\beta(x), t, \xi_n)m(\xi_n)^{-1/\alpha} - g(\beta(x'), t', \xi_n)m(\xi_n)^{-1/\alpha'} \right).$$

Proposition 3.2 follows from the following lemma, which proof is given at the end of this section.
Lemma A.1 Let $0 < \beta_1 \leq \beta_2 < 1$ and $A > e$.

1. There exists a finite positive constant $c_1(A, \beta_1, \beta_2)$ such that for all $\beta, \beta' \in [\beta_1, \beta_2]$, all $t, t' \in [-A, A]$ and all $\xi \in \mathbb{R}$,

$$|g(\beta, t, \xi) - g(\beta', t', \xi)| \leq c_1(A, \beta_1, \beta_2)\left(|t - t'|^{\beta_1} + |\beta - \beta'|\right) h_{A,1}(\xi, \beta_2)$$

with

$$h_{A,1}(\xi, \epsilon) = 1_{|\xi| \leq 2A} + |\xi|^{c-1} \log |\xi| \mathbf{1}_{|\xi| > 2A}.$$

2. Moreover, there exists a finite positive constant $c_2(A, \beta_1)$ such that for all $\beta \in [\beta_1, \beta_2]$ and $t \in [-A, A]$,

$$|g(\beta, t, \xi)| \leq c_2(A, \beta_1) h_{A,2}(\xi, \beta_2)$$

with

$$h_{A,2}(\xi, \epsilon) = 1_{|\xi| \leq 2A} + |\xi|^{c-1} \mathbf{1}_{|\xi| > 2A}.$$

Setting for almost every $\xi \in \mathbb{R}$

$$\begin{cases}
F_1(x, x', \xi) := |g(\beta(x), t, \xi) - g(\beta(x'), t', \xi)| m(\xi)^{-1/\alpha}, \\
F_2(x, x', \xi) := |g(\beta(x'), t', \xi)| m(\xi)^{-1/\alpha} - m(\xi)^{-1/\alpha'}
\end{cases}$$

we then have

$$|V_{m,1}(x) - V_{m,1}(x')| \leq F_1(x, x', \xi_1) + F_2(x, x', \xi_1).$$

Before we apply Lemma A.1 to bound F_1 and F_2, let us remark that for all $\xi \in \mathbb{R}$,

$$h_{A,2}(\xi, \beta_2) \leq h_{A,1}(\xi, \beta_2) \leq c_3(A, \beta_2) \left(1_{|\xi| \leq e} + |\xi|^{\beta_2 - 1} \log |\xi| \mathbf{1}_{|\xi| > e}\right) \quad (A.17)$$

with $c_3(A, \beta_2)$ a finite positive constant, which does not depend on ξ. Then, combining this remark with Lemma A.1, for almost every $\xi \in \mathbb{R}$,

$$F_1(x, x', \xi) \leq c_1(A, \beta_1, \beta_2) c_3(A, \beta_2) \left(|t - t'|^{\beta_1} + |\beta(x) - \beta(x')|\right) h_{m,K}(\xi)$$

with $h_{m,K}$ defined by Equation (3.14). Since $\alpha_1 > 1$, by definition of the function β, it follows that for almost every $\xi \in \mathbb{R}$,

$$F_1(x, x', \xi) \leq c_1(A, \beta_1, \beta_2) c_3(A, \beta_2) \tau(x - x') h_{m,K}(\xi),$$

with $\tau(x - x') = |t - t'|^{\beta_1} + |H - H'| + |\alpha - \alpha'|$.

Moreover, applying Assertion 2 of Lemma A.1, Equation (A.17) and the mean value theorem, for almost every $\xi \in \mathbb{R}$,

$$F_2(x, x', \xi) \leq c_2(A, \beta_1) c_3(A, \beta_2) |\alpha - \alpha'| h_{m,K}(\xi).$$
In view of the previous computations, we have: almost surely,

$$|V_{m,1}(x) - V_{m,1}(x')| \leq c_{3,1}(K)\tau(x - x')h_{m,K}(\xi_1)$$

with $c_{3,1}(K) := c_3(A, \beta_2)(c_1(A, \beta_1, \beta_2) + c_2(A, \beta_1))$. This concludes the proof of Proposition 3.2. □

We conclude this section by the proof of Lemma A.1.

Proof. [Proof of Lemma A.1] Let $0 < \beta_1 < \beta_2 < 1$ and $A > \varepsilon$. Let $\beta, \beta' \in [\beta_1, \beta_2] \subset (0, 1)$ and $t, t' \in [-A, A]$. Let us write for all $\xi \in \mathbb{R}$,

$$|g(\beta, t, \xi) - g(\beta', t', \xi)| \leq g_1(\beta', t, t', \xi) + g_2(\beta, \beta', t, \xi)$$

with

$$\begin{align*}
 g_1(\beta', t, t', \xi) &:= |g(\beta', t', \xi) - g(\beta', t, \xi)| \\
 g_2(\beta, \beta', t, \xi) &:= |g(\beta', t, \xi) - g(\beta, t, \xi)|.
\end{align*}$$

Step 1: Control of g_1. Let us note that if $t = t'$, $g_1(\beta', t, t', \xi) = 0$ for all $\xi \in \mathbb{R}$. Then, in this step, we assume now, without loss of generality that $t < t'$. This implies that

$$g_1(\beta', t, t', \xi) = \begin{cases}
 0 & \text{if } \xi \geq t' \\
 (t' - \xi)^{\beta'} & \text{if } t \leq \xi < t' \\
 (t - \xi)^{\beta'} - (t' - \xi)^{\beta'} & \text{if } \xi < t.
\end{cases}$$

Let $\xi \in \mathbb{R}$ with $|\xi| > 2A$. If $\xi < 0$ it follows that $\xi < t < t'$. Since $\beta' > 0$, applying the mean value theorem,

$$g_1(\beta', t, t', \xi) \leq \beta' |t - t'| |c_{\xi, t, t'} - \xi|^{\beta' - 1}$$

with $c_{\xi, t, t'} \in (t, t') \subset [-A, A]$. Moreover, since $|\xi| > 2A$

$$|c_{\xi, t, t'} - \xi| \geq |\xi| - |c_{\xi, t, t'}| \geq |\xi| - A \geq |\xi|/2$$

and then

$$g_1(\beta', t, t', \xi) \leq 2^{1-\beta'} |t - t'| |\xi|^{\beta' - 1}$$

since $\beta' \in (0, 1)$. Therefore, for $|\xi| > 2A$,

$$g_1(\beta', t, t', \xi) \leq 4A |t - t'|^{\beta_1} |\xi|^{\beta_2 - 1} \quad \text{ (A.18)}$$

since $|t - t'| \leq 2A$, $\beta' \in [\beta_1, \beta_2] \subset (0, 1)$ and $2A > 1$.

Now let $\xi \in \mathbb{R}$ with $|\xi| \leq 2A$. Since $0 < \beta' < 1$, we have

$$|a^{\beta'} - b^{\beta'}| \leq |a - b|^{\beta'}$$

for all $a, b \in \mathbb{R}$.
for all \(a, b \geq 0 \). By definition of \(g \), it follows that
\[
g_1(\beta', t', \xi) \leq \left| (t' - \xi)_+ - (t - \xi)_+ \right|^{\beta'} \leq |t' - t|^{\beta'} \leq 2A|t' - t|^{\beta_1}
\]
since \(-A \leq t < t' \leq A, 0 < \beta_1 \leq \beta' < 1\) and \(A > 1\). From this last inequality and Equation (A.18), we deduce that for all \(\xi \in \mathbb{R} \),
\[
g_1(\beta', t, t', \xi) \leq 4A|t - t'|^{\beta_1} h_{A,2}(\xi, \beta_2) \tag{A.19}
\]
with \(h_{A,2}(\xi, \beta_2) = 1_{|\xi| \leq 2A} + |\xi|^{\beta_2-1}1_{|\xi| > 2A} \).

Step 2: Control of \(g_2 \). Let us recall that for all \(\xi \in \mathbb{R} \),
\[
g_2(\beta, \beta', t, \xi) = \left| (t - \xi)_{+}^{\beta'} - (t - \xi)_{+}^{\beta} + (-\xi)_{+}^{\beta} - (-\xi)_{+}^{\beta'} \right|.
\]
Then, applying the mean value theorem, for all \(\xi \in \mathbb{R} \),
\[
g_2(\beta, \beta', t, \xi) \leq |\beta - \beta'| \sup_{\beta_1 \leq c \leq \beta_2} |(t - \xi)^{c}_{+} \log(t - \xi)_{+} - (-\xi)^{c}_{+} \log(-\xi)_{+}|
\]
where for \(c > 0 \),
\[
(x)_{+}^{c} \log(x)_{+} = \begin{cases} x^{c} \log x & \text{if } x > 0 \\ 0 & \text{if } x \leq 0. \end{cases}
\]
Let us first consider \(\xi \in [-2A, 2A] \). Then, \((-\xi)_{+} \in [0, 2A]\) and \((t - \xi)_{+} \in [0, 3A]\) since \(t \in [-A, A]\). Therefore,
\[
g_2(\beta, \beta', t, \xi) \leq \tilde{c}_1(A, \beta_1, \beta_2)|\beta - \beta'| \tag{A.20}
\]
with
\[
\tilde{c}_1(A, \beta_1, \beta_2) = 2 \max_{\beta_1 \leq c \leq \beta_2} \max_{0 < u < 3A} u^{c} \log u = 2 \max \left(\frac{1}{e^{\beta_1}}, (3A)^{\beta_2} \log(3A) \right) < +\infty.
\]
Let us now assume that \(\xi < -2A \). Then, \(\xi < t \) and
\[
g_2(\beta, \beta', t, \xi) \leq |\beta - \beta'| \sup_{\beta_1 \leq c \leq \beta_2} |(t - \xi)^{c} \log(t - \xi) - (-\xi)^{c} \log(-\xi)|
\]
with \(t - \xi > 0 \) and \(-\xi > 0 \). Let us remark that \(-\xi \in (-\xi/2, -3\xi/2) \) since \(-\xi > 0 \) and that
\[
-\xi/2 < -A - \xi \leq t - \xi \leq A - \xi < -3\xi/2
\]
since \(t \in [-A, A] \) and \(\xi < -2A \). Then, for each \(c \in [\beta_1, \beta_2] \subset (0, 1) \), by the mean value theorem,
\[
|(t - \xi)^{c} \log(t - \xi) - (-\xi)^{c} \log(-\xi)| \leq |u_{t,\xi,c}|^{c-1}(c \log u_{t,\xi,c}) + 1
\]
with $u_t, c \in (-\xi/2, -3\xi/2)$. Since $u_t, c \in (-\xi/2, -3\xi/2)$ and $-\xi/2 > A > e$, we get
\[|(t - \xi)^c \log(t - \xi) - (-\xi)^c \log(-\xi)| \leq 4|\xi|^{\beta_2-1} \log |\xi| \]
for all $c \in [\beta_1, \beta_2] \subset (0, 1)$. Hence, for $\xi < -2A$,
\[g_2(\beta, \beta', t, \xi) \leq 4|\beta - \beta'| |\xi|^{\beta_2-1} \log |\xi|. \]
Note that this last inequality still holds for $\xi > 2A$ since in this case, $g_2(\beta, \beta', t, \xi) = 0$.

Then, we have proved that for all $\xi \in \mathbb{R}$,
\[g_2(\beta, \beta', t, \xi) = \hat{c}_2(A, \beta_1, \beta_2) |\beta - \beta'| h_{A,1}(\xi, \beta_2) \quad (A.21) \]
with $\hat{c}_2(A, \beta_1, \beta_2) = \max(\hat{c}_1(A, \beta_1, \beta_2), 4)$ and
\[h_{A,1}(\xi, \beta_2) = 1_{|\xi| \leq 2A} + |\xi|^{\beta_2-1} \log |\xi| 1_{|\xi| > 2A}. \]

Step 3: Proof of Assertion 1. It follows from Equations (A.19) and (A.21) choosing $c_1(A, \beta_1, \beta_2) = \hat{c}_2(A, \beta_1, \beta_2) + 4A \in (0, +\infty)$ and using the fact that $h_{A,2}(\xi, \beta_2) \leq h_{A,1}(\xi, \beta_2)$ since $A > e$.

Step 4: Proof of Assertion 2. Let us remark that
\[g(\beta', t', \xi) = g(\beta', t', \xi) - g(\beta', 0, \xi) \]
since $g(\beta', 0, \xi) = (-\xi)^{\beta'} - (-\xi)^{\beta'} = 0$. Hence, applying Equation (A.19) with $t = 0$ and $\beta' = \beta$,
\[|g(\beta', t', \xi)| \leq 4A |t'|^{\beta} h_{A,2}(\xi, \beta_2) \leq 4A^{\beta+1} h_{A,2}(\xi, \beta_2), \]
which concludes the proof. \(\square\)

Acknowledgments

This work has been supported by the grant ANR-09-BLAN-0029-01 and GDR CNRS 3475 Analyse Multifractale.

References

Hermine Biermé
MAP 5, CNRS UMR 8145, Université Paris Descartes, PRES Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
E-mail: hermine.bierme@mi.parisdescartes.fr
Céline Lacaux
Université de Lorraine, Institut Élie Cartan de Lorraine, UMR 7502, Vandœuvre-lès-Nancy, F-54506, France
CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandœuvre-lès-Nancy, F-54506, France
Inria, BIGS, Villers-lès-Nancy, F-54600, France
E-mail: Celine.Lacaux@univ-lorraine.fr