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Introduction to Diffusive Representation
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Abstract: Diffusive representation is an operator theory elaborated during the last years.
It is devoted to time-nonlocal problems, allowing significant simplifications for analysis and
numerical realization of integral time operators encountered in many physical situations. Namely,
most of the shortcomings induced by time-nonlocal formulations are by-passed by use of
suitable time-local state realizations deduced from diffusive representation and whose numerical
approximations are straightforward, thanks to good properties of diffusion equations. In this
paper, we introduce the notion of diffusive representation and its dual one: the diffusive symbol,
and we briefly describe the associated mathematical framework and numerical techniques. The
interest of this approach is highlighted by numerical examples.

Keywords: Causal operator, State-space realization, Distribution, Symbol, Convolution
integral, Dynamic system, Distributed-parameter system.

1. INTRODUCTION

Linear causal integral operators, that is operators of the
form:

H : u 7→
(
t 7→ (Hu)(t) =

∫ t

−∞
h(t, s)u(s)ds

)
, (1)

are often present in models of physics. So it is important
to study them even if the task is tricky, especially because
the class of considered operators is large. Among others,
it contains rational operators and, when the kernel h is
possibly a distribution, the differential operators.

For analysis and also numerical implementation purposes,
it can be judicious to build new formulations of such
operators, namely state realizations which have the inter-
esting property to involve time-local expressions only, in
opposite to the integral formulation (1) which is hereditary
in the sense that the value of Hu at a time t explicitly
depends on all the past of u. For example, classical Padé
approximations are devoted to this problem.

The so-called diffusive representation (Montseny [2005]) is
a theory (the beginnings of which can be found for example
in Montseny [1991], Montseny et al. [1993b,a], Staffans
[1994]) devoted to exact as well as approximate state
realizations of a wide class of integral operators H, that
is, when the support of u is in R+, to some formulations
of Hu of the following form:

(∂t −A)X = Bu, X(0) = 0, (2)

Hu = CX, (3)

with A, B and C some suitable time-local operators. From
the numerical point of view, thanks to the locality of the
involved operators, a ”step by step” integration (which
does not need the memorization of the past of u) can be
implemented. In fact, the past of u is summarized in the
”state-variable”X used in this ”synthesis” of H. Note that
contrarily to standard methods devoted to approximation
of nonrational operators H, in the diffusive representation

approach, the main object the analysis focuses on is a
suitable time-frequency transformation of the input u
(namely the ”γ-representation” of u, which will be denoted
by ψ).

By means of diffusive representation, we get some various
state realizations which make most of time analysis and
simulation of complex systems much more simple than un-
der the standard integral formulation. This methodology
is of general scope because it offers a unified and useful
mathematical framework in which first the standard alge-
braic operations about integral operators are well defined,
and second, efficient numerical approximations can be
easily built. According to diffusive representation, simple
rational operators as well as complex non-convolution ones
are represented in the same way.

The main notions and some recent results relating to this
theory are presented in this paper in a simplified way. A
complete theoretical statement will be found in Montseny
[2005] and various applications to non trivial problems will
be found in Audounet and Roquejoffre [1998], Carmona
and Coutin [1998a,b], Carmona et al. [2003], Casenave
and Montseny [2009, 2008], Degerli et al. [Ap. 1999], Gar-
cia and Bernussou [1998], Lenczner and Montseny [2005],
Lenczner et al. [2010], Levadoux and Montseny [2003],
Montseny [2007], Mouyon and Imbert [2002], Rumeau
et al. [2006], Bidan et al. [2001], Audounet et al. [1998],
Degerli et al. [1999], Devy-Vareta and Montseny [2001],
Helie and Matignon [2006], Laudebat et al. [2004], Lav-
ernhe et al. [2001], Lavernhe and Solhusvik [1998], Leger
and Pontier [1999], Lubich and Schädler [2002], Matignon
[July 2001], Matignon and Prieur [2005], Mbodge et al.
[1994], Mbodge and Montseny [1995], Montseny [2002b,a,
1998], Montseny et al. [2000], Nihtila and Tervo [2002],
Rouzaud [1998].



2. GENERAL PRINCIPLE

We denote by L the Laplace transform defined by:

(Lf)(p) =
∫ +∞
0

e−pt f(t) dt.

Given h ∈ L1
loc(R+) such that h(t) →

t→+∞
0, we consider a

linear causal convolution operator defined, on any contin-
uous function u : R+ → R, by:

u 7→
(
t 7→

∫ t

0

h(t− s)u(s) ds

)
. (4)

We denote by H the Laplace transform of h and H(∂t) the
convolution operator defined by (4).

Let ut(s) = 1]−∞,t](s)u(s) be the restriction of u to its
past and ut(s) = ut(t − s) the so-called ”history” of u.
From causality of H(∂t), we deduce:

[H(∂t)(u− ut)](t) = 0 for all t; (5)

then, we have for any continuous function u:

[H(∂t)u](t)=
[
L−1 (H Lu)

]
(t)=

[
L−1

(
H Lut

)]
(t). (6)

We then define:

Ψu(t, p) := ep t
(
Lut

)
(p) = (Lut) (−p). (7)

By computing ∂tLut, Laplace inversion and use of (6), the
following result can be proved:

Proposition 1. Ψu is solution of the differential equation:

∂tΨ(t, p) = pΨ(t, p) + u, t > 0, Ψ(0, p) = 0, (8)

and for any b > 0:

[H(∂t)u] (t) =
1

2iπ

∫ b+i∞

b−i∞
H(p)Ψu(t, p) dp. (9)

The main advantage of the ”state formulation” (8,9) is
its time-locality, that we don’t have with (4). However
in return, equation (8) generates some heavy difficulties
because Re(p) > 0 on ]b− i∞, b+ i∞[, especially from the
numerical approximation point of view. To suppress this
problem, we introduce in the sequel a suitable complex arc
γ ⊂ R− such that, under some hypothesis on H(∂t):

• [H(∂t)u] (t) =
1

2iπ

∫
γ
H(p)Ψu(t, p) dp,

• equation (8) is dissipative thanks to the property:
Re(p) < 0 almost everywhere on γ.

3. FUNDAMENTAL THEOREM

Let J ⊆ R and γ ∈ W 1,∞(J ;C) 1 defining a closed 2

contour in C− (also denoted γ); we denote Ω+
γ the exterior

domain defined by γ, and Ω−
γ = CrΩ+

γ , such as shown in
Fig. 1a.
We suppose there exists αγ ∈]π2 , π[ and a ∈ R such that:

• ei[−αγ , αγ ]R+ + a ⊂ Ω+
γ , (10)

• R∗
+ + iR ⊂ Ω+

γ , with γ ∩ iR finite set. (11)

We also suppose that there exists b, c > 0 such that the
function γ satisfies the following property:

b ≤ |γ′(ξ)| ≤ c ξ-a.e. (12)

Let H := Lh be the Laplace-symbol of the causal integral
operator H with impulse response h ∈ L1

loc(R+). We then
have:
1 W 1,∞(J ;C) is the classical Sobolev space of complex functions f
defined on J , such that f ,f ′ ∈ L∞(J ;C).
2 Possibly at infinity

(a) Example of contour γ. (b) Contour Γ.

Fig. 1. Contours γ and Γ

Theorem 2. If:

(i) H is holomorphic in Ω+
γ and the possible singularities

on γ are limited to a finite number of branching points
denoted pk such that, with ckr the circle of center pk
and radius r:

∀k, ∀t, ∀s > 0,

∫
ckr

epsH(p)dp −→
r→0

0, (13)

(ii) the trace of H on γ is locally Lebesgue-integrable,
(iii) there exists a sequence ρn such that ρn −→

n→+∞
+∞

and H(ρne
iθ) −→

n→+∞
0 uniformly with respect to

θ ∈ [π2 ,
3π
2 ],

then, for all u with support in R+, (Hu)(t) = (H(∂t)u)(t)
is expressed by:

(Hu)(t) =
∫
J

µ(ξ)ψ(t, ξ) dξ =< µ,ψ(t, .) >, (14)

where:

µ(ξ) =
γ′(ξ)

2iπ
H(γ(ξ)), (15)

and ψ(t, ξ) is solution of:

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ξ ∈ R, ψ(0, .) = 0. (16)

Proof 3. Assume that γ is bounded 3 . We have, for all
t > 0, and s > 0:

h(s) = (L−1H)(s) =
1

2iπ
lim

R→+∞

∫ a+iR

a−iR

epsH(p) dp, (17)

with a > 0.
Let consider the contour Γ as defined on Fig. 1b 4 :

Γ = (a+ i[−R,R]) ∪ γR ∪ γ1 ∪ γ2 ∪ (−γ), (18)

with γR = {z ∈ C / |z| = R, Re(z) ≤ 0} and γ1 = −γ2.
Then we have the following results:

• from hypothesis (i),
∫
Γ
epsH(p) dp = 0,

• as γ1 = −γ2,
∫
γ1
epsH(p) dp = −

∫
γ2
epsH(p) dp,

• from Jordan-lemma and hypothesis (i), (iii):

lim
R→+∞

∫
γR

epsH(p) dp = 0. (19)

3 The unbounded case can be treated in a similar way, up to
technical adaptations.
4 The contour γ being closed, there exists R > 0 for which such a
contour Γ can be defined.



So, for all t > 0, s > 0:

h(s) =
1

2iπ

∫
γ

epsH(p) dp =

∫
J

eγ(ξ)sµ(ξ) dξ, (20)

with µ(ξ) = γ′(ξ)
2iπ H(γ(ξ)), the integral on J being a

Lebesgue one thanks to hypothesis (ii). For any causal
locally integrable function u, and for all t > 0 we so have:

(h ∗ u)(t) =
∫ t

0

∫
J

eγ(ξ)sµ(ξ) dξ u(t− s) ds. (21)

By assumption, we also have, for any causal locally inte-
grable u and for all t > 0, (h ∗ u)(t) < +∞. So we can
apply the Fubini theorem on space L1(0, t) ⊗ L1(Rξ); we
get:

(h ∗ u)(t) =

∫
J

µ(ξ)

∫ t

0

eγ(ξ)su(t− s) ds dξ

=

∫
J

µ(ξ)ψ(t, ξ) dξ,

(22)

where ψ(t, ξ) =
∫ t

0
eγ(ξ)s u(t−s) ds is the (unique) solution

of (16).

Remark 4. • From theorem 2, we get a state realization of
the convolution operatorH. This realization is of infinite
dimension because ξ ∈ R. Nevertheless, thanks to the
sectorial condition (10), equation (16) is of diffusive
type (Yosida [1965]) and so, some approximations of
reasonable finite dimension can be built.

• We denote Lγ the operator defined by:

(Lγg)(ξ) =

∫ +∞

0

eγ(ξ)s g(s) ds = (Lg)(−γ(ξ)); (23)

the adjoint of Lγ , denoted L∗
γ , is defined by:

(L∗
γf)(s) =

∫
J

eγ(ξ)s f(ξ) dξ 1R+
∗
(s) (24)

and we have (see proof of theorem 2), for all t > 0:

h(s) = (L∗
γµ)(s), (25)

ψ(t, ξ) = (Lγut)(ξ). (26)

• In the proof, it has been shown that, under the hy-
pothesis of theorem 2, the function µ defined by (15)
is solution of the equation (25). In fact, this equation
admits several solutions.

• From (14,15,16), (H(∂t)u)(t) can be expressed:

H(∂t)u(t) =
1

2iπ

∫
γ

H(p)Ψu(t, p)dp, (27)

with Ψu(t, p) defined by (7). In the sequel, we will give
a sense to this integral in more general cases where the
trace of H on γ is no more locally integrable but defines
a singular distribution.

4. TERMINOLOGY AND NOTATIONS

We now introduce a few definitions and notations.

• Let L+(L
2(R)) be the algebra of causal and continuous

linear operators in L2(R). The linear operator (∂t − pI)
admits an inverse in L+(L

2(R)) if Re(p) < 0 (Yosida
[1965]). So we can define:

Definition 1. The diffusive representation operator, de-
note Rd, is the operator function:

Rd : R−∗ + iR −→ L+(L
2(R))

p 7−→ Rdp = (∂t − pI)−1.
(28)

• Rdu : p ∈ C− 7−→ Rdpu ∈ L2(Rt;C) is called the
diffusive representation of u; if suppu ⊂ R+

t , then
(Rdu)(p) = Ψu(., p) is the (unique) solution of the
differential equation:

∂tΨ(t, p) = pΨ(t, p) + u(t),Ψ(0, p) = 0; (29)

so, ψ := Rdγu := (Rd ◦ γ)u = Ψu(., γ) is the (unique)
solution of the (infinite dimensional) Cauchy problem:

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ξ ∈ J, ψ(0, ξ) = 0. (30)

From (26), we then have:

(Rdγu)(t, ξ) = (Lγut(t, .))(ξ) ξ-a.e. (31)

The function ψ = Rdγu is called the γ-representation
of u.

• Any solution µ of the equation h = L∗
γµ is called a

γ-symbol of H(∂t); the particular solution given by (15)
is called the canonical γ-symbol.

• An operator is said γ-diffusive (in the strict sense) if it
admits a γ-symbol with γ verifying (10) and (11).

• An operator H(∂t) such that, for all causal locally
integrable function u:

H(∂t)u =< µ,Rdγu >, (32)

is said γ-realizable (or realizable on γ).
• With µH a γ-symbol ofH(∂t), the expression< µH ,Rdγ >
is called the γ-realization of H(∂t).

5. OPTIMAL TOPOLOGICAL FRAMEWORK

The results of theorem 2 can be extended to a larger class
of operators, providing that the associated γ-symbols are
extended to distributions (so, the expression < µ,Rdγu >
will refer to a topological duality product).
In the sequel, we introduce some topological spaces ∆γ

and ∆′
γ such that for any u, ψ = Rdγu ∈ ∆γ and for any

µ ∈ ∆′
γ , we get:

< µ,ψ >∆′
γ ,∆γ= H(∂t)u, (33)

where H(∂t) is a convolution operator defined by its γ-
symbol µ.

5.1 The spaces DL∞
P

Let L∞
P (R) be the Lebesgue space defined by the norm:

∥φ∥L∞
P

= sup
ξ∈R

P (ξ) |φ(ξ)| with P (ξ) :=
√
1 + ξ2. (34)

Then the space:

DL∞
P
(R) = {φ ∈ C∞(R),∀n ∈ N, ∂nξ φ ∈ L∞

P (R)}, (35)

is a Fréchet space; its topology is defined by the countable

set of semi-norms: ∥φ∥n =
∥∥∥∂nξ φ∥∥∥

L∞
P

.

5.2 Spaces ∆γ and ∆′
γ

In this section, we suppose in addition that the function
γ : R → C is smooth and unbounded (that is J = R).
Without loss of generality, we also suppose that there
exists ξ0 and λ > 0 such that:

• Reγ(ξ) ≤ −λ |ξ| ∀ |ξ| ≥ ξ0,
• ∀n > 0, ∂nξ γ is bounded. (36)

Let consider the space L∞
r (R) of functions of L∞(R) with

right bounded support.



Proposition 5. ∀v ∈ L∞
r (Rs), ψ := Lγv ∈ DL∞

P
(R).

Definition 2. ∆γ is the completion of Lγ(L
∞
r (Rs)) in

DL∞
p
(R); it is a strict subspace of DL∞

p
(R).

Set of v associated with ∆γ Because Lγ is a regularizing
operator, the v such that Lγv ∈ ∆γ can be distributions.
More precisely, it can be shown that for all u ∈ D′(R+):

ψ := Lγut ∈ ∆γ ; (37)

so the set of u we can consider is sufficiently large for
practical needs.

Definition 3. The space ∆′
γ is the topological dual of ∆γ .

As usual, two convergence modes can be defined on ∆′
γ :

• the weak-∗ convergence:

µn
∗
⇀ 0 ⇔ ∀ψ ∈ ∆γ , < µn, ψ >→ 0. (38)

• the strong convergence:

µn → 0 ⇔
{
< µn, ψ >→ 0 uniformly
on any bounded set of ∆γ .

(39)

From definition 2 and because ∆γ is a strict subspace of
DL∞

P
, ∆′

γ is a quotient space of distributions:

Proposition 6. ∆′
γ = D′

L∞
p
/ kerL∗

γ .

So ∆′
γ is constituted of equivalence classes (of γ-symbols),

associated with the equivalence relation:

∀µ1, µ2 ∈ D′
L∞

p
, µ1

γ∼ µ2 ⇐⇒ µ1 − µ2 ∈ kerL∗
γ . (40)

Remark 7. D′
L∞

p
⊂ D′: in general, the γ-symbols are

distributions.

Class of operators with γ-symbols in ∆′
γ

Proposition 8. (Montseny [2005]) Let µ ∈ ∆′
γ . The oper-

ator
u 7−→< µ,Rdγu >∆′

γ ,∆γ (41)

is the convolution operator with impulse response:

h(t) =< µ, eγ(.)t >∆′
γ ,∆γ= (L∗

γµ)(t); (42)

its Laplace-symbol is defined, for all p ∈ Ω+
γ by:

H(p) =< µ,
1

p− γ(.)
>∆′

γ ,∆γ= (LL∗
γµ)(p). (43)

The function H verifies the properties:

• H is holomorphic in Ω+
γ , (44)

• H(p) → 0 when |p| → +∞ in Ω+
γ . (45)

Remark 9. The conditions (44,45) are only necessary ones
but in practice, they are also almost sufficient.

Proposition 10. Let µ ∈ ∆′
γ and u ∈ L∞

loc(R+). Then, for

any contour γ̃ in Ω+
γ such that γ ⊂ Ω−

γ̃
, we have:

< µ,Rdγu >∆′
γ ,∆γ=

1

2iπ

∫
γ̃

H Ψu dp, (46)

where H = LL∗
γµ and Ψu(t, .) is the analytic continuation

of Rdγu.

As 1
2iπ

∫
γ̃
H Ψu dp takes the same value whatever the

contour γ̃ in Ω+
γ , we can denote it 1

2iπ

∫
γ
H Ψu dp (even

if H is not locally integrable on γ). In that sense, this
extends formula (27).

Remark 11. The relation (46) is not true for all< µ,ψ >∆′
γ ,∆γ

with ψ ∈ ∆γ . Indeed, the elements ψ of ∆γ being of C∞

class, they are not necessary the trace on γ of a function
analytic in the neighborhood of γ. So it is possible that
Ω+

γ ∩ Ω−
γ̃

is not included in the intersection of analyticity

domains of H and Ψ(t, .).

Canonical γ-symbols of ∆′
γ In each equivalence class,

there is a unique canonical γ-symbol whose definition is
given here after:

Definition 4. Let µ ∈ ∆′
γ be an equivalence class of γ-

symbols. The γ-symbol µc defined by:

µc :=
γ′

2iπ
(LL∗

γµ)|γ+ ∈ ∆′
γ , (47)

where (.)|γ+ is the right trace on γ in the sense of
distributions, is called the canonical γ-symbol of µ.

The product ♯γ in ∆′
γ The composition product of

operators has an equivalent in ∆′
γ , denoted ♯γ : if µ and

ν are respective (class of) γ-symbols of H(∂t) and K(∂t),
then µ ♯γν is the (class of) γ-symbol(s) of H(∂t) ◦K(∂t).

Definition 5. Let µ, ν ∈ ∆′
γ . The (class of) γ-symbol(s)

denoted µ♯γν is characterized by the relation:

L∗
γ(µ♯γν) =

(
L∗
γµ

)
∗
(
L∗
γν

)
. (48)

Proposition 12. The product ♯γ is inner (and commuta-
tive) in ∆′

γ and separately sequentially continuous for the
weak-∗ topology, that is:(

< νn, ψ >
∗
⇀

n→∞
0
)
=⇒

(
< µ ♯γνn, ψ >

∗
⇀

n→∞
0
)
. (49)

5.3 Spaces ∆γ and ∆′
γ

The duality spaces ∆γ and ∆′
γ are not the optimal frame-

work for the diffusive representation. Among others things,
the product ♯γ is not continuous, the relation (46) is not
true for all < µ,ψ > with ψ ∈ ∆γ (see remark 11) and
the contour γ is necessarily smooth, which is frequently a
shortcoming in practical situations.
So new topological spaces ∆γ and ∆′

γ have been intro-
duced such that:

• ∀µ ∈ ∆′
γ , H(.) is holomorphic in Ω+

γ ,
• ∀ψ ∈ ∆γ , Ψ(t, .) is holomorphic in Ω−

γ̃0

, (50)

with γ̃0 ⊂ Ω+
γ (see Fig. 2). Thus, the integral

∫
γ̃
Hµ Ψu dp

will be well-defined on any contour γ̃ in the intersection
of the analyticity domains of Hµ and Ψu (see Fig. 2) and
will take the same value that will be denoted

∫
γ
Hµ Ψu dp,

by extension of formula (27).

The construction of the space ∆γ (with topological dual
∆′

γ) is not described here: more details will be found in
Montseny [2005]. We only mention that the space ∆γ

is an inductive limit of a family of Fréchet spaces ∆̃γn

isomorphic to ∆γn and based on a family of smooth
contours γn such that, in some sense, γn → γ (note that
now, γ is not necessarily smooth).

• Here again, the space ∆′
γ is constituted of equivalence

classes (of γ-symbols).
• Proposition 8 is still valid in the duality < ∆′

γ ,∆γ >.



Fig. 2. Analyticity domains of H and Ψ.

Canonical γ-symbols As γ is non necessarily smooth, the
canonical γ-symbol can not be defined as in ∆′

γ .

Definition 6. For all µ ∈ ∆′
γ , the canonical γ-symbol µc is

defined by:

µc := lim
γ′n
2iπ

[
LL∗

γµ
]
(γn) ∈ ∆′

γ , (51)

with γn a sequence of smooth contours included in Ω+
γ

such that γn −→
n→∞

γ in W 1,∞
loc .

Product ♯γ in ∆′
γ Definition 5 of product ♯γ is naturally

extended to ∆
′

γ . The product ♯γ is inner in ∆′
γ and it has

been shown that product ♯γ is sequentially continuous for
the strong topology of ∆′

γ , that is:(
νn

∆′
γ strong
−→
n→∞

ν, µn

∆′
γ strong
−→
n→∞

µ

)
=⇒

(
µn♯γνn

∆′
γ strong
−→
n→∞

µ ♯γν

)
.

(52)
So, (∆′

γ , ♯γ) is a topological algebra (isomorphic to a
commutative algebra of causal convolution operators).
Note that ∆′

γ is not unitary because the identity operator
is not γ-diffusive.

6. SUMMARY

Let γ be a closed simple arc in C− verifying the properties
(10,11). A γ-diffusive operator H(∂t) admits the following
state-realization:

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ψ(0, .) = 0, (53)

(H(∂t)u)(t) = < µ,ψ(t, .) >∆′
γ ,∆γ , (54)

where µ ∈ ∆′
γ is the γ-symbol of H(∂t). The bracket

< f, g >∆′
γ ,∆γ

designates the extension (in the sense of the

duality < ∆′
γ ,∆γ >) of the scalar product

∫
fg dξ. The

essential conditions the operator has to satisfy to admit
such a representation are:

• H holomorphic in Ω+
γ , (55)

• H(p) → 0 when |p| → +∞ in Ω+
γ . (56)

Thanks to the sector condition (10) verified by γ, the
state realization is of diffusive type: so, cheap and precise
numerical approximations of (53,54) can be easily built.

7. SOME EXTENSIONS

7.1 Operators γ-diffusive in the large sense

Formulation (53,54) can be extended to operators of the
form K(∂t) ◦ ∂nt where K(∂t) admits a γ-symbol in ∆′

γ ;
such operators are said γ-diffusive in the large sense of
degree n. Formally, we have:

[K(∂t) ◦ ∂nt u](t) =< µ, ∂nt ψ(t, .) >, (57)

with ψ(t, ξ) solution of (53) and µ the γ-symbol of K(∂t).
In the particular case where n = 1, (57) can be written:

[K(∂t) ◦ ∂t u](t) =< µ, γ ψ(t, .) + u(t) > . (58)

In the same way, ∆′
γ can be extended to an algebra denoted

Σγ whose elements are the γ-symbols of operators of the
form K(∂t) ◦ ∂nt where K(∂t) is associated to a γ-symbol
µ ∈ ∆′

γ and n ∈ N.

7.2 General integral operators

The above results can easily be extended to integral (non
convolution) operators of the form H(t, ∂t), that is with
kernel of the general form h(t, s) = h(t, t−s) such that ∀t,
H(t, .) = Lh(t, .); the γ-symbol of H(t, ∂t) is then written
as in the convolution case, by considering t as a frozen
parameter:

(H(t, ∂t)u)(t) =< µ(t, .), (Rdγu)(t, .) >,

where, for any t, µ(t, .) is the γ-symbol of the convolution
operator Ht(∂t) with symbol H(t, .). Various other exten-
sions will be found in (Montseny [2005]).

7.3 Inversion of γ-symbols

The inversion of γ-symbols cannot be defined in ∆′
γ

because this algebra is not unitary. This operation can
nevertheless be well-defined in Σγ , under the condition
that 0 ∈ γ that we can write without loss of generality
γ(0) = 0. In this case indeed, the Dirac distribution δ is a
(non canonical!) γ-symbol of the integrator operator ∂−1

t

and δn := δ♯γδ♯γ ...♯γδ (n times) is a γ-symbol of ∂−n
t . So,

if µ ∈ Σγ is a γ-symbol of K(∂t) such that K(∂t)
−1 ◦ ∂−n

t

has a γ-symbol ν ∈ ∆′
γ , then ν = µ−1♯γδ

n and we have:

[K(∂t)
−1u](t) =< µ−1♯δn, ∂nt ψ(t, .) >, (59)

with ψ solution of (53).
It has been shown in (Casenave [2009]) that the inversion
operation is continuous in its definition domain for a
suitably weakened topology.

8. ABOUT NUMERICAL REALIZATIONS

The state equation (53) is infinite dimensional. To get nu-
merical approximations, we consider a sequence ML of L-
dimensional spaces of atomic measures on suitable meshes
{ξLl }l=1:L on the variable ξ; L-dimensional approximations
µL of the γ-symbol µ ∈ ∆′

γ are then defined in the sense
of atomic measures, that is:

µL =
∑L

l=1
µL
l δξL

l
, µL

l ∈ C. (60)

If ∪LML is dense in the topological space ∆′
γ (that is if

∪L{ξLl } is dense in R), then we have (Montseny [2005]):

< µL, ψ > −→
L→+∞

< µ,ψ > ∀ψ ∈ ∆γ ; (61)



so, we have the following L-dimensional approximate state
formulation of H(∂t) (with γ-symbol µ):{
∂tψ(t, ξ

L
l ) = γ(ξLl )ψ(t, ξ

L
l ) + u(t), l = 1 : L, ψ(0, ξLl ) = 0

[H(∂t)u](t) ≃
∑L

l=1
µL
l ψ(t, ξ

L
l ),

(62)
and from (43):

H(iω) ≃
∑L

l=1

µL
l

iω − γ(ξLl )
. (63)

Thanks to the sector hypothesis (10) on γ, most of non ra-
tional operators encountered in practice can be efficiently
approximate with small L (see for example Montseny [Nov.
2004]). Roughly speaking, this is a consequence of the
property that damping is more and more efficient for high
frequency components (associated with great values of ξ)
of the impulse response of operator H(∂t).

9. VARIOUS EXAMPLES

9.1 First example

We consider the operator H(∂t) = (∂t + 200)−1 ◦ ln(∂t)
with Laplace-symbol:

H(p) =
ln(p)

p+ 200
. (64)

H is holomorphic in C r R− and H(p) → 0 when |p| → 0
in C r R−; then H(∂t) is γ-diffusive for γ defined by
γ(ξ) = −|ξ|, ξ ∈ R. Its canonical γ-symbol, which is a
distribution, is given by 5 :

µ(ξ) = pv

(
1

|ξ| − 200

)(
1

2
− i

sign(ξ)

2π
ln|ξ|

)
+

(
−1

2
+ i

ln 200

2π

)
δ200(ξ) +

(
−1

2
− i

ln 200

2π

)
δ−200(ξ)

(65)
and H(∂t)u can be realized by (53,54).
We consider a mesh {ξLl }l=1:L of L = 70 discretization
points geometrically spaced between ξL1 = 10−3 and ξL70 =
104. To highlight the efficiency of the approximation, we
show in figure 3 the Bode diagram of the exact Laplace-
symbol of H(∂t), the one obtained with formula (63), and

the one given by Y (iω)
U(iω) where U = Lu and Y = Ly with

u a white noise and y the output obtained from numerical
simulation of (62) in time domain. The approximation is
very good in the frequency band [10−3, 104] covered by the
mesh {ξLl }l.

9.2 Second example

Now we consider the operator H(∂t) = ∂−0.4
t ◦ (∂t + 3)−1

with Laplace-symbol:

H(p) =
1

p0.4(p+ 3)
. (66)

H is holomorphic in C r R− and H(p) → 0 when |p| → 0
in C r R−; so H(∂t) is γ-diffusive for any γ of the sector
form:

γ(ξ) = |ξ|ei(π
2 +α) with α ∈]0, π

2
]. (67)

5 N.B.: pv 1
ξ−a

classically designates the distribution associated with

the non locally integrable function 1
ξ−a

(it is derived from the

Cauchy’s principal value). The Dirac distribution at point a is
denoted δa.
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Fig. 3. Bode diagram of (∂t + 2)−1 ◦ ln(∂t)

We consider here the contour γ of the form (67) with α =
80π
180 . Its canonical γ-symbol (which is a locally integrable
function) is explicitly written:

µ(ξ) =
ei(

π
2 +α) sign(ξ)

2iπ |ξ|0.4 e0.4 i (π
2 +α)(|ξ|ei(π

2 +α) + 3)
. (68)

We consider a mesh {ξLl }l=1:L of L = 70 discretization
points geometrically spaced between ξL1 = 10−4 and ξL70 =
103. The approximation is shown in figure 4. Here again the
approximation is good on the frequency band [10−3, 103].

9.3 Other examples of γ-symbols in the case γ(ξ) = −ξ,
ξ > 0

In the particular case γ(ξ) = −|ξ| and with h real impulse
response, the symmetry with respect to ξ = 0 can be used
in order to restrict the γ-representation to ξ ∈ R+, that is:

(Hu)(t) =
∫ +∞

0

µ+(ξ)ψ(t, ξ) dξ;

in such a case, the γ-symbol µ+ is deduced from H by the
following expression (the limit must be understood in the
sense of distributions) Montseny [2005]:

µ+(ξ) =
1ξ>0

2iπ
[H(ξ e−iπ−

)−H(ξ eiπ
−
)]

=
1ξ>0

2iπ
lim
ε→0

[H(−ξ − iε)−H(−ξ + iε)]. (69)

Various γ-symbols µ+ are given in table 1.
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Fig. 4. Bode diagram of ∂−0.4
t ◦ (∂t + 3)−1

conditions γ-symbol µ+ Laplace-symbol
(ξ > 0) H (p ∈ C)∫

µdξ = 0 −ξµ(t, ξ) pH(t, p)

∂ξµ(t, ξ)
(∗) −∂pH(t, p)

a > 0, b > 0 µ(t, aξ − b) H(t, ap+ b)

δ p−1

Re(α) > 0
α /∈ N µα(ξ) :=

sin(πα)
π

fp
1ξ>0

ξα
p−α

∂α
s h ∈ L1

loc µ(t, .)♯µ−α pαH(t, p)

a, b > 0 1
b−a

δa + 1
a−b

δb
1

(p+a)(p+b)

a > 0, n ∈ N∗ δ♯na = 1
(n−1)!

δ
(n−1)
a (p+ a)−n

Reα > 0,
a > 0

µα pv 1
(a−ξ)

+
cos(πα)

aα δa p−α(p+ a)−1

−1 < Re(α, β) < 1
Re(α+ β) > 0

0 < b < a

sin(π(β + α))1ξ>a

π (ξ − a)α(ξ − b)β
+

+
sin(πβ)1b<ξ<a

π (a− ξ)α(ξ − b)β

1
(p+a)α(p+b)β

a > 0
10<ξ<a

π
√

ξ(a−ξ)

1√
p
√
p+a

−1 < Reα < 1
0 < b < a

sin(πα)
π

(
a−ξ
ξ−b

)α
1b<ξ<a

(
p+a
p+b

)α
− 1

0 < Reα < 1
−Reα < Reβ 6 1

Im
[
(ξα eiπα+a)β

]
π(ξ2α+2a cos(πα) ξα+a2)β

(pα + a)−β

γ = Euler const. −fp
1ξ>0

ξ
−p−1(γ + ln p)

1
1+ξ

ln(p)
p−1

e−ξ√
πξ

√
π√
p
ep(1−erf

√
p)

cos(
√

ξ)

π
√

ξ

exp(−√
p)√

p∑
n∈Z

δ(ξ − n2π2)
(√

p tanh
√
p
)−1∑

n∈N
an

n!(2n)!
δ(2n)a 1

p
exp( a

p2
)

(∗) derivation in the sense of D′(R)
Table 1.
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à une corde vibrante. Lecture Notes in Control and
Information Sciences, Eds. RF.Curtain, A.Bensoussan,
JL.Lions - Springer Verlag, 185, 436–446.

Montseny, G., Audounet, J., and Mbodge, B. (1993b).
Optimal models of fractional integrators and application
to systems with fading memory. In IEEE International
Conference on Systems, Man and Cybernetics, Le Tou-
quet (France), 17-20 Octobre 1993, 65–70.

Mouyon, P. and Imbert, N. (2002). Identification of a
2D turbulent wind spectrum. In Aerospace Science and
Technology, volume 6, 3599–605. Kansas City (USA).

Nihtila, M. and Tervo, J. (2002). Pseudo-differential
boundary control problems and applications to dynam-
ics and control of bioprocesses. In MaDaMe Conference,
Haikko Manor. Porvoo (Finland).

Rouzaud, H. (1998). Dynamique d’un modèle intégrod-
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