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Abstract

A numerical method to approximate ruin probabilities is proposed within the frame of a
compound Poisson ruin model. The defective density function associated to the ruin prob-
ability is projected in an orthogonal polynomial system. These polynomials are orthogonal
with respect to a probability measure that belongs to a Natural Exponential Family with
Quadratic Variance Function (NEF-QVF). The method is convenient in at least four ways.
Firstly, it leads to a simple analytical expression of the ultimate ruin probability. Secondly,
the implementation does not require strong computer skills. Thirdly, our approximation
method does not necessitate any preliminary discretisation step of the claim sizes distri-
bution. Finally, the coefficients of our formula do not depend on initial reserves.
Keywords: compound Poisson model, ultimate ruin probability, natural exponential fam-
ilies with quadratic variance functions, orthogonal polynomials, gamma series expansion,
Laplace transform inversion.

1 Introduction

A non-life insurance company is assumed to be able to follow the financial reserves’ evolu-
tion associated with one of its portfolios in continuous time. The number of claims until
time ¢ is assumed to be an homogeneous Poisson process {N;}¢>0, with intensity §. The
successive claim amounts (U;);en+, form a sequence of positive i.i.d. continuous random
variables and independent of {N;}¢>0, with density function frr and mean p. The initial
reserves are of amounts v > 0, and the premium rate is constant and equal to p > 0. The
risk reserve process is therefore defined as

Nt

Rt:u—l—pt—ZUi,
i=1

the associated claims surplus process is defined as S; = u — R;. In this work, we focus on
the evaluation of ultimate ruin probabilities (or infinite-time ruin probabilities) defined as

Y(u) =P (inth < 0|Ry = u) =P (supSt > u|Sy = O) . (1.1)
t>0 t>0



This model is called a compound Poisson model (also known as Cramer-Lundberg ruin
model) and has been widely studied in the risk theory literature. For general a background
about ruin theory, we refer to [2I] and [5].

A useful technique in applied mathematics consists of determining a probability density
function from the knowledge of its Laplace transform. We give here a brief review of the
literature involving numerical inversion of Laplace transform and ruin probability approx-
imations. In a few particular cases, the inversion of the Laplace transform associated with
ruin probabilities is manageable analytically and leads to closed formula. But in most cases
numerical methods are needed. The Laguerre method is an old established method based
on the 1935 Tricomi-Widder Theorem. The recovered function takes the form of a sum
of Laguerre functions derived through orthogonal projections. The numerical inversion of
Laplace transform using Laguerre series has been originally described in [24] and improved
in [I]. In the wake of Laguerre series method, we found attempts in the actuarial science
literature to write probability density functions as sum of gamma densities. For instance
the early work of Bowers [9] that gave rise to the so-called Beekman-Bowers approximation
for the ultimate ruin probability, derived in [§]. The idea is to approximate the ultimate
ruin probability by the survival function of a gamma distribution using moments fitting.
Gamma series expansion has been employed in [23] and later in [4]. The authors highlight
that it is useful to carry out both analytical calculations and numerical approximations.
They show that the direct injection of the gamma series expression into integro-differential
equations leads to reccurence relations between the expansion’s coefficients and therefore
characterize them. They focus on the finite-time ruin probability but the results are valid
in the infinite-time case by letting the time ¢ tend to infinity. We explain later that our
method, within the frame of ruin probabilities approximation, is closely related to the
Laguerre method and represents in fact an improvement. The numerical inversion via
Fourier-series techniques (Fast Fourier Transform) received a great deal of interest. These
techniques have been presented for instance in [2] within a queueing theory setting. For an
application within an actuarial framework, we refer to [I3] and |2I] Chapter 5 Section 5.5.
There is also a great body of literature dealing with Laplace transform inversion linked the
Hausdorff moment problem. Probability density function are recovered from different kind
of moments. The use of exponential moments and scaled Laplace transform is presented in
[17] and has been performed for ruin probabilities computations in [I§]. In the work of Gzyl
et al [15], the maximum entropy applied to fractional exponential moments is employed to
determine the probability of ultimate ruin. Recently, Albrecher et al. [3] and Avram et al.
[6] discuss different methods for computing the inverse Laplace transform. The first one
consider a numerical inversion procedure based on a quadrature rule that uses as stepping
stone a rational approximation of the exponential function in the complex plane. The
second one implements and reviews much of the work done using Padé approximants to
invert Laplace transform.

There are several usual techniques for calculation of ultimate ruin probabilities. We want
to mention a classical iterative method that we will use for comparison purposes. The so
called Panjer’s algorithm introduced in [20], has been widely used in the actuarial field.
One can find an application to the computation of the probability of ultimate ruin in [IT].
The method that we propose here consists in an orthogonal projection of the defective
probability density function, associated with the probability of ultimate ruin, with respect
to a reference probability measure that belongs to the Natural Exponential Families with
Quadratic Variance Function. The desired defective PDF takes the form of an infinite
serie of orthonormal polynomials (orthogonal with respect to the aforementioned reference
probability measure). The coefficients of the expansion are defined by a scalar product



and are computed from the Laplace transform or equivalently from the moments of the
distribution. Ruin probability approximations are obtained through truncation of the in-
finite serie followed by integration. This method permits the recovery of functions from
the knowledge of their Laplace transform. Once the set of coefficients of the expansion has
been evaluated, ultimate ruin probabilities can be approximated for any initial reserve. It
is easy to implement, does no necessitate large computation time and is competitive in
terms of accuracy. The approximation of the ruin probability allows manipulations such
as integration or reinjection in formulas to derive approximations of distributions that
governed other quantities of interest in ruin theory. For instance, the probability density
function of the surplus prior to ruin involves the ultimate ruin probability, we refer to
[10, [14] for more details. This work is also a theoretical background in view of a future
statistical application. Many papers deals with statistical estimation of ruin probabilities
when observations of the claim sizes are available. The use of a Laplace inversion formula
as basis for a nonparametric estimator has already been employed for ruin probabilities
estimation in [16, 25], scaled laplace transform and the maximum of entropy may offer
the same possibility and would be based on empirical estimation of the moments. The
definition of the coefficients in our method are based on quantities that are well adapted
to empirical estimations. By pluging in the estimators of the coefficients, we will obtain
a nonparametric estimator taking the form of an orthogonal serie. We aim to investigate
ruin probability statistical estimation in future work, for now we only consider ruin prob-
ability approximations. In Section 2, we introduce a density expansion formula based on
orthogonal projection within the frame of NEF-QVF. Our main results are developed in
Section 3: the expansion for ultimate ruin probabilities is derived, a sufficient condition
of applicability is given and the goodness of the approximation is discussed. Section 4 is
devoted to numerical illustrations. Just like what is done in [15], we compare our method
to other existing method, namely Panjer’s algorithm, Fast Fourrier Transform and scaled
Laplace transform inversion.

2 Polynomial expansions of a probability density function

Let FF = {Py,0 € O} with ® C R be a Natural Exponential Family (NEF), see [7],
generated by a probability measure v on R such that

P(XeA = / exp{xl — k(0)}dv(z)

A
= [ fz,0)dv(z),
A

where
e ACR,
e x(0) = log ([ €*®dv(z)) is the Cumulant Generating Function (CGF),
e f(x,0) is the density of Py with respect to v.

Let X be a random variable Py distributed. We have

p = Ee(X) = [ xdFy(x) = K(0),
V(p) = Varg(X) = [(z—p)?dFp(z) = &"(0).

The application § — «'(6) is one to one. Its inverse function p — h(p) is defined on M
= x/(0). With a slight change of notation, we can rewrite F' = {P,, € M}, where P,



has mean p and density f(z, u) = exp{h(pu)x — k(h(p))} with respect to v. A NEF has a
Quadratic Variance Function (QVF) if there exists reals vy, v1, v2 such that

V(1) = vo + vi o + vopi® (2.1)

The Natural Exponential Families with Quadratic Variance Function (NEF-QVF) include
the normal, gamma, hyperbolic, Poisson, binomial and negative binomial distributions.
Define

Po(e.n) = V'(n) {ﬁf(am} /7o), (2.2)

for n € N. Each P,(z, ) is a polynomial of degree n in both u and z. Moreover, if F' is a
NEF-QVF, {P,}ncn is a family of orthogonal polynomials with respect to P, in the sense
that

< Py, Py >= /Pn(x,M)Pm(x,,u)dPM(x) = S| Pal % m,n €N,

where 0,,,,, is the Kronecker symbol equal to 1 if n = m and 0 otherwise. For the sake of
simplicity, we choose v = P,,,. Then, f(z,up) =1 and we write

Po(o) = Palosio) = V™) { 5 o)} (23
H=po

We also consider in the rest of the paper a normalized version of the polynomials defined
in with Qn(z) = P,(x)/||Pnl||. For an exhaustive review regarding NEF-QVF and
their properties, we refer to [19].

We will denote by L?(v) the space of functions square integrable with respect to v.

Proposition 1. Let v be a probability measure that generates a NEF-QVF, with associated

orthonormal polynomials {Qn}nen. Let X be a random variable with density function dgx

with respect to v. If dPVX € L%(v) then we have the following expansion

LESP ZE Qul(X))Qn(2). (2.4)

Proof. By construction {Q,}nen forms an orthonormal basis of L?(v), and by orthogonal
projection we get

Py, . X dPx
(@) = ,;) < Qn—= > Qn(2).

It follows that

<@ 20 = [ @i x Qi)

_ / Qu(1)dPx () X Qn(x)



Denote by f, and fx the probability density functions of v and X respectively. Propo-
sition [1| gives an expansion of fx that takes the following simple form

+oo
fx(z) = ZanQn(x)fu(x)a (2.5)
n=0

where {a, }nen is a sequence of real number called coefficients of the expansion in the rest
of the paper, {Qn}nen is an orthonormal sequence of polynomials with respect to v, and
fv is the PDF of v. The polynomials {Q), },en are of degree n in x and can therefore be
written as Qn(z) = > iy ¢in®’. Using this last remark, we rewrite the coefficients of the
expansion as

an = E(Qn(X))

n

= Y anE (X) (2.6

= S g1y [dlfgf‘”] , (2.7)
i=1 5=0

where f)\((s) = [ e 5*dPx(x) is the Laplace transform of the random variable X. The
approximation of the PDF of X is simply obtained by truncation of the infinite serie in
. We need to choose a NEF-QVF then a member of the choosen family characterized
by its parameters. These choices are to be made wisely so as to ensure the validity of
the expansion and to reach an acceptable level of accuracy that goes along with an order
of truncation as small as possible. In the light of the expression of the coefficients ,
it seems natural to consider a statistical extension that would lead to a nonparametric
estimator of the probability density function. However, it is of interest to start with
the probabilistic problem as it is the theoretical basis for a statistical application. The
next section shows how to use the orthogonal polynomials and NEF-QVF framework to
approximate ruin probabilities.

3 Application to the ruin problem

3.1 General formula

The ultimate ruin probability in the Cramer-Lundberg ruin model is the survival function
of a geometric compound distributed random variable

M=>"U], (3.1)

where N is an integer valued random variable having a geometric distribution with pa-

rameter p = ’%“, and (UZ-I )ien+ is a sequence of independent and identically distributed

nonnegative random variables having CDF Fyi(z) = i Jo Fu(y)dy. The distribution of
M has an atom at 0 with probability mass P(N = 0) = 1 — p. The probability measure
that governs M is

dPy(x) = (1= p) do(z) + dGum (@), (32)

where dG j; is the continuous part of the probability measure associated to M which admits
a defective probability density function with respect to the Lebesgue measure. We denote



by gar the defective probability density function. The ultimate ruin probability is then
obtained by integrating the continuous part as the discrete part vanishes

+oo
Y(u)=P(M > u) = / dG(z).

u

Theorem 1. Let v be an univariate distribution having a probability density function with
respect to the Lebesque measure, and that generates a NEF-QVF. Let {Qn}nen be the
sequence of orthonormal polynomials with respect to v. If d%M € L*(v) then

too ~+o0
v) =Y an [ Qulaldv(o) (33)
n=0 u

where {ay tnen is defined as in [2.7). Recall that ap, = > & | gin(—1)° [%} . and
. s=

Qn(x) = 30 Gin"

Proof. We simply apply Proposition [I| to get the result.

3.2 Approximation with Laguerre polynomials

We derive an approximation for the ultimate ruin probability, using Theorem [I} combined
with truncations of the infinite series (3.3). For K € N, we will denote by

K 1o
v = an [ Qula)dv(a), (3.4)
n=0 u

the approximated ruin probability with truncation order K. In practice, as the distribution
of M is supported on R*, we will choose the gamma distribution with mean parameter m
and scale parameter 7, that is:

xr—le—x/m

Av(a) = () g (1)N) = TS

The associated orthogonal polynomials are the generalized Laguerre polynomials. By def-
inition, they satisfy the following orthogonality condition

o0 -1
/ Ly Y @)Ly (z)a" e da = (n +; )5nm~
0

The polynomials involved in the ruin probability approximation in (3.4]) are the generalized
Laguerre polynomials with a slight change in comparison to the definition given in [22],
namely

nfn+r—1 —1/2 _
Q) = ("I ) (35)
Remark 1. The Laguerre functions are defined in [1] as
ln(x) = e 2Ly (), z > 0. (3.6)

The application of the Laguerre method consists in representing gas as a Laguerre serie

+oo
ga() = anln(t). (3.7)
n=0



One can note that the representation 1s close to the expansion proposed in this paper,
indeed it is exactly the same if we choose for our expansionr =1 and m = 2. The difference
lies in the possibility to change the parameter in our expansion. We will see later that the
parametrization is of prime importance.

The defective probability density function associated to G s has the following expression

+oo
gu(z) =Y (1= p)p" (). (3.8)
n=1

By Taking the Laplace transform of (3.8)), we get

g (s :% 3.9
AT .

with f/U\z(s) = [e * fyr(z)dz is the Laplace transform of fy;r. The Laplace transform
of the claim size distribution appears in the formula. This fact limits the application to
claim sizes distributions that admit a well defined Laplace transform, namely light-tailed
distributions. We want to mention that this problem might be reconsidered once the study
of the statistical extension will be done. In [I7], approximations of the ruin probability in
case of heavy tail claim amounts are derived from the associated nonparametric estimator
computed with simulated data.

3.3 Integrability condition

We illustrate here how the applicability of the method is subject to the parametrization
i.e. the choice of m and r. The parametrization permits in this problem to ensure the
integrability condition. First we define the adjustment coefficient as the unique positive
solution of the so-called Cramer-Lundberg equation

igi(s) = j) (3.10)

where myi(s) = f0+oo %% fyri(x)dz is the moment generating function of U!. The integra-
bility condition dg—VM € L?(dv) is equivalent to

+o0
/ g (@)2e Mg T dr < oo (3.11)
0

In order to ensure this condition, we need the following results.

Theorem 2. Assume that Ul admits a bounded density function and that the equation
(3.10) admits a positive solution, then for all x >0

gm(x) < C(so)e ™%, (3.12)
with so € [0,7) and C(sg) > 0, where ~y is the adjustment coefficient.

Proof. In order to prove the theorem we need the following lemma regarding the survival
function Fy; of the claim sizes distribution.

Lemma 1. Let U be a non-negative random variable with bounded density function fy .
Assume there exists sg > 0 such that my(sg) < +o0o. Then there exists A(sg) > 0 such
that for all x > 0

Fy(x) < A(sp)e” *0". (3.13)



Proof. As my(sg) < +00, we have

+oo
i(s0) — 1 = /0 (0% — 1) f () da

+o0 T

= 50/ / e® fu(z)dydz
0 0
+oo

50 / eV Fy (y)dy
0

T

> so | e Fy(y)dy
> Fy (;)(68‘” - 1)
thus, we deduce that Vo > 0
Fy(z) < (my(so) — 1+ Fy(a))e ™" (3.14)
O
The equation is equivalent to
pmy(s) =1+ spu. (3.15)

The fact that 7 is a solution of the equation ([3.10) implies that mg(s) < +oo, Vso € [0,7)
and by application of Lemma [T} we get the following inequality upon the density function

of Ut .
Fy ()

W

In view of (3.8]), it is easily checked that gy satisfies the following defective renewal equa-
tion,

fui(z) = < B(sg)e %", (3.16)

g31(2) = p(1 — p) furt (2) + p /0 " fut (e — v)gn(v)dy. (3.17)

We can therefore bound gy as in (3.12)),

+oo
(@) < p(1— p)fyir(a) + /0 fot (& — w)an (w)dy

+oo
< p(1 - p)B(so)e™™" + B(sg)e ™" /0 gy (y)dy
— (pl1— p) + G (—50)) Blso)e ™"
= (C(sg)e *°".
]

The application of Theorem [2]yields a sufficient condition in order to use the polynomial
expansion.

Corollary 1. For % < 2y and r = 1, the integrability condition (3.11) is satisfied.

We note the importance of the choice of the parameter m. The Laguerre method,
briefly described in Remark [I} does not offer the possibility of changing the parameter. In
the next subsection, we shed light on another key aspect of parametrization.



3.4 On the goodness of the approximation

The approximation is obtained through the truncation of an infinite serie. Obviously, the
higher the order of truncation gets, the better the approximation is. Our goal is to work out
an efficient numerical method that combines high accuracy and small computation time.
We want to minimize the number of coefficients to compute so the coefficients’ sequence
must decrease as fast as possible. First, we assume that d((;—VM € L%(v) in order to apply
the method. Consequently

dGy dGy X
< >—nZ:%an<—|—oo, (3.18)

and the sequence of coefficients is approaching 0. The question is how fast is the decay?
To answer this question we use generating function theory, just like what is done in [I].
We take the Laplace transform of gjs defined as a polynomial expansion.

+o00 +oo
Gils) = /O 3" anQu(e) ()
n=0
“+oo “+00
- Y / T Qn () fu(a)da
n=0 0
The orthonormal polynomials {@Q, }nen are Laguerre’s one
_1)n
Qua) = =L (£), (319)
(n—l—r—l) 1%

[22] for this last definition. We then have

where L 1(2) = 30 (M7 1)( )

+o0 _ )n N\ T le—x/m
mi(s) = . 7 () S
gu (s) a / n+'r 1) " \m/ T(r)m" v
B +oo / 7395 n+r—1 ( ) T 1 —a:/mdw
B = 0 /n+r 1 n—1 ilmr D(r)m"

(n 4+ — 1)| . /-i-oo B erriflef:r/m
_ —1) s2¥ g
Za n+r—1 Z(n—i).(r—i—z—l)!(r—l)!z’!( ) 0 ¢ mrTe

( n ) i=0
= n—+r— n . r+i
- nz:()an(—l)” < +n 1);<i)(_1)l<sml—i—1> )

_ :Zj)an(—l)n (n+£_1> <5m1+1>r(snﬁ1)n

X

+oo
= Y anly(n)Gy(s)Hy(s)" (3.20)
= G,(s)B(H,(s)), (3.21)



where B(z) = .20 b,2" is the generating function of the sequence {by}nen with b, =
I,(n)a,,¥n € N. The generating function B is expressed with the Laplace transform of
gy via a change of variable, we get

By = D
Gy (H, ' (2))
= (1—2)"gn <Z> . (3.22)
m(l — 2)
In generating function theory, it is possible to study the decay of a sequence by considering
its radius of convergence. If the radius of convergence of B(z) is greater than one then the
sequence of coefficients admits a decay that is geometrically fast. Non-geometric conver-
gence occurs when B admits a singularity on the unit circle {z : |z| = 1}. The parameters
of the expansion permits to alter the form of the generating function in order to make it
simpler. Sometimes it gets so simple that an exact formula is obtained. The two following
examples may help convince the reader.

Example 1. In [1l], several attempts are made to expand PDF when the convergence is
not geometrically fast. One of those cases is the expansion of a simple Gamma PDF, recall

that the PDF is given by
xa—le—x/ﬁ

fX(«T) = W:

(3.23)

with associated Laplace transform

Fx(s) = <1+1ﬁ5>a. (3.24)

The generating function of the coefficient defined in (3.22)) is

m*(1—z)*"
(m —z(8 —m))*

It is easily check that taking r = o and m = B lead to B(z) = 1. Then ap = 1 and
anp =0,Vn > 1.

B(z) =

(3.25)

Example 2. The exact ultimate ruin probability for the classical ruin model is available
i a closed form when the claim sizes are governed by an exponential distribution. In
this particular case, the integrated tail distribution is also an exponential distribution with
the same parameter as the claim amounts. Assume that the claim sizes are exponentially
distributed with parameter §, the Laplace transform of the defective PDF gy is

p

_ 3.26
is) = (3.20)
( ”°
The generating function of the coefficients is then
1— 1—r
Bz = —Pml=2" (3.27)
m—z (15;) m)

1t is easily check that taking r = 1 and m = p lead to B(z) = p. Then ap = p and
an =0,Yn > 1. Thus gy (x) = pTe —i5te ( )= e~ 5% which is indeed the exact

ultimate probability in the studied case.

10



This two examples shows how to play on the parameters to make the hole thing looks
better. We see that this method is a mathematical tool to perform analytical Laplace
transform inversion. The choice of the parameter is not automatic as one has to look at
the generating function and choose wisely the parameters to have good results. It happens
that the generating function B takes a tedious form which leave us with a difficult calll
regarding the parameters.

3.5 Computation of the coefficients of the expansion

The coefficients are obtained from the derivative of the generating function defined in (3.22])

o, = ) [ d" B(z)} R (3.28)

n! dzm

Direct evaluation is doable using a computational software program. However if the ex-
pression of B is tedious then one might use an approximation procedure. The derivative
can be expressed via Cauchy contour integral

4y = 2 / B, (3.29)
C

2mi gl
T

where C, is a circle about the origin of radius 0 < » < 1. We make the change of variable
z = re™™ to get
B Iy (n) 27

=5 B(re™)e ™ dw. (3.30)
wr 0

an

The integrals in (3.30) are approximated through a trapezoidal rule

an =~ Qpn

2n
= ;’;T(Zl) Z(—l)j%(B(re”ji/”))
j=1
= ;Z;T(:Q B(r)+ (-1)"Q(-r) + 22(_1)j%(3(reﬂ-ﬁ/n)) ’
j=1

where $(z) denotes the real part of some complex number z. The goodness of this approx-
imation procedure is widely studied in [1].

4 Numerical illustrations

We analyse the convergence of the sum in our method toward known exact values of
ruin probabilities with gamma distributed claim sizes. For those claim sizes distribution
we have explicit formulas that allow us to assess the accuracy of our approximated ruin
probabilities. The goodness of the approximation depends on the order of truncation K.
Our method also enables us to approximate ruin probabilities in cases that are relevant for
applications but where no formulas are currently available. A comparison is done with the
results obtained with the Fast Fourrier Transform, the scaled Laplace transform inversion
and Panjer’s algorithm. We plot the difference between the exact ruin probability value
and its approximation

A¢(u) - ¢(u> - 77bz4pproa:(u)- (41)

11



We considerered I'(«, 5) and U [0, 1] distributed claim sizes. Regarding the ruin model set-
tings, we fix a safety loading at 20% which is a standard value. The results are displayed on
Figure [l and [2] where the claim amount are I'(1/2, 1/2)-distributed and I'(3, 1)-distributed.
The generating function of the coefficients does not take a simple form and it is really hard
to choose an optimal parametrization. We then choose » = 1 and m = 1/ in order
to ensure the convergence. We also set K = 40, which sounds like a good compromise
between accuracy, computation time and numerical difficulties. The Panjer algorithm is
applied in its basic form as we are trying to recover probabilities of a geometric compound
distribution. The distribution of the random variable M, defined in , is approximated
as follows

P(M =nh) =~ gy,

= N figay =1, (4.2)
7=1

1—pfo <=

where h is the bandwidth and f; = Fyr (jh + %) — Fyr (jh — %) ,Vj € N. This arithme-
tization design has been recommended in a recent paper [I12]. The algorithm is initialized
with go = Gn(0), where G is the probability generating function of N also defined in
. The probability of ultimate ruin is then approximated by

3 [u/h]
P(u)=1- Z gi.
=0

The bandwidth is set to h = 0.01. The scaled Laplace transform technique has been
presented in [I7]. The ultimate ruin probability is approximated by

Lae—zlnbj

asl) = 3 gk () (1) - +attm (4.

where @Z(s) = ﬁ is the Laplace transform of the ruin probability. We set o = 27
U

and b = 1.25 as it is recommended in [I8]. Regarding the Fourier series method, we apply
exactly the procedure described in [21I] Chapter 5 Section 5.5. The fast Fourrier transform
offers the best accuracy for the two examples, our method is competitive in comparison to
the two other methods.

12
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Figure 1: Difference between exact and approximated ruin probabilities for
I'(1/2,1/2)-distributed claim sizes

Polynomial Expansion
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Figure 2: Difference between exact and approximated ruin probabilities for
I'(3, 1)-distributed claim sizes

13

10



In the case of uniformly distributed claim amounts, we do not have an exact formula
for the ultimate ruin probability. As the fast Fourier transform did a tremendous job on
the two other cases we decide to take the ruin probabilty approximated via the FFT as
a benchmark value to assess the accuracy of the three other methods. We also plot the
ultimate ruin probability obtained with each method, see Figure 3] One can note that the
polynomial expansion give again satisfying results.

00010 Polynomial Expansion Panjer's Algorithm
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e i) ] |
1| *.\ -0.004f
0.0000f+—— d o M
3 \J l‘ ‘ \\/ - 3*0.006’
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0 2 4 6 8 10 0 2 4 6 8 10

Initial Reserves Initial Reserves

Figure 3: Difference between FFT approximation and approximated ruin probabilities
with other method for U [0, 1]-distributed claim sizes

5 Conclusion

Our method provides a very good approximation of the ruin probability when the claim
sizes distribution is light-tailed. We obtained a theoretical result that ensures the validity of
our expansions. As expected, the numerical results show the superiority of the Fourier series
based method in term of accuracy. Nevertheless, our method provides an approximation
of a simple form for the hole ruin function and allows reinjection to derive approximations
of other quantities of interest in ruin theory. Another advantage is the possibility of a
statistical extension that will lead to a nonparametric estimation of ruin probabilities
just like the scaled Laplace transform inversion and maximum entropy methods. The
great results in terms of accuracy are promising and it will be interesting to consider
statistical application. It is also worth noting that this method can be easily adapted to a

multivariate problem. The inversion of a bivariate Laplace transform will be at the center
of a forthcoming paper.
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