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Abstract. With the interactive continuation tool Diamanlab, solution branches
of a parametric nonlinear problem are computed as sets of Taylor-based so-
lutions stored in checkpoints. Theoretical aspects and implementation are

generic, taking advantage of the efficient higher-order asymptotic numerical
method in its Diamant form that interprets the generic nonlinear problem
as a sequence of linear ones, of Automatic Differentiation (AD) for Taylor
coefficient computations, of object-oriented programming and graphical user

interface capabilities of MATLAB. The implementation involves four classes
devoted to the interactive management of the continuation, to the manipula-
tion of a generic system of nonlinear equations, to the checkpoint management
and to higher-order AD, respectively.

In practice, any analytical nonlinear system of equation may be imple-
mented in a natural way as a subclass of the generic system class, then solved
in an easy manner using the graphical user interface. A benchmark of classical

nonlinear problems is provided to serve as a basis for the implementation user-
defined problems. Diamanlab usage and bifurcation detection are discussed on
the Brusselator problem whose solution involves three interconnected loops.
Additional user-defined graphics are presented for the Bratu problem.

Asymptotic numerical method, automatic differentiation, MANLAB, Diamant,
graphical user interface

1. Introduction

Numerical continuation and bifurcation analysis of nonlinear equation solutions
are classical numerical tools in many scientific areas. During the last thirties,
general-purpose software, free and commercial ones, have been proposed to engi-
neers and scientists to draw bifurcation diagrams without embarking into the risky
and heavy task of programming their own continuation algorithm. Most of them
rely on the first order predictor-corrector principles described in [1, 14, 21]. Software
are nowadays provided with a Graphical User Interface (GUI) allowing interactions
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with the user. We refer to [15] for an overview of existing packages for continu-
ation and bifurcation analysis. In any case, a good knowledge of the underlying
continuation strategy is generally needed for a good tuning of the methodological
parameters of such predictor-corrector algorithms.

The Asymptotic Numerical Method (ANM) is an alternative to first order predictor-
corrector methods. Solution branches are approximated as higher-order truncated
Taylor expansions for which the range of validity is estimated a posteriori from the
remainder of the series. Under analyticity assumptions, this allows for an automatic
and adaptive computation of the continuation step size that ensures the robustness
of the method. Hence, no methodological parameter need to be tuned. The Matlab
package MANLAB [2] provides an object-oriented implementation of the ANM as
well as a GUI. It manages “automatic” series calculations for user-defined problems
written in a quadratic formalism, what has constituted the main limitation to the
dissemination of MANLAB as a general purpose continuation tool.

Automatic Differentiation (AD) [17] is the more practicable approach to higher-
order differentiation, providing generality, efficiency and ease of use. Diamant,
the AD version of the ANM [8, 6], computes series from the user’s equation in a
straightforward manner. The Diamanlab tool described in the paper combines the
robustness, object-oriented programming and interactivity of the MANLAB tool
with the AD abilities of Diamant. The implementation involves four classes de-
voted to the interactive management of the continuation, to the manipulation of a
generic system of nonlinear equations, to the checkpoint management and to higher-
order AD, respectively. Diamanlab relies on operator overloading as the vehicle of
attaching higher-order derivative computations to the arithmetic operators and in-
trinsic functions provided by the programming language [3, 16, 20, 9]. A Diamanlab
user implements his equation system as a classical Matlab function, sets the initial
guess, and uses the GUI to plot his bifurcation diagram. Moreover, object-oriented
programming allows for the implementation of user-defined graphics for particular
analysis of the computed solution branches.

The layout of the paper is as follows. Fundamentals of ANM-based continuation
tools, including Diamant, are briefly presented in Section 2. Section 3 discusses with
detail the object-oriented implementation of the Diamanlab package. A few exam-
ples of interactive continuation usage are provided in Section 4. Finally, Section 5
provides a summary and an outlook.

2. ANM-based continuation tools

Let R(U) = R(u, λ) define a nonlinear algebraic system comprising n equations,
where u is a state vector of dimension n, λ is a scalar control parameter, and
U = (u, λ) for the sake of concision. Solutions of (1),

(1) Find U = (u, λ) ∈ C
n × R such that R(U) = 0,

are one-dimensional continua of solution points, called solution branches, which
may intersect at bifurcation points.

Continuation algorithms constitute a classical answer to solution branch compu-
tations. Under differentiability assumption, the problem (1) may be solved through
a first order predictor-corrector method that computes the solution branch as a col-
lection of converged solution points [1, 14, 21]. To be effective, an elaborate strategy
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is mandatory for a control of the step-size that guarantees a good compromise be-
tween the number of corrections per step and the size of each step.

Under analyticity assumption, higher-order order methods [22] such as the ANM
[12, 13] provide solution branches as a collection of continuous parametric repre-
sentations written as truncated Taylor expansions,

(2) U(a) =

P
∑

p=0

ap 1

p!

∂pU

∂ap
(0) =

P
∑

p=0

apUp, ∀a ∈ (0, am),

where a is a path parameter, generally the pseudo-arc length parameter, am is the
range of validity of the series in which U(a) satisfies the accuracy required by the
user, Up is the unknown Taylor coefficient of U at order p, and P the truncation
order. In the ANM, series (2) are introduced in the actual user-defined equations.
This yields a sequence of linear problems sharing the same Jacobian matrix but
different right-hand-side terms, which solution enables the computation of the se-
quence of {Up}p=1,..,P in an iterative manner. The step size control strategy relies
on an automated calculation of the range of validity am [10] from the remainder
of the current series (2). The solution point U(am) is used as initial guess to
compute the next parametric representation (2). By construction, the ANM is a
robust and efficient continuation process. A Newton-Raphson (NR) correction may
be performed when the accuracy of the initial guess U0 exceeds a user-prescribed
value.

Great improvement in terms of generality is achieved through Diamant [6]. Series
(2) are introduced in the generic problem (1). Following Faá di Bruno’s generaliza-
tion of the chain rule to higher-order derivatives [7, 19], this yields a sequence of P

linear systems,

(3) Rp = R1Up + {Rp|Up = 0}U1 = 0, p = 1, .., P,

where the Jacobian R1 is the same over the orders. The higher-order derivative
{Rp|Up = 0} is the Taylor coefficient Rp evaluated with the value of the unknown
Up set to 0. Following (3), the linear system at order p ≥ 1 is

(4)

(

R1

U ′

1A

)

Up =

(

−{Rp|Up = 0}
δ1p

)

,

where δ1p is the Kronecker’s delta, U ′

1 the transpose of vector U1, and A a matrix
implementing some path equation [13].

From a computer point of view, the Jacobian and the higher-order terms are
calculated applying AD on the residual function R provided by the user.

3. Implementation

Diamanlab is implemented for MATLAB version 7.0 or higher. No additional
toolbox is necessary. Key aspects of the Diamanlab implementation are generality,
efficiency and interactivity. Generality and efficiency are present at different stages
taking advantage of Diamant, AD and object-oriented programming. First, any
set of actual analytic nonlinear equations (1) is represented as a generic function
named R in both the Diamant framework and its Matlab implementation. Second,
the user’s equations are coded deriving the class UserSyst from the class Syst

of Diamanlab, see the class diagram Fig. 1. Third, the AD operator overloading
library coded in the Taylor class allows for the automation of the Jacobian and
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Figure 1. Class diagram and main properties

Taylor coefficient computations appearing in (4). The continuation is implemented
in the ContDriver class meanwhile information about computed series are stored in
CheckPoint objects. A particular attention is paid to class, method and property
names which are indicated using typewriter characters. Interactivity is provided by
a Graphical User Interface (GUI) and real time visualization tools for bifurcation
analysis. In this section, classes are presented from the lower level ones, Taylor and
CheckPoint for series representation, to the higher level ones, Syst and ContDriver

dealing with the generic nonlinear system of equation.

3.1. The Taylor class. This class implements an operator overloading library de-
voted to higher-order AD. A Taylor object represents a truncated Taylor expansion
by means of three properties: the truncation order P , a 2D value array and a 3D
coef array containing U0 and Up for p = 1 to P , respectively. For the sake of gener-
ality, scalar variables are coded as 1×1 arrays. The Taylor constructor is designed
to be called with a variable number of input arguments. The order is mandatory.
Default array values are set to 0. Methods define how built-in operators and func-
tions work on Taylor series objects. The current AD implementation is based on
re-computations up to the current order p even operation count of Taylor-based
series may be of O(P 2) when storing intermediate Taylor coefficients [4]. Diaman-
lab 1.0 does not include such opportunities for now. Meaningful operations and
functions on Taylor series are overloaded. This includes math functions such as the
exponential, the logarithm, trigonometric functions and vectorial functions (norm,
dot, sum, cat), as well as array and matrix multiplications for which eventual di-
mension disagreements are raised. Particular subsasgn and subsref methods allow
for the interpretation of indexed assignment statements involving Taylor objects.
Some converters from Taylor to double, and vice versa, are implemented through
the get and set methods.

3.2. The CheckPoint class. The ANM continuation generates a succession of
branch sections, using the end point of each section as the new U0 point for the next
section. Here, this basic principle of the ANM is implemented using checkpoints
[18, 5] designed to carry series information computed for particular solutions U0 of
(1), allowing for a restart of the computations or a stability analysis.
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In Diamanlab 1.0, a CheckPoint object is the aggregation of a Taylor object
U0 containing the Taylor series computed at point U0, a tangent vector Ut indi-
cating a traveling direction, a range of validity Amax for the series U0, and some
representations of the solution branch for plotting purposes. The CheckPoint class
contains two methods only. The eval method provides a discrete “point-by-point
representation” of the branch. The endpoint method sets the solution point Uend

to U(amax), the value of series evaluated at the limit of validity of U0, and the
tangent direction Utend pointing outward to dU

da
(amax) .

3.3. The Syst superclass and user-defined subclasses. The Syst superclass
provides methods related to the generic system (1) of nonlinear equations. A Syst

object has two “problem-dependent” properties that should be provided at runtime:
a name to be used in the plots, for instance, and the number of equations of the
system, namely ninc. Other ones are methodological parameters, set to default
values. The Syst methods are Jacobian, tangentvector, NRcorrections and
ANMseries. The Jacobian method builds the Jacobian R1 at point U(0) using the
canonical basis. This technical procedure is convenient for small problems only,
sparse Jacobian evaluation will be implemented soon. The tangentvector method
computes an oriented unitary tangent vector to the branch using this Jacobian.
The NRcorrections method implements Newton-Raphson corrections to improve
the accuracy of a solution if desired. Devoted to series computation, ANMseries is
the key method of Diamanlab. Inputs are the Syst object related to the system
under study and defined through a Syst subclass hereafter denoted by UserSyst,
the Taylor variable U0 which value property is known, and the oriented tangent
vector Ut. Outputs are the updated series U0 and the estimated range of validity
Amax. ANMseries first calls the Jacobian and the tangentvector methods. Then,
iterations are performed from order p = 1 to P to compute the Taylor coefficients
Rp of R. Each of the iterations consists in the evaluation of the right-hand-side
term {Rp|Up = 0} and the solution of system (4). The range of validity Amax is
deduced from the computed series [13].

The system of nonlinear equations under study is implemented as a UserSyst

class. This UserSyst class inherits properties and methods from the Syst class,
and contains methods that are specific to the user’s system. The R method coded in
UserSyst defines the actual system of equation to be solved: the input is a Taylor
objet U , the output is the AD computed Taylor object R to be used in the Syst

methods such as ANMseries, Jacobian, and so forth. For the sake of generality,
the R method result is a double vector when the input is a double vector. The
UserSyst class may also contain some user displays to plot and to interpret results
in a specific manner, detail is reported in paragraph 4.3. A benchmark of user’s
classes is included in Diamanlab.

3.4. The ContDriver class and the GUI. The ContDriver class is targeted
to the implementation of the Diamant version of the ANM continuation process.
Properties are the “current point” of continuation figured by the two variables U0

and Ut, and a list of CheckPoint objects. Methods are mainly those indicated as
pushbuttons on the GUI, Fig. 2. At execution time, Diamanlab launches the GUI
and a Matlab figure to plot the projected bifurcation diagram.

The projected bifurcation diagram is a 2D plot of one or several curves, each of
them showing the evolution of one component of U versus another. On each of the
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Figure 2. Graphical User Interface

curves, the “current point” is indicated by a square marker and an arrow figuring
U0 and Ut, respectively. The continuation steps appear to be performed from the
representation(s) of the point U0 in the arrow direction(s).

The interactive continuation is managed through the GUI and monitored on
the projected bifurcation diagram. The GUI is divided into fives frames, namely
Continuation, Correction, Current point, Display and Diagram. The frame Con-
tinuation contains the method :

• forwardcontinuation, Forward >> on the GUI, to perform the number
of continuation steps indicated in the text box above.

The ANMthreshold is the accuracy required for the parametric representation (2).
It is used to estimate the range of validity am and may be modified by the user.

The frame Correction contains

• NRcorrections to perform Newton-Raphson corrections on the ”current
point” when the accuracy is over the NRthreshold parameter. This thresh-
old may be modified in the related text area.

The Current Point frame contains push buttons that act on the current point
location:

• the Reverse tangent button reverses the continuation direction,
• the Initial button resets the current point to the initial guess point pro-

vided by the user,
• the Set button enables to capture a mouse position on the projected bifur-

cation diagram and to set the current point to the closest solution point,
• The Jump button captures a mouse position on the diagram figure. It

commands a prediction-correction and update the current point position
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Table 1. Continuation Parameters

Field name Default value Note
order 20 command level only
ANMthreshold 1.10−7 AMM threshold
NRcorrections 0 NR correction off
NRthreshold 1.10−8 NR method threshold
NRitemax 15 Maximum number of iterations for NR

on the bifurcation diagram. This allows the user to follow another branch
of the bifurcation diagram, for instance.

Available Display options are:

• Markers to indicate (or not) checkpoints,
• Variables to choose the couples of components of U that are plotted as

curves in the projected bifurcation diagram,
• Point and Select point to launch the user-defined display implemented

in the UserSyst class, at each steps if the Point button is on, or for the
point capture on the projected bifurcation diagram with Select point.

Display options may be set at the command level when launching a continuation,
or modified through the GUI.

Four actions are operated from the Diagram frame. The Load and Save methods
are file I/O functions to import and to export the diagram data, respectively. Dia-
gram data are the (params structure, the UserSyst and ContDriver objects. The
last one notably includes the checkpoint list. The Cancel all method allows for
a reset of the checkpoint list. Particular checkpoints may be removed from the list
and the bifurcation diagram, simultaneously, using Cancel section button and
selecting the related branch sections.

.

4. Interactive continuation examples

As discussed in paragraph 3.3, Diamalab is provided with several examples. A
user may either run a predefined problem, or take advantage of one of the UserSyst
examples to implement his smooth nonlinear problem in a natural way as a R

method of a new subclass of the Syst class.

4.1. The params structure array. A very few continuation parameters, Table 1,
are involved in the ANM process. The first two are the order truncature of the series
and the required accuracy for the ANM continuation. The last three are related
to Newton corrections. Continuation parameters may be set at the command level
when launching a continuation, or modified through the GUI.

4.2. User-defined problem and class. A user-defined problem may be coded
implementing a class that inherits from the Syst class. One notices that the check
for analyticity and the eventual regularization is under the user’s responsibility. The
user creates a class directory named @USERSYST in a directory, Diamalabv1.0/EXAMPLES/USERSYST
for instance, that should be on the Matlab path. This directory contains at least
two methods, the constructor USERSYST that indicates the number of equations of
the user’s system, and a function R containing the equations. A user-defined disp

function (see paragraph 4.3) may be added for complementary plots. A script,
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called usersyst.m for instance, may be implemented to run Diamanlab with user’s
continuation parameters and display options. Diamanlab v1.0 is provided with
several examples stored in the EXAMPLES directory and described with detail in the
user guide [11].

As an example, let us consider the Brusselator problem [21], implemented in the
EXAMPLES/Brusselator directory, which equations are written in Fig. 1 as a R

method. Actual residual equations may be written in a natural way using either

ALGORITHM 1: Function R.m for the Brusselator equations

function R1 = R(obj,U) % Brusselator (Seydel, 1994)
global Ck %Current order of differentiation
if isa(U,’Taylor’), R1=Taylor(Ck,zeros(6,1)); end

u1=U(1); u2=U(2); u3=U(3); u4=U(4); u5=U(5); u6=U(6); ulam=U(7);
R1(1)=2-7*u1 + u1*u1*u2 + ulam*(u3-u1);
R1(2)= 6*u1 - u1*u1*u2 + 10*ulam*(u4-u2);
R1(3)=2-7*u3 + u3*u3*u4 + ulam*(u1+u5-2*u3);
R1(4)= 6*u3 - u3*u3*u4 + 10*ulam*(u2+u6-2*u4);
R1(5)=2-7*u5 + u5*u5*u6 + ulam*(u3-u5);
R1(6)= 6*u5 - u5*u5*u6 + 10*ulam*(u4-u6);

vectors and matrices for better efficiency, or referring to a part of them through a
subset of indexes. One notices that the function R may be the top function of a
complex program such as usual in a finite element modeling, for instance. Inputs
are a Syst object and a Taylor object. The output is a Taylor object containing
the desired Taylor coefficients of R. The constructor method BRUSSELATOR.m is
presented in Fig. 2.

ALGORITHM 2: Constructor method: BRUSSELATOR.m file
classdef BRUSSELATOR < Syst
% The ’BRUSSELATOR’ class inherits from the Syst class
% ninc= 7 (unknows)
% This example shows the syntax to pass a parameter ’a’ as argument,
% even there is no need in this example

properties
a=0;

end
methods
function sys = BRUSSELATOR(a)
sys = sys@Syst(’ninc’,7);
sys.a=a;

end
end

end

The example is run using the brusselator command in the Matlab window.
This opens the GUI, Fig. 2, and the diagram window, Fig. 3.a, that displays the
corrected initial current point. The bifurcation diagram is built clicking on the
Forward >> button of the GUI and controlling the results in the diagram window.
Fig. 3.b shows the continuation path obtained after 20 forward steps. One notices a
round marker on the path that indicates a simple bifurcation has been detected, the
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Figure 3. Interactive construction of the bifurcation diagram for
the Brusselator system.

corresponding tangent direction is also computed. After 35 steps, Fig. 3.c, the path
forms a closed loop, checkpoint markers are not plotted for a better observation of
the diagram. Two simple bifurcation are detected on this continuation path.

Diamanlab allows to set the current point at a bifurcation point using the Set

button of the current point frame. In an automated manner, the tangent di-
rection Ut is set to the tangent direction of the bifurcated path, Fig. 3.d. The
bifurcated path is followed using the Forward >> button. The full bifurcation dia-
gram, Fig. 3.e, made of three interconnected loops and one straight line, is obtained
repeating this procedure. It requires 120 forward steps, involving 120 Taylor series
computation and 120 checkpoints.

4.3. User display facilities. Additional displays may be coded to analyze a solu-
tion point U . Indeed, drawing a graphical representation of U is a valuable manner
to get a good insight of the computed solution. Such an interpretation feature may
be used as follows:

- the user implements his own disp.m method in his UserSyst class to pro-
duce some kind of Matlab action (graphics, video, sound, ...) from the
solution point U . One notices that the method has a unique argument U .

- the disp.m method is called either when a checkpoint object is computed
(the “end” point being used as U by disp) or when the user selects a point
in the projected bifurcation diagram using the GUI.

The Bratu example,

(5) Find u such that ü(x) + λeu(x) = 0 in (0, 1), u(0) = u(1) = 0,

provides a basic example for such feature. The problem is discretized using a central
difference scheme, what yields an algebraic system satisfying (1). Figure 4 presents
the bifurcation diagram, as well as the plot of U(x) for the solution point indicated
with a square on the bifurcation diagram.
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Figure 4. Bratu problem: (left) the projected bifurcation dia-
gram, (right) the plot of u(x) at a solution point

5. Conclusion

The interactive continuation tool Diamanlab computes solutions of a parametric
nonlinear problem as Taylor-based approximations stored in checkpoints. It com-
bines the advantages of the efficient higher-order asymptotic numerical method in
its Diamant form, with AD for Taylor coefficient computations, and with object-
oriented programming and GUI capabilities of MATLAB. Based on theoretical
developments, our object-oriented programming involves four classes devoted to
the interactive management of the continuation, to the manipulation of the generic
system of nonlinear equations, to the checkpoint management and to higher-order
AD, respectively. A special attention is paid to the object definition for an easy ex-
tension of Diamanlab. Future developments of Diamanlab will be oriented toward
ODE system U̇ = R(U) and boundary value problems for which stability analysis,
periodic solution finding, periodic solution stability will be addressed.

Availability

Diamanlab is provided “as-is”, without any express or implied warranty. The
software is available to academic users at no charge under the end-user licence
agreement. Licence terms and software will be downloaded from the Diamanlab’s
webpage http://Diamanlab.lma.cnrs-mrs.fr. Implementation and usage guide-
lines are described in the Diamanlab User Guide [11].
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