
HAL Id: hal-00852656
https://hal.science/hal-00852656

Submitted on 21 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Availability Modeling of Modular Software
James Ledoux

To cite this version:
James Ledoux. Availability Modeling of Modular Software. IEEE Transactions on Reliability, 1999,
48 (2), pp.159-168. �hal-00852656�

https://hal.science/hal-00852656
https://hal.archives-ouvertes.fr

Availability Modeling of Modular Software
James Ledoux

Institut National des Sciences Appliquées

Key words – Markov chain, Counting process, Reliability growth, Poisson approximation.

Summary & Conclusions– Dependability evaluation is a basic component in the assessment of

the quality of repairable systems. We develop here a generalmodel specifically designed for software

systems that allows the evaluation of different dependability metrics, in particular, of availability mea-

sures. The model is of the structural type, based on Markov process theory. In particular, it can be

viewed as a attempt to overcome some limitations of the well-known Littlewood’s reliability model

for modular software. We give both the mathematical resultsnecessary to the transient analysis of

this general model and the algorithms that allow to evaluateit efficiently. More specifically, from the

parameters describing : the evolution of the execution process when there is no failure, the failure

processes together with the way they affect the execution, and the recovery process, we obtain the

distribution function of the number of failures on a fixed mission period. In fact, we obtain depend-

ability metrics which are much more informative than the usual ones given in a white-box approach.

We briefly discuss the estimation procedures of the parameters of the model. From simple examples,

we illustrate the interest in such a structural view and we explain how to take into account relia-

bility growth of part of the software with the transformation approach developed by Laprie and al.

Finally, the complete transient analysis of our model allows to discuss in our context the Poissonian

approximation reported by Littlewood for its model.

1 Introduction

Dependability is a central concept in modern systems employing software. By far the most extensive

work on software dependability assessment concerns the modeling of the growth in software relia-

1

bility which takes place as a result of fault removal. The nearly exclusively used approach adopts

the so-calledblack-boxview of the system, in which only the interactions with the environment are

considered. It generally gives a good understanding of the product’s behavior during its development

phase. Models associated with such an approach provide the Cdf of the s-time up to the first failure

(see [1]). This output can help, for instance, to decide to stop the testing phase of a product.

If the system is already in operation, the reliability growth phenomenon is not so crucial and the

behavior of the whole system is highly dependent on how the different components are requested. In

this case, thewhite-box(or structural) point of view is an alternative approach in which the structure

of the system is explicitly taken into account. This is advocated for instance in [2], [3], [4]. In

particular, the structural approach allows one to analyze the sensitivity of the dependability of the

system with respect to the dependability of its components.Moreover, in case of a software system

having some recovery capability, it is of interest to make dependability predictions considering the

influence of these recovery actions on the execution dynamics and of the delays to recover a safe

state. These features are better covered when the components of the system and their relationships are

explicitly considered. It is worth noting that reliabilitygrowth is introduced in software dependability

assessment with a structural model in [5]. The used technique can be adapted to our context as it will

be illustrated by a simple example.

In general, the underlying execution model in the structural approach is a Markov chain consid-

ering typically transitions among the execution of different components. Our work is based on the

well-known Littlewood’s model [6]. Our aim is to propose a structural model, working in continuous

time, taking into account a class of failures which affect the execution process. Specifically, we can

include mechanisms to recover a safe state for the system. A basic goal of our paper is to deal with the

delays in recovering an operational state, in order to derive availability measures. In such a context,

2

our main result is the distribution of the number of failuresin a given bounded interval. This is a very

informative r.v. Its distribution allows, in particular, to analyze the delay up to the first failure, which

is the usual main feature of black-box models. We also consider in some detail the computation of

the mean number of failures in the considered interval, the failure intensity function and the point

availability. The contribution of such a structural model to the software dependability evaluation, in

particular during its operational phase, will be illustrated on few simple situations. A discrete time

counterpart of our work may be developed from Cheung’s model[2],[7].

The paper is organized as follows. In the next section, we develop a continuous time model which

overcomes some limitations of Littlewood’s one [6], [3]. Inparticular, we deal here with more general

and informative measures. The main result proposes an analytic and algorithmic representation of the

distribution of the cumulative number of failures over a given interval. We also give specific results on

the expectation of this r.v. The basic mathematical tool is the uniformization technique [8]. At the end

of Section 2, we briefly outline the problem of the estimationof the family of parameters associated

with our model. The last section is devoted to simple illustrations of the practical application of our

results and how the reliability growth of some component maybe accounted for. Finally, we discuss

in our context, on the Poissonian approximation given in [6]for the Littlewood’s model.

2 Software dependability with a Markovian structural model

With respect to the black-box approach, just a few papers have been published on structural software

reliability models. A representative sample is (in discrete time) [2],[7],[9] and (in continuous time)

[6],[3],[4], [5],[10].

First at all, we recall the main features of the Littlewood’smodel [6] which are common to most

of the previous cited works. That will introduce in a naturalmanner, our nominal model developed in

3

the next subsection. In a first step, Littlewood defines an execution model of the software. The basic

entity is the standard software engineering concept ofmoduleas for instance in [2]. The software

structure is then represented by thecall graphof the setC of the modules. These modules interact by

execution control transfer and, a each instant, control lies in one and only one of the modules which

is called the active one. ¿From such a view of the system, we build up a stochastic processX = (Xt)
which indicates the active module at each timet. This process is assumed to be a homogeneous

Markov chain on the setC.

In a second step, Littlewood describes the failure processes associated with execution actions that

gives a view of the software in operation. Failure may happenduring a control transfer between two

modules or during an execution period of any module. During asojourn of the execution process in

the modulei, failures are part of Poisson process having parameter�i. When control is transferred

between the modulesi 2 C andj 2 C, a failure may happen with probability�(i; j).
The architecture of the software can be combined with the failure behavior of the modules and

that of interfaces into anoperational modelwhich can then be analyzed to predict dependability

of the software. This method is referred as the “composite-method” according to the classification

of Markov models in the white-box approach proposed in [11].Basically, we are interested in the

process(Ft)t�0 whereFt is the cumulative number of failures observed at timet. If the inter-failure

period are much smaller than the switching rates modules, Littlewood states that(Ft)t�0 is a Poisson

process with parameter � =Xi2C �(i)[�i +Xj2C �(i; j)]
where� is the stationary distribution corresponding to the MarkovprocessX. Analogous results are

reported in [3] whenX is assumed to be a semi-Markov chain. Such results give a “hierarchical-

method” [11] for reliability prediction: we solve the architectural model and superimpose the failure

4

behavior of the modules and that of the interfaces on to the solution to predict reliability. Note that:� failures have no influence on the execution process. The software is instantaneously operational

(with probability1) even if delays are invoked in using some handling errors capability.� User has a priori no information on the quality of an eventualPoissonian approximation.

The Subsection 2.3 proposes an algorithmic and analytic assessment of a richer operational model

evolving in continuous time. That includes the transient analysis of the counting process associated

with Littlewood’s model. We quote that a recent work [12] proposes an extension of the Littlewood’s

model to take into account the effect of the workload on the performance of the software in a multiuser

environment. However only steady-state measures are provided for2-users,1-module systems.

2.1 A nominal model

The first step in the structural approach to evaluate the dependability of a complex software system is

to define annominal modeltaking into account the knowledge of the structure, the potentially avail-

able data and the measures that will be calculated. Concerning the first point, the main assumption

is that the system can be seen as a set of interactingcomponents. This interaction is only made by

execution control transfer and, at each instant, control lies in one and only one of the components,

which will be called theactiveone. For a discussion on the concept of software component inthe

context of this paper the reader can see [10]. Component definition is a user-level task, depending on

the system being analyzed, on the possibility of getting therequired data, etc. As previously quoted,

the first idea is to identify the components with the modules.The main problem with this approach is

that the Markovian (or semi-Markovian) assumption for the call graph may be too much unrealistic.

For instance, suppose that moduleMi receives the execution control sometimes from moduleMj,
sometimes from moduleMk. In many situations, the conditions under which the controlis transferred

5

and the characteristics of the tasks that must be performed by Mi may be completely different in the

two cases. IfMi is a state of a Markov process, then the r.v. “nth sojourn time inMi” is independent

of the other sojourn times (inMi and in the other states), does not depend onn and does not depend

on the identity of the module from which the control is got. Thus, such a Markovian assumption may

be too strong to be acceptable. Similar considerations can be done on the exponential distribution of

the sojourn time in a module, on the switching transition probabilities between states, etc.

To avoid (at least, theoretically) the preceding drawbacks, we follow a different approach. Con-

sider a partition of the whole code and call components its elements. Assume, for instance, that control

starts in componentCi. After executing some subset of internal code, the servicesof componentCj
are requested. OnceCj finishes this job,Ci ends in turn and control is transferred to componentCk
which, in turn, request immediately the service ofCj. Instead of constructing three statesCi, Cj andCk, we propose the scheme of Figure 1. Ck=CjCi=CjCi

Figure 1: A component requested from two different places

The state labeled ‘Ci=Cj ’ represents the execution control inCj when it has been transferred fromCi and the same for ‘Ck=Cj ’. The main idea is to store in a state information on thepath(of compo-

nents) having transferred the control, if it is necessary tomake the Markovian assumptions realistic.

As in previous structural models, when a componentCi transfers the control to eitherCj or Ck, we

will model the situation by means of probabilistic jumps of the associated stochastic process. We will

not discuss on theflow process modelingaspect further. The reader can find similar constructions to

handle control structures (loops, tests,: : :) for in Beizer’s book [13]. Needless to say, it is clear that

we have to identify only a few components leading to a moderate number of states (“labeled paths”)

6

because a model is not extremely useful without data and the more complex it is, the more difficult is

the measurement task. This situation is also met in other software engineering activities as in testing,

where the models used are very close to the previous one (see [13]). To end this discussion, it remains

to underline that the goal here is to give a general description of the approach, not a complete specifi-

cation of a new formalism. This must depend at least on the type of implementation language(s), the

required detail level, the mechanisms that need to be included in the model, etc.

We will assume in the sequel, the nominal model is represented as the state graph of a homoge-

neous time-continuous Markovian processX. Its state space is denoted byC = f1; 2; : : : ;Mg. The

process is characterized by its infinitesimal generator, denoted byQ = (Q(i; j)) i; j 2 C, and by its

initial distribution� = (�1; : : : ; �M). The entriesQ(i; j) are to be interpreted as the output rate from

statei to statej, i.e. the parameter of the exponential distribution of any sojourn time in the statei
weighted by the proportion of routing to statej, in absence of any failure phenomenon. The distri-

bution� can be seen as the vector composed by the respective proportion of input nodes selection

in the graph by the user, and thus it is called theusing profile. We will assumeX irreducible. This

is because either the user does not distinguish any particular run end in its model and considers the

continuity of the execution, or because there are statesi representing final tasks and, in that case, we

add transitions fromi to every statej with transition probability�j.
2.2 The operational model

In this section we develop a model which represents the system in operation. Formally, this consists in

constructing a more complex stochastic process starting fromX, by considering the fact that failures

may happen and their possible effects on the system. We divide the failures in two types. The first

one is composed by theprimary failuresand the occurrence of such a failure is aprimary event. A

7

primary failure leads to an execution break; the execution is restarted after some delay for instance

from a checkpoint or perhaps from the beginning. The second class of failures is composed by the

secondary failures(their occurrences are thesecondary events). Such failures have no influence on

the evolution of the model in that the execution process is assumed to be restarted instantaneously

where the failure appears. They are those which are taken into account in [6].

Next, retrieving a safe state involves, in general, a randomdelay. Our model will allows us to

assess the quality of the service with respect to the alternation continuity-suspension of the execution

process, i.e. the availability of the system (see [8]). We suppose that the delay following an execution

break is a random variable with a phase type (PH) distribution (see [14] for information on such a

distribution). In that case, we denote the set of transient states associated with this PH distribution

by R and these states will be referred as therecovery states. The sub-generator composed by the

transition rates between elements ofR is denoted byR. The phase type assumption allows us to

represent times to recover an operational state which depend on the identity of the failed component.

Indeed, the sequence of successive visited states inR can be related to the first state entered, which

is the first recovery state selected by the failed component.

So, the nominal process is replaced by a process modeling thealternation operational-recovery

periods. The main mathematical assumptions are the following.� When the active component isi, a primary failure occurs with constant rate�i. The secondary

events (secondary failures) are part of a Poisson process having rate�i. Always during a sojourn

in statei, the two types of events are independent of each other.� When control is transferred between two components, failures may also happen. Ifi andj are

two states of the model such that transitions fromi to j model control transfers, then a primary

8

(resp. secondary) interface failure occurs with probability �(i; j) (resp. �(i; j).) In order to

simplify the technical evaluation of the model, we accept the occurrence simultaneously of the

two types of failures (with probability�(i; j)�(i; j)), with the result that the primary one will

be taken into account only. In the model, we set�(i; j) = �(i; j) = 0 if the transitions from

statei to statej do not correspond to control transfers.

The introduction of distinct failure parameters for a transfer of control and for an “internal”

execution is needed if the failure data are not gathered in a representative environment of the

interactions between the components.� Given a sequence of executed components, the failure processes associated with each state are

independent. Also, the interface failure events are independent on each other and on the failures

processes occurring when a component is active.� If a primary event occurs during the execution of componenti or when a control transfer takes

place from componenti, then�(i; j) is the probability thatj 2 R is the first visited recovery

state.� Let us defineX� = (X�t)t�0 as the process which gives either the active component or the

recovery state reached at timet. Its state space is the setE = C [R. Given a sequence of states

of E , the failure and recovery processes are assumed to be independent too. We assume that

matrixS = (S(i; j))(i;j)2R�C of the transition rates between a recovery state to an operational

state is given. We have(R+S)1T = 0. The alternation operational-recovery periods is infinite

9

by assuming the generatorQ� of the Markov chainX� is irreducible:i; j 2 C : Q�(i; j) = Q(i; j)(1� �(i; j)) if i 6= j and Q�(i; i) = Q(i; i)� �i;i 2 R : Q�(i; j) = R(i; j) if j 2 R and Q�(i; j) = S(i; j) if j 2 C;(i; j) 2 C �R : Q�(i; j) = [�i + Xk 6=i;k2CQ(i; k)�(i; k)]�(i; j):
The proposed set of failure processes can be seen as the superposition of the failure processes

considered in [6] (or [3]) and [4]. In papers like [6] the considered failures are those called secondary

here. We see this fact as a limitation and our model attempts to avoid it by introducing the primary

failures which affect the execution process.

It is worth noting that distributions(S(i; j))j2C (i 2 R) may represent a re-direction of the control

flow which results from use of recovery actions. For instance, (primary) failures in a critical compo-

nent that provoke a complete reset of the system is handled bysetting, for anyj 2 C, S(i; j) = �j ifi is the last state corresponding to the recovery phase; it means that the jump is performed according

to the using profile distribution, independently of the state in which the failure occurs. Finally, let

us drop the recovery data. If a failure happens “in” component i then the probability distribution(�(i; j))j2C models the effect on the execution control.

2.3 Model analysis

The r.v.Ft is the cumulative number of primary or secondary failures over the interval]0; t]. At t = 0,

we assume thatF0 is 0, i.e. Pr(F0 = 0) = 1. We propose to deal with the following dependability

indicators: the distribution function and the expectationof the r.v.Ft; the time to the first failure; the

point availability and the failure intensity function.

The first active component isi 2 C with probability�i (i.e. Pr(X�0 = i) = �i) and for alli 2 R,

10

Pr(X�0 = i) = 0. To analyze the processF = (Ft)t�0, let us consider the bi-dimensional time-

continuous process(F;X�) = (Ft; X�t)t�0. It follows from the independence assumptions that this is

a homogeneous Markovian process over the state spaceN � E . Let us denotea(i; j) = transition rate from statei 2 C to statej 2 C without any failure;d(s)(i; j) = transition rate from statei 2 C to statej 2 C with a secondary failure occurrence;d(p)(i; j) = transition rate from statei 2 C to recovery statej with a primary failure occurrence.

We denote byF (p)t (resp.F (s)t) the cumulative number of primary (resp. secondary) failures observed

over]0; t]. Therefore, for allt � 0, we have by definitionFt = F (p)t + F (s)t .

The following expressions for these rates can be derived by listing the different failure or recovery

events: a(i; j) = Q(i; j)(1� �(i; j))(1� �(i; j)) if i 6= j et i; j 2 C;a(i; i) = 0 if i 2 C;d(s)(i; i) = �i if i 2 C;d(s)(i; j) = Q(i; j)[1� �(i; j)]�(i; j) if i 6= j et i; j 2 C;d(p)(i; j) = [�i +Pk 6=i;k2C Q(i; k)�(i; k)]�(i; j) if (i; j) 2 C � R:
After checking that, for anyi, we have

Pj2C[a(i; j)+d(s)(i; j)]+Pj2R d(p)(i; j) = �Q(i; i)+�i+�i
and denoting by�i this value, let us define the three matricesA, D(p) andD(s) byA = (a(i; j))i;j2C � diag(�i)i2C D(p) = (d(p)(i; j))(i;j)2C�R D(s) = (d(s)(i; j))i;j2C
(diag(�i) denoting the diagonal matrix with value�i in its (i; i)-entry). The generator of the homoge-

neous Markov chainX� over state spaceE may be rewritten asQ� = � A+D(s) D(p)S R � :
Example 1 Let us briefly discuss now some particular cases of the present operational modelOp. To

replace these well-known models in their usual framework, we drop the recovery delays assumptions.

11

The first one is the Littlewood’s model. There is no primary failure, that is�i = 0 and�(i; j) = 0
for all i; j 2 C. Hence, we consider the point process of the only secondary events. Note that the

generatorQ� = A+D(s)+D(p) of the chainX� given the active component in the operational model

is also the generatorQ of the execution processX. We retrieve the fact that the failures do not affect

the evolution of the execution process.

Another interesting point process is the one obtained from Littlewood’s model by assuming that

the probability of a secondary failure during a control transfer is0. Adding conditions�(i; j) = 0 for

all i; j 2 C in the previous context, we getA = Q� diag(�i) andD(s) = diag(�i). This is a Markov

Modulated Poisson Process (or MMPP) extensively used for instance to analyze the performance of

data statistical multiplexers.

Example 2 Let us assume that our software system is constituted of five components denoted byCi; (i = 1; : : : ; 5). The parameters of their exponential execution times have been estimated to�Q(1; 1) = 1, �Q(2; 2) = 0:5, �Q(3; 3) = 0:5, �Q(4; 4) = 1, �Q(5; 5) = 1 where time is in

hours. Figure 2, confined to the nodes associated with the fivecomponents, gives the transition graph

of the nominal processX of the system.

Concerning the transition rates between components, we have Q(1; 2) = 1, Q(2; 3) = 0:025,Q(2; 4) = 0:475 andQ(3; 5) = 0:5. For the sake of simplicity, we consider only primary failures

and the failure rate for each component is assumed to take into account the occurrence of internal and

interface failures. ComponentsC4 andC5 are the only ones for which a non-zero failure rate is avail-

able:�4 = 0:03 and�5 = 0:01. After a failure has occurred inC4 (resp.C5), retrieving a operational

state involves a s-time distributed as an exponential distribution with parameter�R(1; 1) = 5 (resp.�R(2; 2) = 10). The two recovery states are denoted byR1 andR2.
12

We define two different operational models(Op)1 and(Op)2 from the distinct conditions to re-

cover a safe state after a failure. We assume for(Op)1 that execution restarts from the component

which has failed as in [3]. The transition graph of(Op)1 is given by in the l.h.s of Figure 2. For the

second model(Op)2, execution restarts always in componentC1. The transition graph is in the r.h.s

of Figure 2.

R1C3C4 C5C2 R2C1
Model (Op)1 Model (Op)2R1C3C4 C5C2 R2C1

Figure 2: The operational model with five components and two recovery states

2.3.1 The distribution function of Ft
We state the main result. This result is obtained in a similarway as in [15, Th3.1] with help of the

well-known uniformization technique [8]. Therefore the proof is omitted.

Result 2.1 Let us setu = supf i 2 C; j 2 R : jA(i; i)j; jR(j; j)j g. For all t � 0, we havePr(Ft � k) = poif(k; ut) + 1Xh=k+1 e�ut (ut)hh! �xTC(k; h) (1)

where the column vectorxTC(k; h) is deduced from the system of relations:xTC(k; h) = bA xTC(k; h� 1) + bD(p) xTR(k; h� 1) + bD(s) xTC(k � 1; h� 1) h; k � 1;xTC(0; h) = bA xTC(0; h� 1) h � 1;xTC(k; 0) = 1T k � 0;xTR(k; h) = bR xTR(k; h� 1) + bS xTC(k � 1; h� 1) h; k � 1;xTR(k; 0) = 1T k � 1:
9>>>>>>=>>>>>>; (2)

where bA = I + A=u, bR = I +R=u, bD(s) = D(s)=u and bD(p) = D(p)=u.

13

Result 2.1 leads to evaluate the probabilityPr(Ft � k), for k andt fixed, by the series (1). We recall

the inherent error due to the use of the uniformization technique: if we truncate the series (1) at levelH > k then 1Xh=H+1 e�ut (ut)hh! �xTC(k; h) � poisfc(H; ut) (since�xTC(k; h) � 1):
Hence, the algorithm can be resumed as (a) choose the tolerance error"; (b) computeH such that

poisfc(H; ut) < "; (c) compute the vectorsxTC(k; h) for h = 0; : : : ; H with system (2).

Example 3 (Example 2 continued) The two models are analyzed by means ofthe matricesA = 0BBBB@ �1 1 0 0 00 �0:5 0:025 0:475 00 0 �0:5 0 0:50 1 0 �1:03 01 0 0 0 �1:01
1CCCCA D = 0BBBB@ 0 00 00 00:03 00:01 0

1CCCCA R = � �5 00 �10 � ;
S1 = � 0 0 0 5 00 0 0 0 10 � for (Op)1 and S2 = � 0 0 0 0 50 0 0 0 10 � for (Op)2.

Figure 3 gives the graph of the functiont ! Pr(Ft � k) for (Op)1 (with k = 0; : : : ; 3). Numerous

dependability indicators follow from the knowledge of the distribution ofFt. Fork = 0, we have the

zero-failure feature of the system, that is its reliabilityfunction. It also allows us to answer a question

as “up to what timet the probability to observe at most2 failures is greater than0:95 ?” We gett � 88h using the algorithm.

Time to the first failure. It follows from the second and third renewal equations in (2)that the time

to the first failureT for the operational modelOp has a phase-type distribution:Pr(T > t) = Pr(Ft = 0) = �eAt1T:
Then, the previous algorithm is merely the computation of the state probability for an absorbing

Markov process by means of the uniformization technique.

14

00.20.40.60.81

0 200 400 600 800 1000time

Pr(Ft � 0) 33333333333333333333333
Pr(Ft � 1) ++++++++++++++++++++++++++
Pr(Ft � 2) 222222222222222222222222 2 2 2
Pr(Ft � 3) ���������������������� � � � � � � �

Figure 3: Function(Pr(Ft � k))t�0 for (Op)1 with k � 3
Point availability. The point availability function is defined att by the probabilityA(t) that the

system is operational att. This means that the identity processX� indicate one of the components at

time t: A(t) =Xi2C Pr(X�t = i) =Xi2C �(�; 0)eQ�t� (i):
SinceX� is an irreducible chain, the row vector(�; 0)eQ�t tends componentwise to the stationary

distribution� as t tends to infinity. We retrieve the usual expression
Pi2C �(i) of the asymptotic

point availabilityA(1).
2.3.2 Expected number of failures over]0; t]
Let us define the column vectorDT overE byDT = � (D(p) +D(s))1T0 � :
The scalarDT(i) (i 2 C) gives the occurrence rate of a failure “from” the componenti. VectorcDT

will denoteDT=u. The expectation of the r.v.Ft is obtained in computing the series
Pk�0 Pr(Ft > k)

15

with help of formula (1):8t > 0 : E[Ft] = 1Xh=1 e�ut (ut)hh! (�; 0) h�1Xk=0 cQ�k! cDT (3)

wherecQ� = I +Q�=u. This series may be evaluated in the same way as for the distribution function.

We deduceE[F (p)t] andE[F (s)t] from the relationsE[F (p)t] = E[Ft] D(s)=0 (see Remark below) andE[F (s)t] = E[Ft]� E[F (p)t].
Failure intensity function. In conditioning with respect to the visited state by the Markov chainX�
at timet, the failure intensity functionh(t) is easily derived:h(t) = limdt!0 1dtPr(Ft+dt � Ft = 1) = (�; 0)eQ�tDT:
We note that this function tends to�� =Pi2C �(i)[Pj2CD(s)(i; j) +Pj2RD(p)(i; j)] ast grows.

The previous expression of the failure intensity allows us to representE[Ft] asE[Ft] = Z t0 h(s)ds =Xi2C E[Si(t)] [Xj2C D(s)(i; j) +Xj2RD(p)(i; j)] (4)

whereE[Si(t)] is the mean execution time of the componenti over]0; t]. Finally, we obtain from (4)

that 8t > 0; E[Ft] = (�DT)t + (�; 0)(I � eQ�t)(1T� �Q�)�1DT: (5)

The rate��d = �DT is the so-calledfundamental rateof the (failure) point process in the Neuts’s

terminology (see [14]). Note that��d = Pi2C �(i) [Pj 6=iQ(i; j)�(i; j) + �i] for the Littlewood’s

model (withR = S = 0), where� is actually the stationary distribution of the execution process.

This the parameter of the Poisson process used in [6] as approximate failure point process. In the

model MMPP, we have
Pi2C �(i)�i.

Remark If we are not interested in counting the secondary failures,that is, if we want to evaluate

the distribution ofF (p)t only, it is sufficient to set parameters(�(i; j); �i)i;j2C to 0 in the definitions of

16

matricesA andD(s). This remark holds also for evaluate the number of failures corresponding to a

subset of components in the Littlewood’s model. Indeed, since all failures have no influence on the

execution process, i.e.X� = X, it is sufficient to assume that all the parameters associated with the

events having no incidence on the interesting part of the system are0. For instance, if we are only

interested in the failures invoked by the componenti then we set to0 all the parameters�k; �(k; j)k 6= i; j 2 C, and we use Result 2.1 and (3).

2.4 Estimation and use

A major limitation to the validation of software reliability models was during a long time the lack

of published data. It seems to be overcome in the context of black-box modeling [16]. Typical data

associated with this approach is the sequence of failure instants or simply the number of failures

observed over a fixed period. In general, some parametric model of the system is chosen and the

observations of the failure times (or of the number of failures) are used to adjust the parameter values.

However, the problem of data is not covered with structural modeling. To the best of our knowledge,

there exists no published data which can give support to the general validation of the structural model

approach. Concerning its application to a specific system, let us briefly outline the principal problems

related to the estimation of the parameters (see also [17] for a complete discussion).

Prior to the complete system integration it can be envisagedthat the failure rates of the components

will be estimated, for example, by means of simulations or using the numerous black-box software

reliability models [1]. A careful examination of the consequences of these failures must be done to

classify them into primary or secondary. Of course, we will not necessarily have�i 6= 0 for each

componenti, and the same concerning the secondary failures.

Let us say now a few words about the behavior of the repair time. The problem of fitting a PH-

17

distribution from the observation of its two first moments, for instance, is standard. Recall that, in

particular, this allows to represent regular delays, wherethe exponential assumption would be too

far from reality. Again, it is likely that the user will be able to establish a priori what component

will be executed after a given recovery period following a specific primary failure. It can then be

expected that parametersS(i; j) can be evaluated prior to the integration phase. The same remark

holds with respect to the parameters�(i; j). Indeed, the constant probability�(i; j) can be viewed

as the proportion of primary failures (attached to component i) which involve a delay distributed

according to a phase-type distribution with first statej.
Let us look now at the remaining matrices that need to be estimated. The simpler way to have in-

formation on the interface failures consists in measuring the proportion ofi! j component transfers

which fail. The estimation of theQ(i; j) transition rates implies in turn to count the number of times

each of the possible transitions occur. Many transition ratesQ(i; j), probabilities�(i; j), : : : will be

zero since most of the transitions will probably be impossible. Some of the remaining non-null values

can perhaps be “exactly” known, for instance from the analysis of the programs structure. In the same

way, we can suppose that in many applications there will be nosecondary event in the model. In any

case, a general observation about model design is that the final number of components should be kept

as small of possible, the main reason for this being the availability of data concerning failure rates and

failure probabilities. This leads to look for a tradeoff between the description power of the model and

the problem of estimating the parameters. Note that an alternative to analytical models as discussed

in this paper may be based on discrete-event simulation (see[18]).

18

3 Various comments

3.1 Further analysis of Example 2

The proposed structural model allows to analyze the sensitivity of the dependability of the whole

system with respect to the dependability of its components.For instance, suppose that we want to

achieve a probability greater than0:95 to observe at most two failures over a time period of at least

ten days (i.e. over]0; tinf] with tinf = 240h). A failure may happen only in componentC4 or C5
according to the respective parameters�4 and�5. It is desirable to decide a priori what component

must be mainly examined to achieve the fixed objective and what is the required amount of work.

We can observe for our simple example that componentC4 is the relevant one. The computations

confirm this choice since if the residual failure rate�5 decreases by a factor of10 then we only obtain

a gain of two hours for the initial lower bound (i.e.tinf ' 90h). On the other hand, dividing the rate�4 by 3 allows to attaintinf ' 257h that ensures the fixed requirement. The0-failure and2-failures

characteristics are both given by Figure 4 for a residual failure rate�4 of 0:01 and0:03.

00.20.40.60.81

0 200 400 600 800 1000time
Pr(Ft � 0): �4 = 0:03 3

3333333333333333333333
Pr(Ft � 2): �4 = 0:03 ++++++++++++++++++++++++ + + +Pr(Ft � 0): �4 = 0:01 2

222
Pr(Ft � 2): �4 = 0:01 ���

Figure 4: Function(Pr(Ft � k))t�0 with 0:01 and0:03 as value of�4 in the model(Op)1.
The perturbation on the distribution ofFt generated by the change of first executed component

19

after occurrence of a failure, betwen the models(Op)1 and(Op)2, may be easily evaluated. It is clear

that functiont ! Pr(Ft � k) will be all the less perturbated as the numberk of considered failures

is smaller. In particular, fork = 0, the reliability function is identical for the two models since no

recovery mechanisms have been invoked over]0; t]. For our example, the difference between the

values ofPr(Ft � k) for (Op)1 and(Op)2 attains10�2 over the interval[50h; 250h] with k = 1, is

more than10�2 over [110h; 450h] with k = 2 and is close to2:10�2 over [200h; 450h] with k = 3.

Note that we obtaint � 95h as answer to the question raised in Example 3 for model(Op)2. That

represents a difference of about8% on the upper bound time with respect to the first model.

0.20.30.40.50.60.70.80.91
100 150 200 250 300 350 400 450 500timePr(Ft � 2)Pr2(Ft � 2)

Pr(Ft � 3)Pr2(Ft � 3)

Figure 5: Function(Pr(Ft � k))t�0 with k = 2; 3 for the models(Op)1 and(Op)2
3.2 Reliability growth

The main purpose of the software reliability models using the black-box view of the system is to

take into account the stochastic phenomenon of reliabilitygrowth. It takes place when efficient fault

removal procedures are used. In a structural approach, thissituation has been addressed by Laprie

et al. [5]. The basic idea is to choose a black-box model to represent the reliability growth of a

component and to use the so-called transformation approachfor introduce this single-component

model in the Markovian structural one. The failure in a component are assumed to occur according

20

to a hyperexponential non-homogeneous Poisson process. The transformation approach is based on

the Markovian interpretation of this black-box model (see [5]). We can also simulate the reliability

growth of some components in our model using this technique.The transition graphs associated with

models(Op)1 and(Op)2 become those given in the Figure 6, when the reliability of componentC4
grows. C3 C5 R2R1C4;1C4;2C1 C2

Model (Op)1 Model (Op)2
C3 C5 R2R1C4;1C4;2C1 C2�inf �inf�sup �supR R

Figure 6: Operational models taking into account the reliability growth of componentC4.

00.0010.0020.0030.0040.0050.0060.0070.0080.0090.01
0 2 4 6 8 10time

Intensity (Op)1Intensity withreliability growth
Figure 7: Intensity functions for(Op)1 and(Op)1 with the reliability growth of componentC4.
As a result of the algorithm associated with Result 2.1, we state that the r.v.Ft is s-non-increasing,

that is, if (Ft)gr denotes the number of failures observed over]0; t] taking into account the reliability

growth ofC4, Pr(Ft � k) � Pr((Ft)gr � k) for eachk 2 N .

Let us return to the question “up to what timet the probability to observe at most2 failures

is greater than0:95?” for the model(Op)1 and for the model derived from the reliability growth

21

of componentC4 with parameters�sup = 0:0585 and�inf = 0:0015. That gives a growth ratio�4=�inf = 20 and an initial valueh(0) = �4. We determinedt � 88h for (Op)1 and now we gett � 97h. We see that the gain on the upper bound is about10%.

3.3 Poissonian approximation

The generatorQ of the nominal (Markov) modelX was assumed to be irreducible in Subsection 2.1;

hence matrixA is also an irreducible sub-generator. It is well-known [14]that a phase-type distribu-

tion with an irreducible matrixA is asymptotically exponential with the eigenvalue of maximal real

part�� of matrixA as parameter. So, we obtainPr(T > t) = e��t + o(e��t);
with o(e��t)=e��t ! 0 whent! +1. The scalar� may be interpreted as the asymptotic failure rate

of the system whent tends to+1. Indeed, we have�(t) =Xi2C �eAt(i)�eAt1T
DT(i) �!t!+1 �(1) =Xi2C v(i)DT(i)

wherev is the unique probability distribution satisfying tovA = �v. Consequently, we have� =�(1). We can note that for alli 2 C, v(i) and�(i)=Pi2C �(i) are distinct quantities (� is the

stationary distribution ofX�). Finally, if the distribution of the r.v.T is asymptotically exponential

then it does not mean that the counting process of the events is necessarily distributed as a Poisson

process with parameter�.

We have already noted that, whent ! +1, the failure intensity function becomes the following

constant valueh(1) = �DT and that, for the Littlewood’s model (withR = S = 0), the fundamental

rate��d is equal to the parameter of the Poisson distribution given in [6] as approximated distribution

for the counting r.v.Ft. In this case, recall that� is also the stationary distribution of the nominal

22

modelX. Let us try to compare the exact distribution ofFt for model(Op)1 with the Poisson one

with the asymptotic failure rate�(4)D(p)(4; 6)+�(5)D(p)(5; 7) = �(4)0:03+�(5)0:01 as parameter.

We state that the Poissonian approximation gives a very little under-estimation of the dependability

of the system associated with the model(Op)1. Consequently, the computation of the measures

with this Poisson distribution ensures that the reliability specifications are met. However, the same

conclusion does not hold for the model(Op)2. Indeed, the same type of comparison shows that the

Poissonian approximation, first over-estimates the dependability of the software, next under-estimates

it. Therefore, we have a priori any order relation between the reliability indicators obtained from the

Poisson process and those resulting from the exact initial model.

For a Markov model, we know that the asymptotic probability�(i) to be in statei is equal tolimt!1(E[Si(t)]=t). When the observation period becomes large, formulas (4) and (5) provide the fol-

lowing asymptotic expressions of the expected characteristicslimt!1E[Ft]t = �DT = ��d E[Ft] = ��d t+ [(�; 0)� �](1T� �Q�)�1DT + o(1):
We can see that if we consider the stationary version of the point process of the failures instants (i.e.

the initial distribution(�; 0) of X� is replaced by its stationary distribution�), then we have, for allt > 0, E[Ft] = ��d t andh(t) = ��d.
References

[1] M. Xie, Software Reliability Modelling, 1991; World Scientific Publishing.

[2] R.C. Cheung, “A user-oriented software reliability model”, IEEE Trans. Software Engineering,

vol 6, 1980, pp 118–125.

23

[3] B. Littlewood, “Software reliability model for modularprogram structure”,IEEE Trans. Relia-

bility, vol 28, 1979, pp 241–246.

[4] J.C. Laprie, “Dependability evaluation of software systems in operation”,IEEE Trans. Software

Engineering, vol 16, 1984, pp 701–714.

[5] J.C. Laprie et al., “The KAT (knowledge-action-transformation) approach to the modeling and

evaluation of reliability and availability growth”,IEEE Trans. Software Engineering, vol. 17,

1991, pp 370–382.

[6] B. Littlewood, “A reliability model for systems with Markov structure”,Appl. Statist., vol. 24,

1975, pp 172–177.

[7] K. Siegrist, “Reliability of systems with Markov transfer of control”, IEEE Trans. Software

Engineering, vol 14, 1988, pp 1049–1053.

[8] E. de Souza e Silva and H.R. Gail, “Calculating availability and performability measures of

repairable computer systems using randomization”,Journal of the ACM, vol 36, 1989, pp 171–

193.

[9] M. Kaâniche and K. Kanoun, “The discrete time hyperexponential model for software reliability

growth evaluation”,Proc. Int. Symp. on Software Reliability, 1992 Oct, pp 64-75.

[10] J.C. Laprie and K. Kanoun, “X-ware reliability and availability modeling”, IEEE Trans. Soft-

ware Engineering, vol 18, 1992, pp 130–147.

[11] S. Gokhale and K.S. Trivedi, “Structure-base softwarereliability prediction”, Proc. 5th Int.

Conference on Advanced Computing, 1997, pp 447-452.

24

[12] B. Littlewood J.F. Meyer and D.R. Wright, “Dependability of modular software in a multiuser

operational environment”,Proc. Int. Symp. on Software Reliability, 1995, pp 170–179.

[13] B. Beizer,Software testing techniques, 1990; Van Nostrand, Reinhold.

[14] M.F. Neuts,Structured Stochastic Matrices of M/G/1 Type and Their Applications, 1989; Marcel

Dekker Inc.

[15] J. Ledoux and G. Rubino, “Simple formulae for counting processes in reliability models”,

Advances in Applied Probability, vol 29, 1997, pp 1018–1038.

[16] P. Comer, “Software data collection and the software data library”, Proc. 6th EUREDATA Conf.,

1989, pp 824–839.

[17] K.S. Trivedi S. Gokhale, E.W. Wong and J.R. Horgan, “An analytical approach to architecture-

based software reliability prediction”,Proc. Int. Performance and Dependability Symp., 1998,

pp 13–22.

[18] M.R. Lyu S. Gokhale and K.S. Trivedi, “Reliability simulation of component-based systems”,

Proc. Int. Symp. on Software Reliability, 1998, pp 192–201.

Author

Dr. James Ledoux; Institut National des Sciences Appliquées; 20 avenue des Buttes de Coësmes;

35043 Rennes Cedex; FRANCE

Internet (e-mail): jledoux@insa-rennes.fr

James Ledoux received a PhD in Computer Science from the University of Rennes in 1993. He

is associate professor at the INSA engineering school in Rennes. His research activity focus on

reliability models and related stochastic processes.

25

