N

N

Component-based simulation for a reconfiguration study
of transitic systems
Eugen Kindler, Thierry Coudert, Pascal Berruet

» To cite this version:

Eugen Kindler, Thierry Coudert, Pascal Berruet. Component-based simulation for a reconfiguration
study of transitic systems. SIMULATION: Transactions of The Society for Modeling and Simulation
International, 2004, vol. 80, pp. 153-163. 10.1177/0037549704045048 . hal-00854456

HAL Id: hal-00854456
https://hal.science/hal-00854456
Submitted on 27 Aug 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00854456
https://hal.archives-ouvertes.fr

OATAO

Cipen Archive Toulouse Archive Cuverte

OpenArchive ToulouseArchive Ouverte OATAO)

OATAO is an open access repository that collects the work of Tail@searchers a
makes it freely available over the web where possible.

This is an author-deposited version published http://oatao.univoulouse.fr
Eprints ID: 7935

Tolink tothisarticlee DOI: 10.1177/0037549704045048
http://sim.sagepub.com/content/80/3/153.full.pdf+html

To citethisversion:

Kindler, Eugen and Coudert, Thierry and Berruet, PaSwhponent-based
simulation for a reconfiguration study of transitic systems. (2004) Simulation
vol. 80 (n° 3). pp. 153-163. ISSN 0037-5497

Any correspondence concerning this service should be sent to the repabiansaator:
staff-oatao@inp-toulouse.fr

Component-Based Simulation
for a Reconfiguration Study

of Transitic Systems

Eugene Kindler

Ostrava University Faculty of Sciences

CZ-701 03 Ostrava, Dvorakova 7, Czech Republic
kindler@ksi.mff.cuni.cz

Thierry Coudert

Pascal Berruet

LESTER FRE 2734, Université de Bretagne Sud
Centre de recherche, BP 92116

56321 LORIENT Cedex, France

This paper is organized as follows. Part A presents the context of reconfiguring transitic systems and
the main idea in implementing the decision step. It comprises sections 1 to 3. Section 3 presents an
example thatillustrates the concepts presented in the next sections. Parts B and C express the models
and principles used to simulate transitic systems, the result of which will be helpful for choosing the
new configuration. Part B focuses mainly on models. It comprises sections 4 to 6. Part C focuses
mainly on simulation principles. It comprises sections 7 to 10.

Keywords: Transitic systems, object-oriented programming, conveyors with rollers, nesting models,

reflective simulation

Part A. Context and Global Objectives

The presented work highlights a major project that con-
cerns the reconfiguration of transitic systems.

1. Transitic Systems

Transitic systems are particular manufacturing systems
that transport products from different locations with a fast
flow and dispatch them to their destinations. They are com-
posed of different types of conveyors, sorters, elevators,
consignments, and automated guided vehicles. Conveyors
can be linear, curved, or circular and can have pneumatic
jacks, mechanical stops, and switchings. The transitic sys-
tems (TSs) are characterized by the following different fea-
tures:

1.1. TSs are specific manufacturing systems in the sense
that no transforming subsystem is considered. The
product, often named parcel, remains unchanged un-
til it leaves the TS.

1.2. TSscan be characterized as discrete event systems in
the sense that their control is mainly discrete. Nev-
ertheless, TSs also include a continuous dimension.

1.3. Because of the speed transfer, TSs are often analyzed
in terms of flows, capacities, and costs.

1.4. The parcels run over a network of permanent ele-
ments, which can be classified into a small number
of types. The reusability concept is very important,
enabling designers to reuse some validated parts.

1.5. TSs include a flexibility notion. Different paths en-
able the same area to be reached. The management
of the traffic of such systems has to guarantee good
performances management, avoiding deadlocks and
collisions.

When the TS is being designed, designers have to con-
front many problems that arise. The complexity of the TS
requires modular approaches for the user to decompose
very large and complex design problems into simpler ones.
It is necessary to obtain the best approximations between
functional solutions and material architecture at the earliest
stage of design. The competitive markets imply demands
for reducing time to design and implement a new TS. Nev-
ertheless, a TS has to be flexible, robust, easy to maintain,

easy to control, modular, and fault tolerant. Often, several
solutions with different costs are possible, and then they
have to be evaluated so that the optimal one is chosen. In the
evaluation process, computer simulation is very important.
Computer simulation models are applied as tools that give
data for decision support during the real-time control.
Nowadays, another aspect is more and more present in
current TS—namely, the reaction toward failures. This is
a constraint that influences accepting a concrete TS and
therefore also influences the design. TSs not only have
to be efficient from the instantaneous performance point
of view. In anticipating their behavior, one must take into
account that they also have to react to failure occurrences.

2. Reconfiguration

The response to faults comes from the dependability con-
cept. This concept has been investigated, with the notion
of fault tolerance, in automatic control systems [1, 2] and
in the computer science field [3, 4]. Fault tolerance can
be achieved either by passive or active strategies [2]. Pas-
sive approaches use robust design strategies to make the
process insensitive to faults. Fault detection and isolation
(FDI) algorithms perform the active approach. This paper
focuses on some means to implement the active approach
and, more particularly, a particular fault isolation step: the
reconfiguration process.

The reconfiguration process is a response to faults dur-
ing the exploitation phase. It consists of reorganizing both
the material structure of the process and its control part,
allowing it to go on with its production after fault occur-
rence. This problem is quite complex, especially regarding
the number of parameters and functions it requests. These
functions take part at different levels:

* The parts present in the system first have to be considered
and treated [5].

» The same step has to be performed with parts planned by
the scheduler that are to be treated later by the plant [6].

» The system has to make sure that production objectives
will be completed in terms of delay.

* From the workshop point of view, the resources have to
be settled into relevant modes [7].

From a practical point of view, the reconfiguration pro-
cess first requires localizing the faulty part of the system,
analyzing the impact on the rest of the system, deciding
on a new system organization, and then applying correc-
tive actions to reach the proposal organization. Within the
framework of the reconfiguration as previously described,
presented works give some ideas about implementing and
validating the decision step. This decision step requires
having knowledge of the potentialities of the system and
the operating sequences. Previous works using graph mod-
els and graph theory enable determining the following [6]:

« if there is a possibility for the system to go on with the
current production;

« if some resources have to be set in the production mode;

« ifthe part can follow a path to complete its logical operat-
ing sequence: a sequence of controls from a parcel point
of view

But the presented procedures took very few dynamics
parameters into account. Another experimental way is to
use forward-looking simulation to assist in complex deci-
sion making [8].

Today, for more efficiency, this decision has to be per-
formed online. To reduce the time of the system avail-
ability, the calculation should be performed even during
the evolution of the system. But is it possible to imagine
such a thing? Such a process is indeed very difficult to
globally analyze and validate. In most cases, simulation
is used to check the appropriateness of the procedure. The
point, then, is to have models that enable different levels of
simulation.

The aim of'this paper is to propose a global methodology
that enables designers to build models that test the decision
step of the reconfiguration process. In particular, this paper
focuses on nested simulation and reflective simulation of
transitic systems.

3. Example

The transitic system, which is used for illustrating concepts
and methods presented in the following, is introduced in
this section. Its scheme is presented in Figure 1.

The long horizontal lines represent parts where the
transport is performed by motorized rollers. The parcels oc-
curring there can be stopped by mechanical stops (thrusts)
or moved out from these parts by pneumatic jacks. The
jacks are used to move the parcels along the free rollers,
which are represented by vertical lines. There are five
working areas in the system. Jacks also perform the trans-
port along the parts of the working areas, which are rep-
resented by short horizontal lines. At the stopper, three
parcels can occur—namely, the parcel that has entered, the
parcel that is being processed, and the parcel that is waiting
to return to the motorized part. The synchronization at the
system—namely, at the working areas—has to occur with
respect to the movements and positions of the jacks, so that
the jacks do not enter into mutual accidents. In Figure 1,
the scales of the vertical and horizontal dimensions differ
a bit to make the scheme more transparent.

The parcels enter the system at the left lower edge and
continue according to the marked arrows. They can make
a “deviation” to a working area according to their tech-
nological program and to the state of the working area.
Each parcel can make several cycles until it is processed
according to the rules given by its technological program,
and then it leaves the system at the same place where it
entered.

Part B. Models

This section presents models and techniques used to imple-
ment the forward-looking simulation of the TS. The main

Figure 1. Instantaneous state of a model of the IUP

goal is to build models implementing the simulation of a
decision process that is based on the simulation.

4. Component-Based Simulation Models of TS

The mental process of describing a TS can be considered
in the following way. The designers have a list of the sorts
of components at their disposal. The tendency is to min-
imize the number of component types. Nevertheless, in
principle, there is no limit on the number of components
of the same sort that can be introduced into the concrete
TS. The chosen components of various sorts are configured
into a “base” (i.e., into a structure) over which parcels are
moved. The base is considered “pseudo-constant,” which
means that during a normal operation of the TS, its base
does not change and the parcels move over it; only during
some exceptional events can the base be modified. A typ-
ical example of such an event is a failure occurring to a
component of the base; if that event does not cause the TS
to collapse, then it is reconfigured to maintain the avail-
ability of the TS. During the reconfiguration (or another
change of the base), the rules for moving parcels are often
different from those applied to the phases when the base is
constant.

The programming tools are important because they
shorten the transformation of ideas from the human mind
into the physical world of the computer. Namely, the appro-
priate programming tools perform the simulation in a way
that is never explicitly formulated: the user is not forced to
describe algorithms; he or she can describe the simulated
system, and the description is automatically translated into
something comprehensible for the applied computer. The
help provided by the simulation programming tools is es-
sential, as simulation is generally applied for studying com-
plex systems.

The simulation programming tools offer synthesis in
designing the TS. The simulation model M of an individ-
ual transitic system S can be constructed as an analogy to
building S in the following way:

4.1. A list of component types should be mapped to a list
L of classes (abstract knowledge representations).
Characteristically, the applied simulation program-
ming tool does not have such classes. Therefore, it
is suitable to apply an object-oriented programming
tool and to define L in it. This tool allows the user to
organize the classes in a hierarchical way that could
reflect the hierarchical ordering of the types of com-
ponents. For example, the general class head of lists
can be “specialized” into class tech_program of the
technological programs and into class trace of the
traces. Tools introduced for head (e.g., serving to
determine whether the given list is empty, what its
first and last elements are, or how many elements it
has) can be applied for the instances of tech_program
and for trace as well. Nevertheless, for any of these
classes, one can introduce other tools. An example
is a tool that determines whether there is a parcel at
a trace or a “reader” of the technological program,
which informs what technological step has just been
performed for a certain parcel. Class tech_program
can be further specialized into certain special sorts
of the technological programs. Similarly, class trace
can be specialized by adding tools for its presenta-
tion at the computer display (note that, in principle,
there are many ways to visualize models).

4.2. Instances {I,, I,, I, ... } ofthe classes of L are gen-
erated as components of M this is a process analo-
gous to the design phase of S, when one determines

the components {C,, C,, C;, ..
B of S.

. } forming the base

4.3. The instances {I,, I, I5, ... } are linked to form a
substructure § of M that is a certain homomorphic
image of B. The object- oriented programming en-
ables the user to define the classes of L so that the
linking is described almost in terms used for the link-
ing of {C,, C,, C3, ... } when S is being described.
B can be metaphorically called the “base of M.”

4.4. L can be enriched from classes of the parcels. Those
classes reflect the sorts of parcels expected in S. In
the contents of the classes, the rules for manipulat-
ing the parcels can be reflected. Let such rules be
called “life rules of the parcels.” Suitable object-
oriented languages allow the user to formulate the
life rules similarly as algorithms. Such languages are
not only object oriented but also process oriented or
agent oriented. Let them be called languages with
two orientations, or 2-O- languages. The places of
B, at which parcels enter S, can be interpreted in
as parcel generators. Such generators can be defined
in 2-O-languages without any essential problems.

The list L can be considered as a simulation language
defined at the given object-oriented programming tool.

5. Beginning of Implementation

The number of 2-O-languages is not many. We know about
Java, Beta [9], Simula [10-12], and Modsim. For certain
reasons that will be explained in section 10, we applied
Simula. In it, we define the following classes oriented for
the components of the base.

Class trace reflects the linear parts of the base. Every
trace has two ends that are instances of class junction. The
instances of junction serve as connections of traces. Class
Jjunction corresponds to a connection of two traces. It has
two attributes, source and target, which refer to instances
of trace. Let J be an instance of junction. Then the end of
its source is joined to the beginning of its farget through
J. Class junction is specialized into two classes, branching
and inverse_branching. Each of them has another attribute:
branching has second_target, and inverse_branching has
second_source. If a parcel moves along a trace and then
meets a branching at its end, its further movement can con-
tinue either along farget or along second_target. To serve
the decision, a class switching is formulated. Its instances
behave similar to the switches used in railway systems.
However, the choice between target and second_target is
not bound to switches. Class inverse_branching is a certain
reflection of a confluence of two traces; a parcel can enter
its instance from two traces—source and second_source—
and then it moves along target.

Every trace has its direction and its length, which are
expressed in the number of instances of class place. These

instances represent certain atoms. A place can have only
one parcel, but a “voluminous” parcel can be placed at
more places contemporaneously. The parcel of a place is
pointed out by the attribute contents of the place. The places
enable the user to discretize the continuous movement in
the system. They can also serve as animation: method show
represents the places on the computer display. The parcels
also have such a method; when a place contains a parcel
(i.e., when the value of its contents differs from none) and
is requested to perform show, the parcel delegates a place
to its contents. The method show enables one to visualize
the system from a bird’s-eye view. Other attributes of class
place are integer coordinates x and y, which correspond to
the position of the place image at the display.

Traces are considered as lists of their places. In other
words, class trace is a specialization of the class of lists,
which is introduced as a standard class head in Simula. A
detailed analysis shows that several simplifications were
admitted according to the objectives described previously.
First, atrace cannot change its direction: a curving trace can
be replaced by several traces of different directions. Sec-
ond, only four basic directions can be introduced: right,
left, up, and down. These are instances of an abstract class
horiz_vert, and a binary operation sub of angle subtrac-
tion exists among them. The third simplification consists
of limiting the number of connections of traces to three.
A contact of four or more traces can be replaced by two
mutually close contacts.

These simplifications enable one to introduce proce-
dures and methods relating to class #race and to construct
the base simply, transparently, and without errors. The
names last_trace and last_but one_trace are given to the
pair of the last constructed traces. For example, the scheme
outlined in Figure 2 can be described as follows (suppose
we begin from the place marked by a cross, and the coor-
dinates of the place are <3,4>):

new trace(3,4,down, 11) ;

last trace.continue to(right,15);
last_trace.branch to(up,11,right,12);
last but one trace.continue to(left,15);
last but one trace.continue to(up,11);
last but one trace.connect from(last trace);

The main classes of temporary elements are colis and
parcel (colis is a French term that is equivalent to par-
cel). While parcel represents an atom, colis represents a
list of such atoms to enable the modeling of parcels that
occupy more than one place of the traces. Class colis is
enriched by a Boolean attribute forwards and by a real at-
tribute speed. The parcels have attributes way (the trace
at which the parcel is placed) and membership (the colis
of which the parcel is a component). Both classes have
methods move and return, which perform a step of one
place in a robust manner (i.e., eliminating all phenomena
that could contradict the physical laws). When the classes

colis or parcel perform move or return, that procedure au-
tomatically checks whether the change in position does not
infringe on the kinematics or statics laws.

It appears suitable to introduce an abstract class called
driver, which represents an individual algorithm that con-
trols a colis and, among other things, decides on its choice
at a branching. The separation of class driver (and its sub-
classes) from the other classes of L enables one to sepa-
rate the requirements of the universal laws of kinematics
from the formulation of manmade control rules. The user
of the classes only has to formulate the control rules as
“life rules” of a subclass of driver while having use of the
other classes, which do not need to be specialized. The list
L of the mentioned classes really represents a simulation
language. Class driver is declared as a subclass of Simula
standard class process, which allows the user to schedule
events of different instances of this class at one flow of
the simulated Newtonian time. Simula has special excel-
lent properties for robust scheduling that can be applied so
that the scheduling of events formulated in methods such
as move and return of a parcel are interpreted by its own
driver. In other words, the length of time necessary for the
parcel to move is caused a realistic waiting time of the
algorithms that rule the parcels.

6. Next Development

The noted aspects of the mentioned classes allow a user to
simulate TS with the following properties:

6.1. Every parcel is able to move at its own rate, which
may be different from the other parcels.

6.2. The parcels are able to move in both ways; in other
words, the instances of branching could sometimes
behave as those of inverse_branching and vice versa.

6.3. The lengths of the parcels can be different.

But the list L is not suitable for the simulation of other
TSs. Problems especially appear with the TS when the
movement results from the interactions of components that
have to be protected against mutual accidents and against
accidents with the parcels. This concerns mainly TSs with
pneumatic jacks and mechanical stops. Namely, the jacks
represent “pseudo-permanent” elements of the system, as
they can be seen as static elements from the structural point
of view: they are always present in the system (e.g., like
traces and unlike parcels), and unlike parcels, each of them
is always attached to the same trace. But they also have
some dynamic evolution, and a part of their structure can
move into the space. They also interact with the parcels
and can have conflicts with each other.

The set L had to be enlarged. Nevertheless, it was al-
ready too big, and the enlargement would lead to rather
large models. But could see that the physics of the men-
tioned pseudo-permanent components would cause phe-

LI T T 1T TTTTidl
44—

[HEEEEEEN
—

_—
LI T T 1T TTTTidl

e ——
[HEEEEEEN

Figure 2. Simple example of a base

nomena to work against the aspects noted in 6.1 to 6.3.
Therefore, the optimal solution was to reduce the com-
ponents of L that permitted the mentioned aspects and
then to add classes corresponding to the mentioned pseudo-
permanent components.

Through this method, another list L* of classes could be
constructed, containing class verin (representing the jacks)
and bute (representing mechanical stops). Class verin was
introduced as a specialization of Simula class process and
allowed the automatic scheduling of events to include
events of the jacks, too.

Lists L and L* were then enlarged by special tools for
animation, using a class called TERMINAL. This class has
been added to the Simula implementations for PCs un-
der various operating systems (WINDOWS, OS2, LINUX,
UNIX, and even MS/DOS and XENIX), although it is not
an official component of the ISO standard of Simula. It al-
lows an effective animation, using the surface of the com-
puter display discretized as a matrix of 80 columns and 50
lines. This discretization appears to be sufficient for mod-
elers who wish to watch the events that interest them. Other
methods enable modelers to collect data from selected pa-
rameters and to display a synthesis of their evolution during
the simulation interval. A projection of an instantaneous
state of the animation is presented in Figure 2.

Part C. Simulation Principles

7. Internal Simulation: Simulation Adapted to TS
Exploitation Problematics

7.1 Examples of Problems

The classes mentioned in sections 3 and 4 can be used
to build models of a TS with a rather sophisticated trans-
port substructure. The base of the system (cf. section 3)
is rather simple. Nevertheless, that TS illustrates the dif-
ficult problems that often occur during its exploitation
about the decisions that should be made and applied dur-
ing the functioning of the TS. The decisions have to be

formulated according to the instantaneous state of the given
TS so that their consequences do not negatively influence
its operations. The obstacle is that the consequences can be
influenced by many elements that operate and move simul-
taneously, forming a network of events that is so complex,
no mathematical formula is able to compute it in a detailed
way. Let us present some simple examples:

7.1. Attime T, the system is operating (i.e., a rather great
number of parcels are in it). A parcel P comes to the
TUP and is to be placed at the main cycle. Should it
be performed immediately or after some time? Two
variants can be admitted.

7.1.1. P enters immediately, and after having moved
a rather short path at the main cycle, it enters
a working area.

7.1.2. No working area is available, and P will per-
form a full turn at the main cycle; attime 7+ K,
it returns to the place where it entered.

From the viewpoint of P, the situation of 7.1.2 may
not be different from the decision to let the parcel
wait K time units and only then to place it at the
main cycle. But for the global transport at the system,
P can present a certain moving barrie—namely, to
evacuate the parcels that should return from work-
ing areas to the main cycle, which might delay their
transport. Letting P wait outside of the TUP until
a relevant part of the system is no longer occupied
would be better. But how do we anticipate which of
the mentioned variants will come?

7.2. A working area should be assigned to a parcel P
that is moving along the main cycle. Many different
methods are available, two of which are transparent
(or mutually extreme) and can be well algorithmized.

7.2.1. The considered working areas are able to per-
form the next technological step and contain
a free place; P is assigned to the considered
place it is able to reach in the shortest time.

7.2.2. The considered working areas are able to per-
form the next technological step and are not
currently elaborating any parcel; P is assigned
to the nearest free working area.

The variant 7.2.1 may place P at a certain working
area that is elaborating another parcel Q. Then, P
would have to wait until Q is ready. It is possible
that P would be soon elaborated at a working area
that is more distant but free. The variant 7.2.2 may
place P at another working area that is more distant
but free. Nevertheless, before P enters this work-
ing area, another parcel may enter it. Then P has to
wait; it would be better for it to get a working area ac-
cording to 7.2.1. Interestingly, computer simulation

of the IUP pointed out cases in which a parcel had to
make several complete turns along the main cycle;
being served according to 7.2.2, it always accessed
the assigned free working area too late.

7.3. Afaultoccurs in a working area, causing the working
area to be out of order so that it cannot be used until
it is repaired. During that reparation process, the TS
main cycle has to be stopped. In this case, should
the whole production process along the main cycle
be stopped and the system repaired, or should the
process continue during some time, using a smaller
number of redundant working areas?

7.4. A technological step can be performed at several
working areas that, nevertheless, differ in their pa-
rameters. For example:

7.4.1. A working area W 1 has rather better resources,
and the elaboration at it takes a shorter time
than another admissible working area W2.
Which of them should be assigned?

7.4.2. Compared with W1, a smaller number of tech-
nological steps could be performed at W2.
Should that be respected during the assignment
of the working area?

Note that 7.4.1 could imply a similar situation as
for 7.4.2: the working area with better technological
parameters could be a subject of greater interest.

7.5. Due to product flexibility, some technological steps
may be swapped. What is the best choice for the next
technological step of P?

The list of the mentioned examples could be enlarged
by many other ones, but we hope that, namely, 7.1 to 7.3 are
rather instructive for any simulationist; they do not demand
special knowledge about the design, control, and configur-
ing of the TS.

7.2 Simulation as a Way to Solve

Today, modern computers are, in principle, able to gen-
erate and evaluate many combinations of parameters, the
number of which can be far beyond the abilities of the
non-computer-oriented person who would like to under-
stand and control complex production/logistic systems. A
computer can have a much more detailed and finer insight
into what happens in time.

Anticipation of the possible consequences of the de-
cisions and choices among the variants outlined in this
section could be obtained through forward-looking sim-
ulation. The computer C that controls a given system S
can be used to generate the decisions that are physically
possible and then simulate the future of S according to the
generated decision, so that C can come to quite a good
decision.

Let the simulation models used for the mentioned sim-
ulation be called the internal models of S, and let the ex-
periments with them be called the internal simulation of S.

In any case, to have data serving for the control, C must
be connected with a detected apparatus that gives it infor-
mation about the state of S. The same data can be used
to feed the internal models. In principle, there is no prob-
lem in performing and applying the internal simulation.
One only needs to give the computer suitable software,
and the internal models. These models can be more easily
implemented by component-based simulation techniques
outlined in part B (sections 4-6).

8. External Simulation: Simulation Adapted to TS
Design Problematics

This section tackles the simulation of designed system S.
The reason to simulate such a system is to get support data
for the optimal design. Let the simulation models used for
such a simulation be called the external models of S, and let
the application of them be called the external simulation.
These models have many properties similar to the internal
models. Among others, they can use almost the same lists
of classes (see L and L*, introduced in sections 4-6), but
they differ by their application. While the simulated time of
the external models runs for a rather long interval of weeks
and months, that of the internal models runs from seconds
to hours. The external simulation often interprets various
sets of investments. The variants represented by external
models differ by structuring the investments. The internal
simulation interprets various decisions using the existing
(i.e., constant) set of components (note that a component
that is not operating because of its faults does not cease
being a component of the system; it only changes the val-
ues of its parameters). Therefore, the variants simulated in
internal models only differ by the components’ parameters.

A universal task for computer simulation is to manipu-
late models that give true data about the systems that they
simulate. The internal simulation should serve to provide
data that support the owner of a simulated system in having
optimal use of that system. In section 7, we illustrated the
benefit that the internal simulation can provide to the op-
erations of the TS. The consequence should be that when
the TS is being designed, the internal simulation should
also be taken into account. In other words, the external
model M during a design system S should reflect a good
image J of computer C that is a part of S. “Good image”
means that J performs internal simulation like C. If the
simulation ability of C were neglected in J (or if even J
were neglected in M), the same model M would exhibit
two errors in design:

8.1. If the internal simulation were necessary, M would
lead the designers to overvalue the dimension of the
TS; in other words, M would give false information
about S.

8.2. If M gave true information about S in the realization
of S, the internal simulation would be superfluous.

Section 7 illustrates that the internal simulation of S
often helps in solving decision problems. Thus, the absence
of'a computer J performing internal simulation is an error.

Let M be constructed without errors. Then it has to
contain a (dynamic) structure {X} of images of the com-
ponents of S and, besides them, J. J should be able to have
internal models of S and should have a (dynamic) struc-
ture {o} similar to {¥}. Both {X} and {o} represent the
subsystem of S, which is composed of its components but
parameterized a little differently.

Let a simulation of such a model M be called reflective
simulation.'

9. Reflective Simulation Principle

After setting the problem of time in reflective simulation,
this section points out the interest in three oriented lan-
guages to implement reflective simulation.

9.1 Time in Reflective Simulation

Let us present an overview of system S modeled by M in
reflective simulation.

S has hard components and a computer C. All these
components exist in a common (real) time. Let that time be
called r-time. In this time, C sometimes performs a simu-
lation experiment for forward-looking simulation. During
this phase, C continues to exist at r-time. When C does
not need to simulate, it also continues to exist in r-time.
However, its nonsimulation actions can be more or less ne-
glected. Let [7,, #,] be the interval of r-time, during which
C performs a simulation experiment. Naturally, f, < f,, but
often, the equality between ¢, and 7, can be assumed, as the
duration of the forward-looking simulation is so short that
it can be neglected. During that interval, something hap-
pens to C, which is interpreted as an internal model m. m
has its own simulated time, s-time. Both times have similar
properties as they both can be seen as Newtonian ones. But
both times also differ, principally in the interpretation of
their values: for example, at r-time ¢*, the computer C is
said to simulate what shall happen at time #7: 7 is r-time,
and ¢ is s-time.

If S is modeled by M in the external simulation, its
properties described in the preceding paragraph should be
reflected in the description of M. Therefore, M is described

1. Note that the following phenomenon is theoretically possible: an
external model of a system S contains an internal model of a system s that
is completely different from S. It might be a situation in which we simulate
an enterprise, which has computers that simulate something for another
enterprise. Such a phenomenon is covered by the concept of nested sim-
ulation; it can be implemented by the programming technique outlined
later. But that is not the case in this paper, for which it is characteristic
that both the modeled systems are the same. Therefore, we introduce the
term reflective simulation for this special case of nested simulation.

by an association of components (instances of classes ex-
isting in a certain list L*; see section 6) and a computer.
This computer is seen as an instance J of a certain class
I" that is also in L*. The classes are related to the same
simulated time ¢, corresponding to r-time. But I" also has
to include phase ¢ of forward-looking simulation (i.e., the
internal model m). The description of m is very similar to
that of M; only the description of J is omitted there. Nev-
ertheless, there is an important difference between these
two descriptions: while the description of M is related to
rt, that of m should be related to another simulated time s¢,
corresponding to s-time; 7¢ and s¢ cannot be mixed.

9.2 A Solution for Implementation: Languages with
Three Orientations

An advantage provided by the simulation programming
tools, such as simulation languages and simulation pack-
ages, is that their users are not forced to describe what
should happen during the simulation experiments. Instead,
they describe the simulated system, and the description
is automatically translated into something like the corre-
sponding computer program or algorithm. Another good
source of help is the automatic handling of the values
and events related to the simulated time. Examples con-
cern event scheduling in the discrete event simulation
tools or integrating according to the simulated time in the
continuous-system simulating tools. But all these simu-
lation tools relate the described system to a unique time.
The problem of reflective simulation is that it needs several
times, at least ¢ and st.

The solution of the problem consists of using program-
ming languages that are object oriented, agent oriented,
and block oriented. Let them be called languages with three
orientations, or 3-O-languages.

The advantages of object and agent orientation were
outlined in sections 4 and 5, in relation to the lists of classes
L and L*. Moreover, one can enrich such lists with tools
that reflect the essential properties of Newtonian time—
namely, event scheduling.

Block orientation enables the user to include blocks into
the life rules of the classes. Block is a phase that has “local”
entities. These entities are at disposal when the “life” of an
instance is inside of the block. Block b can be a subblock
of another block B. In such a case, when the life is inside
b, the entities of both b and B are accessible.

The concept of a block was first investigated in ALGOL
60 [13], but this programming language was not object
oriented. Nevertheless, the first object-oriented language
that Simula accepted was the block concept. Like struc-
tured programming, block orientation was refused by the
world-professional community of programming theoreti-
cians. The blocks slowly gained acceptance after structured
programming had been fully replaced by object-oriented
programming.

Evidently, the 3-O-languages are 2-O-languages. The
reverse implication does not hold, however. Modsim is a

2-0-language that is not a 3-O-language. It seems that only
Simula, Beta, and Java are 3-O-languages.

10. Implementation with Simula

This section deals with some mechanisms that are essential
for implementing reflective simulation: block orientation,
the avoidance of transplantation, and model copying. In
this way, advantages provided by Simula are emphasized.

10.1 Implementation Using Block Orientation

Block orientation of a 3-O-language enables a user to in-
troduce blocks that have local classes. These classes are
accessible only inside the given block. Let A be a class
having block B in the life rules, and let a list L of classes
be introduced among the local entities of B. Let R be any
instance of class A. When the life of R enters B, R can
be viewed as having become a modeler that uses L for
viewing its models. When L contains tools describing the
Newtonian time, R can be viewed as a simulationist. When
the life rules of R omit B, R loses its modeling/simulating
ability. Naturally, the life rules can contain a cycle con-
taining B, and then R can be viewed as returning to its
“modeling/simulating” activities.

The combination of the three orientations is rather dif-
ficult to understand. For that reason, graphical representa-
tions were developed, called Mejtsky’s diagrams [14, 15],
which use a two-dimensional representation of any block
(represented as a rectangle) and an instance of a class (rep-
resented as a circle). The local entities can be imagined by
being placed inside such a domain. According to the life
rules, a life is represented by a horizontal line inside the
circle or along the upper edge of the rectangle (see Fig. 3).

The introduction of two time axes is simply made by
introducing T-tools into two blocks so that one of them is
a subblock of the other one. In Simula, the T-tools can be
introduced into a block by a “prefix” of that block. Such
a prefix is the name of the set of T-tools. Simula offers a
standard class called SIMULATION, which represents the
T-tools. The “outer” block represents the external simula-
tion. It contains the description M of the external model.
When the computing process enters that block, M begins
to exist. M exists and operates until the computing process
accesses the end of the block. In the block, the list L* of
classes is introduced. The instances of the classes represent
the components of the simulated system. The inner block
is devoted to the internal simulation.

As previously mentioned, the class I" belongs to L*, and
one instance of it is the simulating computer C. Among the
life rules of that class, the subblock represents the internal
simulation (based on model m). The scheme is outlined
in Figure 3, in which the blocks having local classes are
emphasized with a triple dotted line and rounded edges.

The principle is rather simple. The outer block operates
with a list L*, whereas L is sufficient for the inner one.
Note that many Simula implementations offer a possibil-

Figure 3. Mejtsky’s diagram of nested simulation

ity for the system linker to build only one exemplar of L
into the executable model, although it should behave as
occurring twice in the program: once in the outer block
and once—with a completely different interpretation—in
the inner block.

Simula has very suitable T-tools, and this is one of the
reasons why we use this language.

10.2 Transplantation

The presence of L in two blocks could be a source of se-
rious programming errors, called transplantation. Such an
error consists of mixing instances belonging to the outer
block with those belonging to the inner block. For exam-
ple, a parcel belonging to the internal model would be de-
scribed as entering into a queue introduced for the external
model. Such an error may not be discovered immediately;
a collapse of computing comes after millions of additional
computing steps, when the components of both models are
very much interchanged. In such a case, the true reasons
of the error are difficult to discover.

Java does not prevent transplantation, and Beta has to
make many tests (during the simulation run) to prevent it.
The tests make the computing rather slow. Simula has syn-
tactical rules that introduce certain limitations, minimizing
the occasions of making transplantation errors; therefore,
many such errors can be discovered during compilation.
Thus, checking possible transplantation during the com-
puting phase is very rare, and the simulation is hardly
lengthened by the tests.

That is another reason why we use Simula.

10.3 Principles of Model Copying

In the real world, the internal model m arises during the
existence of the real system S. The modeler (a person or an
automatic modeler programmed to run on the controlling

computer) has to generate m. The modeler overviews the
state of S and maps it as the initial state of m. Then, m
proceeds automatically, using the classes of list L.

This process has to be reflected in the external model M
of S. The image C of the computer should also be a certain
image of the modeler. It should be programmed so that it
“overviews” the instantaneous state s of M. According to
s, it generates the initial state of the internal model m, and
then it lets m operate.

Suppose the request for m generation occurs at r-time
t. In general, some components of S operated before 7. Let
one of them be called W. At time ¢, it may make some
continuous action that began at r-time ¢’ and will end at
time ¢”. In general, ' < ¢ < ¢”, but habitually, #’ <t < ¢".
When S is reflected by its external model, M, an image w
of W exists in M. Its operation during time interval [, t"]
is often reflected by an “empty” phase: w is programmed
as if it held during [¢', ”]; at time ¢”, it accepts new values
of attributes that, in reality, were continuously changed
during [#/, #"]. For time ¢”, the “life” of w is scheduled by a
certain life rule p, which assigns the new values. This is a
common practice in discrete event simulation [16], which
has existed since the end of the 1950s and is appreciated
by simulationists.

Therefore, at s-time ¢, w is in a “suspended” state (it
is not operating at the computer), and it points to p with
information to perform it when s-time is equal to . When
the internal model m is generated at the same time as 7, the
following steps have to be performed concerning w:

10.1. For m, the image w* of W is created as a copy of w,
including all its attributes.

10.2. The next life rule to be performed by w* is the image
p* of p.

10.3. The time when p* has to be elaborated corresponds
with ¢” (i.e., it is scheduled for time A = " —1, after
beginning the operation of m).

ol

=

;II]IIIII_

ztoppar

ol

Ilﬁp.ﬁn........lllﬁp.

IIIII_

EII!

=toppear

Ep:ﬁlhlllllllllg Ilﬁlhlllllllllllg i:‘1IILIII|I|I|I|

Il?lfll‘llrlllllﬂ Illllll1||gll1llrl-llll

| [N—

lll%"ll‘llrlllllllllﬂ III1II! Ilrllll

T1

ztopper

= toppe
IL iz}
L

T1

=topper

Figure 4. Reflective simulation: The working area on the right-hand side of the upper section is out of order

Simula provides relevant programming methods in per-
forming such steps. A general description of them can be
taken from Kindler [17, 18]. Therefore, it was no prob-
lem to implement external models of systems that contain
controlling computers that use internal simulation models.

An illustration related to the system (see section 3) is
presented in Figure 4. It is a model for solving the questions
outlined in 7.3. Let the lower part be called the e-part, as the
external model of the system is shown there. When a failure
occurs and causes a certain working area to be inaccessible,
the internal simulation model is generated and runs. Its
animation is shown in the upper part of the figure, called
the i-part. The consequences of failure are then examined.
For example, respecting the hypothesis that the operation
of TS continues, it enables answering whether the queues
of the arriving parcels will grow. The impact of different
elaborated decisions is analyzed to choose the best adapted
decision.

11. Conclusions

The models implemented according to the principles de-
scribed above operate well. Other models are in progress.

This kind of simulation provides data supporting decisions
in a reconfiguration context. The interest in this subject is
very important as several internal models based on the same
external model can easily be elaborated at the same time
and can run with different values for their parameters.
Another interesting aspect of reflective simulation is as
follows: the models were implemented to react to input
data. They concerned the technological aspects (rates of
moving and of pneumatic jack operations, frequencies and
distribution parameters of entering parcels into the sys-
tem, the duration of manipulation at the working areas,
etc.). But we also introduced something as the rate of the
simulating computer. Although one can assume that, in a
realistic application, the rate should be accepted as infinite,
it is no problem to build the rate into the external model.
The designer is asked to enter the duration of a certain step
for running the internal model. Zero is the default value,
but a positive value can be entered. If the default value
is not changed, the observed behavior is that while the i-
part is changing, the e-part is frozen. If the default value
is changed, some changes can be seen at the e-part in cer-
tain moments, while the i-part of the display scene changes
rather quickly. This represents a situation in which a slow

computer is simulating something that may be happening
in its environment. This experiment is useful for validating
whether the decision algorithms can be calculated during
the evolution of the real system. The impact will reduce
the time the system stops for withdrawal and minimize the
tardiness in completing the process. The reactive piloting
problematics could then be tackled by this kind of technics.

One can expect that reflective simulation will be an im-
portant aspect of modeling the computerized production,
ecology, and service system in the near future. The pre-
sented results concern but are not restricted to transitic
systems. Others works could consider FMS or coopera-
tive systems. A small number of other implementations
have been made. The first case was a demonstration model
of a bank controlled by a person who simulates possible
consequences of his decisions (according to the simulated
data, he modifies his decisions; see Kindler [19]). A more
important study concerned computing optimal traces in a
dynamically changing network, which was applied in mod-
eling container yards [20].

9. References

[1] Patton, R. J., and J. Chen. 1994. Review of parity space approaches
to fault diagnosis for aerospace systems. Journal of Guidance,
Control, and Dynamics 17:278-85.

[2] Frank, P. M. 1996. Analytical and qualitative model-based fault di-
agnosis: A survey and some new results. European Journal of
Control 2:6-28.

[3] Laprie, J. C. 1993. Dependability: From concepts to limits. In Pro-
ceedings of the Symposium on Safety of Computer Control Systems
(SAFECOMP93), Poznan, Poland, pp. 157-68.

[4] Dugan, J. B., S. J. Bavuso, and M. A. Boyd. 1992. Dynamic fault-tree
models for fault-tolerant computer systems. [EEE Transactions
on Reliability 41 (3):363-77.

[5] Berruet, P, A. K. A. Toguyeni, and E. Craye. 1999. Considering parts
in progress in a reconfiguration procedure for FMS. In Modern
applied mathematics techniques in circuits, systems and control,
edited by N. E. Mastorakis, 366-73. Athens: WSES Press Editions.

[6] Berruet, P., A. K. A. Toguyeni, S. El Khattabi, and E. Craye. 2000.
Toward an implementation of recovery procedures for FMS su-
pervision. Computers in Industry 43:227-36.

[7] Dangoumau, N., S. El Khattabi, and E. Craye. 2000. Modes of man-
agement for flexible manufacturing systems. In Proceedings of
the World Automation Congress (WAC 2000), Maui, Hawaii.

[8] Tomizuka, M. 2002. Mechatronics: From the 20th to 21st century.
Control Engineering Practice 10 (8): 877-86.

[9] Madsen, O. L., B. Moller-Pedersen, and K. Nygaard. 1993. Object-
oriented programming in the Beta programming language. Read-
ing, MA: Addison Wesley.

[10] Dahl, O.-J., and K. Nygaard. 1968. Class and subclass declarations.
In Simulation programming languages, edited by J. N. Buxton,
158-74. Amsterdam: North Holland.

[11] Dahl, O.-J., B. Myhrhaug, and K. Nygaard. 1984. Common base
language. 4th ed. Oslo, Norway: Norsk Regnesentralen.

[12] SIMULA standard. 1989. Oslo, Norway: Simula.

[13] Backus, J. W., J. Green, C. Katz, J. McCarthy, P. Naur, A.J. Perlis,
H. Rutishauser, K. Samelson, B. Vauguois, J.H. Wegstein, A. van
Wijngaarden, and M. Woodger. 1960. Report on the algorithmic
language ALGOL 60. Numerische Mathematik 2:106-36.

[14] Mejtsky, J., and E. Kindler. 1980. Diagrams for quasi-parallel
sequencing—Part I. SIMULA Newsletter 8 (3): 46-49.

[15] Mejtsky, J., and E. Kindler. 1981. Diagrams for quasi-parallel
sequencing—Part II. SIMULA Newsletter 9 (1): 17-19.

[16] Banks, J. 1990. The simulation of material handling systems. SIM-
ULATION 66:261-70.

[17] Kindler, E. 1999. Chance for Simula. In Proceedings of the 25th Con-
ference of the ASU—System Modelling Using Object-Oriented
Simulation and Analysis, 25-53. Kisten: ASU.

[18] Kindler, E. 2000. Chance for SIMULA. ASU Newsletter 26 (1):
2-26.

[19] Kindler, E. 1994. Simulation of systems containing simulating ob-
jects. In Simulation und Integration’94, edited by P. Lorenz, 65-
76. Dortmund: ASIM.

[20] Kindler, E. 2002. Nesting simulation of a container terminal operat-
ing with its own simulation model. JORBEL (Belgian Journal of
Operations Research, Statistics and Computer Sciences) 40 (3-4):
169-81.

Eugene Kindler is an associate professor at Ostrava University
Faculty of Sciences, Dvorakova, Czech Republic.

Pascal Berruet is an associate professor at LESTER Laboratory,
University of South Brittany, Lorient, France.

Thierry Coudert is an associate professor at LESTER Labora-
tory, University of South Brittany, Lorient, France.

