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Understanding learners’ understanding is a key requirement for an efficient design of teaching 
situations and learning environments, be they digital or not. This keynote outlines the modeling 
framework cK¢ (conception, knowing, concept) created with the objective to respond to this 
requirement, with the additional ambition to build a bridge between research in mathematics 
education and research in educational technology. After an introduction of the rationale of cK¢, 
some illustrations are presented. Then follow comments on cK¢ and learning. The conclusion 
evokes key research issues raised by the use of this modeling framework. 
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A short story 
The model I will introduce has a long history. Its construction started at the end of the 80s 

with the project of bridging artificial intelligence and didactics of mathematics, and the objective 
of enhancing the design of computer-based learning environments. The design of these 
environments had a ternary structure including a model of the learner, a model of the content to 
be learned and an instructional model. These models are nowadays either effectively 
implemented, or only involved in the design phase. For the last two, research has constantly been 
very active with some promising progress. On the contrary, modeling the learner proved to be a 
real challenge, and actually it is still the case despite expectations raised by recent research on 
educational data mining and learning analytics. 

The theoretical framework within which I was working, the Theory of Didactical Situations 
(TDS), is based on ideas that some may consider as precursors of “learning games” now 
celebrated by researchers in educational technology:  

“Modeling a teaching situation consists of producing a game specific to the target knowledge 
among different subsystems: the educational system, the student system, the milieu, etc.” 
(Brousseau 1986/1997 p.47). 

Within this approach, the teacher is “a player faced with a system, itself built up from a pair of 
systems: the student and, let us say for the moment, a ‘milieu’ that lacks any didactical intentions 
with regards to the student” (ibid. p.40). A systemic approach to learner modeling makes 
possible expressing learning as adaptation and adaptation as construction. However, while 
research went quite far in modeling didactical situations, the progress on modeling the learner 
“subsystem” was rather limited. Indeed, there was a lot of research within different frameworks, 
with different concepts and a variety of terms, reporting observations of learners’ behaviors. But 
the distance between the content of these reports and models that we could use to inform the 
design of learning environments, was quite significant.  

As a researcher in mathematics educations, I had another motivation. I started my research on 
the learning of mathematical proof in the 70s, with an exploration of the structure of proofs 
produced by students, using graphs to represent them. This approach was intrinsically limited, so 
it was not too difficult to understand the critiques of Guy Brousseau and Gérard Vergnaud. The 
former drew my attention to the role of the situation; the latter pointed to the cognitive 



complexity of producing proofs. Then, I engaged in a completely different direction which 
resulted at the end of 80s in a first picture of what could be the genesis of mathematical proof. 
While this picture could help designing didactical situations, it didn’t shed light on the 
underlying mental processes. In other words, it was a didactical study, not a psychological study. 
Still, there was a weak point: it left open a gap between proving and knowing. To close this gap I 
had to find a way to model the learner’s ways of knowing. The Vergnaud model of concept and 
conceptual field offered a possible solution: 

“[…] from a developmental point of view, a concept is altogether: a set of situations, a set of 
operational invariants (contained in schemes), and a set of linguistic and symbolic 
representations.” (Quoted from Vergnaud 2009 p.94, but this characterization goes back to 
the early 80’s) 

Vergnaud introduced the notation: C=(S, I, S   ) in which the components refer respectively to 
each of the three sets mentioned above. He emphasized that these components cannot be 
separated; they have to be considered all at the same time when studying learners’ development. 
This characterization has direct connections with the TDS description of the relation between a 
learner and a milieu based on different forms of knowledge (Brousseau ibid. p.61): 

[1] The models for action governing decisions. 
[2] The formulation of the descriptions and models. 
[3] The forms of knowledge which allow the explicit “control” of the subject's interactions in 
relation to the validity of her statements. 

Apart from the set of situations (S) which is implicitly shared, common elements are related to 
action (I) and formulation (S   ). Then, one element is missing which corresponds to the terms 
“control” used in the TDS description.  I mentioned this lack when discussing the Vergnaud 
concept of theorem-in-action. A theorem, and the same applies to a theorem-in-action, is both a 
tool and a statement: “if A then B” is a tool to obtain B if A is valid, it is also a statement which 
has a truth value. This duality of “the operational form and the predicative form of knowledge”, 
as Vergnaud expresses it, facilitated keeping implicit the control dimension in the 
characterization he proposed. However, after Polya and a long tradition of research on 
metacognition, Schoenfeld (1985 pp. 97-143) has shown the crucial role of control in problem-
solving. The suggestion I made consists in introducing explicitly this dimension of control in 
Vergnaud model. This is the origin of the quadruplet I describe below. 

Before entering the main content of this keynote, I would like to address an issue which led 
me use the term “conception” and not the term “knowledge” as it is classical in educational 
technology and mathematics education as well. Most of our research is based implicitly or not on 
the hypothesis that learners act as rational subjects. But, one often is faced to rational thinking 
co-existing with knowledge which looks contradictory (from the observer’s point of view). 
Bourdieu (1990) proposed a solution to this paradox: “The calendar thus creates ex nihilo a 
whole host of relations […] between reference-points at different levels, which never being 
brought face to face in practice, are practically compatible even if they are logically 
contradictory” (ibid. p. 83). The key elements are time on one hand, and on the other hand the 
diversity of situations. Time organizes the subjects’ decisions sequentially in such a way that 
even contradictory, they are equally operational because appearing at different periods of their 
history: contradictory decisions can ignore each other. The diversity of the situations introduces 
an element of a different type. It is a possible explanation insofar as one recognizes that each 
decision is not of a general nature but that it is related to a specific sphere of practice (we would 



say, nowadays, that it is situated) within which it is acknowledged as efficient. Within a sphere 
of practice learners are coherent and successful; they are non-contradictory.  

Contradictions (and failures) appear when learners are faced with situations foreign to their 
sphere of practice but in which they have nevertheless to produce a response (e.g. a question 
from an interviewer). They mobilize what they have available which worked elsewhere, but 
more often than not this ends in systematically making errors. The classical position in the 80s 
was to consider these errors as symptoms of misconceptions. This term used to come with 
expressions like “naive theory”, “private concepts”, “beliefs” or even “mathematics of the child”. 
Such views missed the fact that “a child may not be ‘seeing’ the same set of events as a teacher, 
researcher or expert. […] many times a child’s response is labeled erroneous too quickly and 
[…] if one were to imagine how the child was making sense of the situation, then one would find 
the errors to be reasoned and supportable ” (Confrey 1990 p.29). Agreeing with this position, I 
renounced using the term “misconception”. Still, recognizing that learners may have different 
models-in-action to mobilize for (what we consider as) the same piece of knowledge, I needed a 
term, but one different from “knowledge” because of the issue raised by the observation of 
possible contradictions in learners behaviors. A possible term was “conception” largely used in 
science education to denote theory-in-action. Most often than not conception functioned as a tool 
in discourses but it was not taken as an object of study as such (Artigue 1991, p.266), although 
there was an acknowledged need (e.g. Vinner 1983, 1987) for a better grounded definition of 
conceptions, and for tools allowing analyzing their differences and commonalties.  In the 
following section, I propose a definition of “conception”, and then describe a model revisiting 
the Vergnaud’s triplet.  

Behavior, conception and knowing 
The only indicators one has to get an insight into learners’ understanding are their behaviors 

and products which are consequences of the conceptions they have engaged. Such evaluations 
are possible and their results are significant only in the case where one is able to establish a valid 
relationship between the observed behaviors and the invoked conception. This relation has been 
relatively “hidden” as such for a long while as a result of the fight against behaviorism, but it has 
always been present in educational research at least at the methodological level. Indeed, the key 
issue is that the meaning of a piece of knowledge cannot be reduced to behaviors, whereas 
meaning cannot be characterized, diagnosed or taught without linking it to behaviors.  

Being a tangible manifestation of the relationships between a person and her environment, a 
“behavior” depends on the characteristics of this person as well as on the characteristics of her 
environment. A now well documented example is that of an instrument which at the same time 
facilitates action if the user holds the required competence, and on the other hand limits this 
action because of its own constraints (Rabardel 1995, Resnick & Collins 1994, p.7).  

The words “person” and “environment”, which I am using here, refer to complex realities 
whose aspects are not all relevant for our investigations. One may want to ignore the clothes the 
person wears and the shape of the room in which he or she stands (although we have always to 
be prepared to consider seriously features initially downplayed). What is of interest is the person 
from the point of view of his or her relationship to a piece of knowledge. For this reason I will 
refer from now on to the learner as a reduction, if I dare saying so, of the person to her cognitive 
dimension. In the same way, I do not consider the environment in all its complexity, but only 
those of its features that are relevant with respect to a given piece of knowledge. Actually, this 
corresponds to the TDS concept of milieu, which is a kind of projection of the environment onto 



its epistemic dimension: the milieu is the learner’s antagonist system in the learning process 
(Brousseau, 1997 p.57) 

This situatedness nature of a conception suggests not considering it as a property which can 
be ascribed only to the learner but as a property of the 
interacting system formed by the learner and his or her 
antagonist milieu, to which I will refer as the 
“learner/milieu system”. What is requested for this 
property to be valid is that the system satisfies the 
necessary conditions for its viability. I mean that the 
system has the capacity to recover equilibrium after a 
perturbation which otherwise would cause its collapse, 
or that it can transform itself or reorganize itself. This is 
another formulation of Vergnaud's postulate that 
problems (perturbed system) are the sources and the 
criteria of knowing (Vergnaud 1981 p.220). It is 

important to realize that nothing is said about the process leading to the recovery of the 
equilibrium under the said constraints. They are proscriptive (Stewart, 1994 pp. 25-26), which 
means that they express necessary conditions to ensure the system viability, but not prescriptive, 
which means that they do not say in what way an equilibrium must be recovered.  
Hence, a definition of conception: 
A conception is the state of dynamical equilibrium of an action/feedback loop between a learner 
and a milieu under proscriptive constraints of viability.  
The study and characterization of a conception will be based on observable behaviors of the 
system (action, feedback) and outcomes of its functioning. It requires evidence of the assessment 
of the equilibrium, which depends on the possibility to elicit the learner’s control of the 
interaction and of the milieu’s reification of failures and success by adequate feedback. 

Geometry provides many good examples: constructing a diagram on a sheet of paper with a 
pencil is permissive to empirical adjustments, while dynamic geometry software allowing 
messing up a diagram by dragging points can reify the failure of conforming to geometrical 
properties (Healy et al. 1994)—but still, “students may modify the figure ‘to make it look right’ 
rather than debug the construction process” (Jones1999 p.254). 

The situated nature of a conception means that for different situations considered 
conceptually the same or for problems claimed isomorphic, one may associate different 
conceptions with the same learner. There is a large documentation of this phenomenon in the 
literature, for example under the theme of transfer, or from research in ethnomathematics. 
Anyhow, in the researcher’s referential system, these different states of the observed systems 
[learner in a situation] should be labeled in the same way. For this reason, I define a learner’s 
knowing as the set of conceptions which can be activated by different situations the observer 
considers conceptually the same—a qualification that indeed one will have to clarify. I realize 
that using “knowing” as a noun is rare, but it helps keeping distance with the word “knowledge” 
which has in education a strong authoritative connotation. 

Having this definition of conception and of its relation to knowing, in the next section, I 
propose a model inspired by Vergnaud’s formalization which I develop in the next section. Some 
examples will illustrate the model and facilitate clarifying the intention of my research program. 

Learner Milieu
action

feedback

Constraints
 

Figure 1.  learner/milieu system 



Outlines of a model 
What is a model could be discussed at length within the PME multidisciplinary research 

community. I take here a pragmatic position, looking for something likely to facilitate our 
collaboration with research in educational technology, but also as a means to make more 
efficient our own research. The objective is to contribute to a better understanding of learners’ 
understanding and to have eventually a practical value for teachers and designers.  

It should be emphasized that the terms “conception”, “knowing”, “concept” and several 
others appearing in the description of the model are abstract terms, whose meaning is that of 
their functions and relations within the model. Indeed, we must then discuss how far the 
proposed formalization makes sense when confronted with “reality”, and if it is an adequate tool 
for our research. The examples I will present and some additional comments will hopefully 
partly respond to this preoccupation.  

I call “conception” a quadruplet (P, R, L, Σ) in which:  
- P is a set of problems. 
- R is a set of operators. 
- L is a representation system. 
- Σ is a control structure.  

The first three elements are almost directly borrowed from the Vergnaud triplet. The 
vocabulary is different to avoid confusion with the vocabulary of psychology. In particular, 
operators correspond to actions one can observe in the functioning of the learner/milieu system; 
they are not schemes in psychological terms. The representation system is formed of all the 
semiotic tools which allow representing problems, supporting interaction and representing 
operators if formulations were required. The characterization of the set of problems P is more 
complex than expected. Two opposite solutions have been proposed: (i) to include all problems 
for which the conception provides efficient tools (Vergnaud 1991 p.145), but for basic concepts 
this option is too general to be effective; (ii) to consider a finite set of problems from which other 
problems will derive (Brousseau 1997 p.30), but this option opens the question of establishing 
that such a generative set of problems exists for any conception. A solution familiar to most 
researchers consists of deriving the description of P from both the observation of students in 
situations and from the analysis of historical and contemporary practices of mathematics. 
Actually, what one does when working on specific conceptions is to open a window on P by 
making explicit a few good representatives of its potential elements. These representatives work 
as kind of prototypical problems; this is a pragmatic implementation of Brousseau’s proposal.  

The forth element of the quadruplet, the control structure, includes behaviors such as making 
choices, assessing feedback, making decisions, judging the advancement of a problem solving 
process. These metacognitive behaviors are more often than not silent and invisible, hence rarely 
accessible to observation. It is why, to overcome this difficulty, one uses specific experimental 
settings, for example inviting learners to work in pairs, with the expectation that this will be 
enough to elicit these behaviors.  

It is worth noticing that the quadruplet is not more related to the learner than to the milieu 
with which he or she interacts: the representation system allows the formulation and the use of 
the operators by the active sender (the learner) as well as the reactive receiver (the milieu); the 
control structure allows expressing the learner’s means to assess an action, as well as the criteria 
of the milieu for selecting a feedback. It is in this sense that the quadruplet characterizing a 
conception is congruent to the conceptual definition of a conception as a property of the 
learner/milieu system. 



This formalization not only allows characterizing conceptions and hence providing a 
framework to discuss their diagnosis, it has also the potential of helping to establish links among 
conceptions more precisely. 

Shaping relations between conceptions 
Arithmetic, from fingers to keystrokes 
Addition has been widely studied, so there is enough resources to document what learners’ 
conceptions could be like. This first example shows how eliciting the four dimensions of the 
quadruplet provide a synthetic and precise picture of the conceptions chosen for the purpose of 
the illustration (there are several others).  

Table 1: Four examples of conceptions of addition 

First, the quadruplet puts to the fore the domain of validity of these conceptions, none of 
which can be claimed wrong but might be badly adapted outside their spheres of practice. For 
example, C1 will not be reliable in the domain of C3 and really difficult to implement in that of 
C2. For very large numbers, C4 will not work unless extended with additional strategies to deal 
with the limits imposed by the technology (e.g. screen display). Beyond the remark that the two 
first concern quantities and the two others concern numbers, one can compare the conceptions on 
each dimension of the quadruplet and analyze in an accurate way their commonalities and 
differences. One can also express relations often considered among conceptions; for this it is 
necessary to introduce a function allowing passing from one system of representation to another. 
Let us take the case of generality: 

[C is more general than C’ if there exists a function of representation 

 ƒ: L’→L so that ∀p ∈P’, ƒ(p)∈P] 

So, one can show that C3 is more general than C2 and C4, but for different reasons although in 
both cases the size of the numbers is at stake. Indeed, we obtain in this way something that 
intuitively and informally would have been seen without such a sophisticated formulation. Isn’t 
there here a flavor of pedantry? I hope not. It is just good to check that the formalism can express 

C1: Verbal counting IIIII & IIII 
P -- prototype: “You have 5 pebbles, I give you 4 more, how many have you now?” (Objects are present or 
represented in an analogical way, both numbers are small). 
R – match fingers and objects, match fingers and number names, pointing to objects, 
L -- body language (finger counting, pointing), number naming, verbal counting 
Σ – not counting twice an object, counting all the objects, order of the number names 
C 2: Counting on 16 & 4 
P -- prototype: “You have 16  pebbles, I give you 4 more, how many do have you now?” (The numbers are 
given, but the collections are not present, one of the numbers must be small enough) 
R -- choose the greater number, count on to determine the result. 
L -- body language (finger counting), number naming, verbal counting. 
Σ -- order of the number names , match of fingers to number names 
C3: written addition 16+23 
P -- adding two integers 
R -- algorithm of column addition 
L -- decimal representation of numbers 
Σ -- check the implementation of the algorithm, check the layout of  number addition 
C4: Pocket calculator [1][6][+][2][3][=] 
P -- adding two integers, the result is bound by the size of the screen 
R – keystroke to represent a number, to process number addition 
L -- body language (keystrokes),  decimal representation of numbers on the screen 
Σ – keystrokes verification, order of magnitude.



familiar facts but, indeed, it must go far beyond that and be capable of revealing less obvious 
relations.  
The challenge of translation 

The exercise of formalizing generality puts on 
the fore the importance of translation, a process 
we engage anytime we analyze learners activities. 
To emphasize the importance of the manipulation 
of representation systems, I take another                   
example from the history of mathematics: ancient 
Egyptian arithmetic. The mathematical papyruses 
have been translated in the contemporary 
mathematical language, including the processes 
used to solve some problems. Figure 2 displays the sequence of steps to compute “10 times 1/5” 
(Couchoud 1993 pp.21-22). I will not here explain how the scribes obtained the result, 2, out of 
this sequence and how they moved from one line to the other. Looking closer to these processes 
suggests that the translation of       by 1/5 is misleading. What is denoted by the Egyptian sign is 
“five parts of the whole”, hence an integer but integers which could not be added as integers are. 
These representations were not computed, instead scribes used tables to establish the 
correspondence between two numbers to be multiplied and the result. The control structures 
associated to this ancient conception of “fractions” and the modern one are completely different. 
Moreover, if one wants to consider passing back from the modern conception to the Egyptian 
one, that is expressing any fraction as a sum of unitary fractions, he or she will enter a new 
mathematical chapter. Several algorithms are available to compute an Egyptian decomposition 
for any fraction. For example, for 4055/4093 one will get the shortest and unique additive 
decomposition: [1/2 + 1/3 + 1/7 + 1/69 + 1/30650 + 1/10098761225]. Unfortunately, Egyptians 
could not write the last term. Analyzing these conceptions along the dimensions of the 
quadruplet in a systematic way makes easier figuring out what separates them. 

Discussing learners’ conceptions in the context of the mathematical curriculum is more 
difficult because operators and representation systems are often very similar. In this case, the 
control structure may be the discriminating element. As a matter of fact, this touches the 
foundation of conceptions because of the legitimacy controls provide by validating them.  

Let us take a case in school algebra. In his research questioning the “production of meaning 
for Algebra”, Romulo Lins (2001 p.47) observes the activity of students to whom he proposed 
the following task: 

To calculate how many oranges will fill into each box, we divide the total number of oranges 
by the number of boxes, i.e.: 

number of oranges 
orange per box = ------------------------ 

 number of boxes 
If I tell you the total number of oranges, and the number of oranges in each box, how would 
you calculate the number of boxes used? 

Justifying the task, Lins writes: “The reason for presenting the ‘algebraic’ formula was to 
ascertain whether the pupils would constitute it into an object, dealing with it in the process of 
solving the problem; neither of them made any reference whatsoever to this formula” (ibid.) In a 
very pragmatic way students manipulated oranges and boxes: “They always used a number of 
something” (ibid.).  They dealt with quantities and not numbers. The control on their reasoning 

 
Figure 2: 10 times 1/5 



comes from the concrete reference the context makes possible. Actually, if algebra had been 
called up, literals would have been used to speak about actions on objects of a referent world 
made of boxes and oranges. This phenomenon is familiar, as Boero (2001 p.108) reports 
following a research he carried out in a different context: “some students seem to transform the 
problem situation by thinking about the number of sheet and the weight of the envelope as 
physical variables” whereas others “put into a numerical equation the problem situation and 
transform the equation”.  

Invited to write a postscript to the book “Perspective on School Algebra” (Sutherland et al. 
2001), where I analyzed the reports of Lins, Boero and several others, I introduced the 
expression “symbolic arithmetic” to distinguish from algebra those conceptions in which 
symbols are manipulated and rules used with the supervision of a control structure grounded in 
the referent context. 

In the following case, the role of the control structure clearly makes a difference between two 
conceptions which on the other hand seem to share the representation 
systems and operators. 
Questioning controls to understand representations 

This case, which I have often presented, is as an excellent 
prototypical example of the complexity of identifying conceptions. 
The excerpt is borrowed from the work of Bettina Pedemonte (2002) 
on argumentation, cognitive continuity and proof. She chosen the 
problem described below and proposed it to pairs of students—the 
idea of having pairs was driven by the expectation to get spontaneous 
comments about actions, choices and decisions taken during the problem solving process.  

“Construct a circle with AB as a diameter.  Split AB in two equal parts, AC and CB.  Then 
construct the two circles of diameter AC and CB… and so on.   

How does the perimeter vary at each stage?   
How does the area vary?” 

Using the formulas they know well both students, Vincent and Ludovic, express the perimeter 
and the area for the first steps in the series of drawings. They agree to conjecture that the 
perimeter will be constant and that the area will decrease to zero. But soon Vincent notices that 
“the area is always divided by 2…so, at the limit? The limit is a line, the segment from which we 
started…” This observation raises a conflict about the value of the perimeter which, in the 
opinion of Vincent, should be the length of the segment: 

41. Vincent: It falls in the segment… the circles are so small. 
42. Ludovic: Hmm… but it is always 2πr. 
43. Vincent: Yes, but when the area tends to 0 it will be almost equal… 
44. Ludovic: No, I don’t think so. 
45. Vincent: If the area tends to 0, then the perimeter also… I don’t know…  
46. Ludovic: I will finish writing the proof. 

Although Vincent and Ludovic collaborate well and seem to share the mathematics involved, the 
types of control they have on their problem-solving activity differ. Ludovic is working in the 
algebraic setting (Douady 1985) where control is based on a constant checking of the correctness 
of the symbolic manipulations conforming to the syntax of elementary algebra. Vincent is 
working in a symbolic-arithmetic setting where the control comes from a constant confrontation 
between what the formula “tells” and what is displayed by the drawings. So, both understand the 
initial situation in the “same” way, both manipulate the symbolic representations (i.e., the 



formulas of the perimeter and of the area) following the right syntax, but their controls are 
radically different. The symbolic representation supports the cooperation of the problem-solvers 
but it does not impose a shared understanding: as a boundary object it is flexible enough to adapt 
to the different meanings but robust enough to work as a tool for both students. To identify the 
differences beyond the apparent commonalities of representations one has to question learners’ 
decisions and choices, which means identifying the control grounding their activity.  

Conception, knowing and concept 
Understanding learners’ conceptions requires their interpretation from the perspective of our 

own conception which we claim related to the same content of reference; one may say: the same 
concept. This can be expressed within the terms of the model, putting on the fore the role of 
translation which is more often than not implicit in our research practice. Let’s take the case of 
“falsity” which is defined in the model in the following way (with a natural coding of the 
respective quadruplets):  

[C is false from the point of view of C’ if there exists a function of representation ƒ: L→L’, 

and there exists [p∈P, r∈R, σ∈Σ, σ’∈Σ’] so that σ(r(p))=true and σ’(ƒ(r(p))=false] 

In other words, there exists a problem from the sphere of practice of C which has an accepted 
solution but which is assessed “false” from the point of view of C’. 

“Generality” and “falsity” are not properties of conceptions but relations between two 
conceptions whose validity depends on the translation from one system of representation to the 
other. This is a general situation often hidden by the fact that we tend to read the production and 
the processes learners carry out directly in mathematical terms. Not being aware of this may 
make understanding learners difficult, as illustrated by Linns remarks on students’ inability to 
escape the concrete reference of a situation he sees himself as mathematical. More generally, we 
have a tendency, often implicit, to consider ourselves as privileged knowers entitled to judge and 
evaluate other people’s knowings. Such ambition requires at least that we can claim that the 
conception one assesses and the conception one holds are—so to say—ontologically compatible; 
they are concerned by the same object. This is difficult in mathematics where the only tangible 
things one manipulates are representations, and representations of representations. This can be 
solved within the model, taking Vergnaud’s postulate as a grounding principle: problems are 
sources and criteria of knowings (1981 p.220): 

Let C and C’ be two conceptions and Ca be a conception more general than C and C’. This 
means, with a natural coding of the respective quadruplets, that there exist functions of 

representation ƒ: L→La and ƒ’: L’→La which relate C, C’ and Ca. Then:  

[C and C’ have the same object with respect to Ca if for all p from P there exists p’ from P’ 
such that ƒ(p)=ƒ’(p’), and reciprocally] 

The fact that two conceptions have the same object does not mean that they have another type of 
relationship (one being false with respect to the other, or more general, or partial, or else), it may 
be the case that problems of P’ (resp. P) cannot be expressed with L (resp. L’); and if they are, 
the translated problems may not be part of the sphere of practice of the other conception (e.g. the 
case of the conceptions of addition, Table 1). Eventually, conceptions have the same object if 
their defining problems (or their spheres of practice) can be matched from the point of view of a 
more general conception which in our case is the conception of the researcher. Research on 
mathematics learning must start with an introspection of researchers’ own conception of the 
content at stake; questioning this conception is the first methodological tool to assess the validity 



of what can be said about learners’ conception. This corresponds to the a priori analysis in the 
methodology associated to the TDS. 

“To have the same object with respect to a conception Ca” sets an equivalence relation 
among conceptions. Let’s now claim the existence of a conception Cµ more general than any 
other conception to which it can be compared; this seems to be an abstract declaration, but 
pragmatically it corresponds to a piece of a mathematical theory. 

I call “concept” the set of all conceptions having the same object with respect to Cµ.  
This definition is aligned with the idea that a mathematical concept is not reduced to the text of 
its formal definition, but is the product of its history and of the set of practices in different 
communities. Indeed, there is no agent holding the concept and no way to ensure that we can 
enumerate a complete list of these conceptions. So, a last definition will allow reducing the 
distance between this abstract definition and the needs we have to have a practical model: 

I call “knowing” any subset of a concept which can be ascribed to a cognitive subject or a 
community. 

In practical terms, this definition of conception and knowing provides a framework which 
preserves learners’ epistemic integrity despite contradictions and variability across situations. In 
a way which might seem more usual, I could summarize the ideas presented here in the 
following way: a conception is the instantiation of a knowing by a situation (it characterizes the 
subject/milieu system in a situation), or a conception is the instantiation of a concept by a pair 
(subject/situation). 

The name cK¢ comes from the names of the three pillars of the model: conception, knowing, 
concept. I keep the word “knowledge” to name a conception which is identified and formalized 
by an institution (which is a body of an educational system in our case). 

Problems, conceptions and learning 
Indeed, most problems are not solved by activating just one conception. So we need to be 

able to express the relation between a problem and conceptions which contribute to its solution, 
but without having to give details about this solution because of the cost of a too thin granularity. 
For this reason, I propose the more general idea of a set of conceptions solving a problem: 

Let p be a problem, and {C1,…, Cn} a set of conceptions. 
{C1,…, Cn} solves p iff there exists a sequence of operators (ri1, …, rim) whose terms are 
taken in one of the Ri so that the sequence (p1=ri1(p), …  , pim=rim(pim-1)) verifies that 
there exists σ from Σim so that σ(pim)=solved.  

From this general characterization, one can derive more 
precise properties, for example expressing that a conception is 
specific to a problem (any set of conceptions solving it 
contains this conception), or that conceptions are equivalent 
from a problem solving perspective (one can replace the other 
without changing its property vis-à-vis the problem).  
Exploring this possibility evidences that problems and 
conceptions are of a dual nature: on the one hand conceptions 
need problems as constituents of their characterization, and on the 
other hand problems get their meaning from the conceptions 
contributing to their solutions. This duality suggests a natural 
connection between conceptions by the mediation of problems: 
this is exactly the idea of Vergnaud’s conceptual field. 
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Learning is a process whose outcome is an evolution of conceptions being reinforced, 
questioned or transformed. The motor of this process is problems, which are (in our terms) 
destabilizations of the learner/milieu system. This destabilization can be obtained by 
modifications of constraints on the interaction between the learner and the milieu or 
modifications of the characteristics of the milieu (cf. Figure 1)—indeed, the learner is a 
“subsystem” on which no direct action is possible. The most difficult task is to find problems 
questioning the control structure and/or the representation system because the former is mostly 
implicit in the activity of learners and the role of the latter is invisible to their eyes once they are 
familiar with it. To overcome these difficulties is the raison d’être of the TDS situations of 
formulation and validation, which are based on a social organization of the class and a play on 
the characteristics of the milieu. I will not elaborate on this relation between cK¢ and the TDS, a 
part from noticing briefly here that within a 
didactical problématique, learning can be modeled as 
a transition function on a bipartite graph of 
conceptions and problems. Problems are the means to 
activate and (i) diagnose a conception, (ii) destabilize 
a conception to obtain an evolution, (iii) reinforce a 
conception.  

Let C be the current diagnosed conception and Ct 
a targeted conception (the expected learning 
outcome). The most critical evolution is the one to be 
obtained when C is false with respect to Ct. To 
engage the learning process, it is necessary to find a 
problem for which a representation is possible within both C and Ct, and which could be a means 
to reveal a conflict: a solution is conceivable from the perspective of C, but is not accessible in a 
way that the milieu witnesses and the subject recognizes. It may appear that such a problem does 
not exist and that intermediary problems, and possibly intermediary conceptions, are necessary to 
“reach” Ct. Learning is often not a single step but a path in the graph. To identify and create the 
conditions to bring this path to reality within a learning situation, in particular within a 
classroom, is one of the core objectives of the TDS. 

Let’s take the classical and well documented case of the sum of the angles of a triangle. The 
most common initial conception is that the bigger the object the bigger its measurable 
characteristics (e.g. area, perimeter), hence the sum of the angles. The operators are those 
involved in the manipulation of geometrical instruments (rule, compass, protractor, etc.) and 
symbolic arithmetic, the control structure includes visual control of actions and checking of 
computations. To activate this conception, one can ask students to draw triangles, measure angles 
and add up the obtained results. The variety of the results in the class will not raise questions 
since triangles are different; students will be reinforced in the confidence that they have the 
capacity to achieve the task. But measuring angles is not sufficient to destabilize the conception 
and give room to the targeted conception which is rooted not in the manipulation of the 
geometrical “object” but of its property. A possible way out is of asking learners to repeat the 
task, all with the same triangle (e.g. reproduced on a worksheet); the problem of deciding of the 
results for this single triangle will emerge and challenge the operators of the initial conception. 
More is needed to question its core theorem-in-action, this will come from the orchestration of 
the confrontation of the outcomes of collective workshops on triangles with contrasting shapes 
(small, large, sharp, flat). The destabilization of the initial conception can be overcome only by 
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engaging in geometrical arguments of a theoretical nature. At this point, operators and controls 
are questioned, but the ambivalent nature of the triangle being both an object (of the spatio-
graphic space) and a (geometrical) representation will (probably) remain unsolved.  

Concluding forewords 
cK¢ proposes a framework for “learners modeling” taking up the challenge of providing a 

model of an epistemic relevance to bridge research in mathematics education and research on 
educational technology. It responds to a need for representations both understandable by 
researchers in mathematics education and computationally tractable. The formalism it dares 
should enhance the way one informs the design of technology enhanced learning environments, 
complementing descriptions generally available in natural language with no standardized 
narrative structure. 

A European multidisciplinary assessment project (Baghera 2003) has been an occasion to 
check the efficiency of cK¢ in supporting a productive conversation between researchers in 
education and in computer-science. But probably more interesting for us is the powerfulness of 
this framework to think and develop our own research. Research in mathematics education 
develops jointly theories and experimentations, in this context models serve as mediators 
between theories of which they require an articulate and precise understanding, and experiments 
of which they frame the design and drive the collection of data. However, both theories and 
experiments raise difficult issues. On the side of theories, one has to deal with a complex 
discourse which rarely makes explicit all details and hence gives room to non-univocal 
interpretations. On the side of experiments, the practical implementation is always richer and 
more complex than what the design of models anticipates. Moreover, in the case of conceptions, 
one is confronted with issues (that Toulmin already noticed when proposing a model of 
argumentation): distinguishing operators from controls is not absolute (e.g. theorems can be 
activated as tools or predicates), controls are more often than not implicit. Such difficulties 
require further theoretical as well as methodological investigations. 

Initially based on the Theory of Didactical Situation and the Theory of Conceptual Field, the 
cK¢ modeling framework is not restricted to them. For the purpose of its development and in 
order to enhance its efficiency it is necessary to integrate other theories to strengthen its 
components (e.g. representation, control system). But cK¢ holds other promises; it facilitates 
building a bridge between knowing and proving, constructing a link between control and proof, 
hence facilitating understanding the relation between argumentation and proof. But this is 
another topic which connects the research agendas I have had along my career, first on the 
teaching and learning of mathematical proof, then modeling learners’ conceptions for the design 
of learning environments. 
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