N

N

Availability Modeling of Modular Software

James Ledoux

» To cite this version:

James Ledoux. Availability Modeling of Modular Software. ITEEE Transactions on Reliability, 1999,
48 (2), pp.159-168. hal-00852656

HAL Id: hal-00852656
https://hal.science/hal-00852656
Submitted on 21 Aug 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00852656
https://hal.archives-ouvertes.fr

Availability Modeling of Modular Software

James Ledoux
Institut National des Sciences Appliges

Key words — Markov chain, Counting process, Reliability growth, Bois approximation.

Summary & Conclusions— Dependability evaluation is a basic component in the assesst of
the quality of repairable systems. We develop here a gemerdél specifically designed for software
systems that allows the evaluation of different dependwglniletrics, in particular, of availability mea-
sures. The model is of the structural type, based on Markoegss theory. In particular, it can be
viewed as a attempt to overcome some limitations of the Wredwn Littlewood’s reliability model
for modular software. We give both the mathematical resudtsessary to the transient analysis of
this general model and the algorithms that allow to evaliiaticiently. More specifically, from the
parameters describing : the evolution of the executiongesavhen there is no failure, the failure
processes together with the way they affect the executiuch tlee recovery process, we obtain the
distribution function of the number of failures on a fixed sis period. In fact, we obtain depend-
ability metrics which are much more informative than thealsanes given in a white-box approach.
We briefly discuss the estimation procedures of the parametféhe model. From simple examples,
we illustrate the interest in such a structural view and welar how to take into account relia-
bility growth of part of the software with the transformatiapproach developed by Laprie and al.
Finally, the complete transient analysis of our model afidavdiscuss in our context the Poissonian

approximation reported by Littlewood for its model.

1 Introduction

Dependability is a central concept in modern systems envgicgoftware. By far the most extensive
work on software dependability assessment concerns thelngaf the growth in software relia-

1

bility which takes place as a result of fault removal. Therheaxclusively used approach adopts
the so-calledblack-boxview of the system, in which only the interactions with theiesnment are
considered. It generally gives a good understanding of tbeyzt's behavior during its development
phase. Models associated with such an approach providedhef@e s-time up to the first failure
(see [1]). This output can help, for instance, to decidedp #te testing phase of a product.

If the system is already in operation, the reliability groyghenomenon is not so crucial and the
behavior of the whole system is highly dependent on how tfierdnt components are requested. In
this case, thevhite-box(or structural) point of view is an alternative approach imet the structure
of the system is explicitly taken into account. This is adaed for instance in [2], [3], [4]. In
particular, the structural approach allows one to analjeesensitivity of the dependability of the
system with respect to the dependability of its componekiisteover, in case of a software system
having some recovery capability, it is of interest to makpetlability predictions considering the
influence of these recovery actions on the execution dyreamd of the delays to recover a safe
state. These features are better covered when the compari¢iné system and their relationships are
explicitly considered. It is worth noting that reliabiligrowth is introduced in software dependability
assessment with a structural model in [5]. The used teclerégn be adapted to our context as it will
be illustrated by a simple example.

In general, the underlying execution model in the strudtapgroach is a Markov chain consid-
ering typically transitions among the execution of difftreomponents. Our work is based on the
well-known Littlewood’s model [6]. Our aim is to propose austtural model, working in continuous
time, taking into account a class of failures which affe@ éxecution process. Specifically, we can
include mechanisms to recover a safe state for the systerasi& goal of our paper is to deal with the

delays in recovering an operational state, in order to deaxailability measures. In such a context,

our main result is the distribution of the number of failurea given bounded interval. This is a very
informative r.v. Its distribution allows, in particulag einalyze the delay up to the first failure, which
is the usual main feature of black-box models. We also censidsome detail the computation of
the mean number of failures in the considered interval, #ilere intensity function and the point
availability. The contribution of such a structural modekhe software dependability evaluation, in
particular during its operational phase, will be illustdton few simple situations. A discrete time
counterpart of our work may be developed from Cheung’s m&jgr].

The paper is organized as follows. In the next section, weldgwa continuous time model which
overcomes some limitations of Littlewood’s one [6], [3].darticular, we deal here with more general
and informative measures. The main result proposes antaratyl algorithmic representation of the
distribution of the cumulative number of failures over aagivnterval. We also give specific results on
the expectation of this r.v. The basic mathematical todiesuniformization technique [8]. At the end
of Section 2, we briefly outline the problem of the estimatdithe family of parameters associated
with our model. The last section is devoted to simple illastms of the practical application of our
results and how the reliability growth of some component tmayccounted for. Finally, we discuss

in our context, on the Poissonian approximation given irf¢éxhe Littlewood’s model.
2 Software dependability with a Markovian structural model

With respect to the black-box approach, just a few papers haen published on structural software
reliability models. A representative sample is (in diser@tne) [2],[7],[9] and (in continuous time)
[6].[31.[4], [5],[10].

First at all, we recall the main features of the Littlewooaisdel [6] which are common to most

of the previous cited works. That will introduce in a naturanner, our nominal model developed in

the next subsection. In a first step, Littlewood defines acui@n model of the software. The basic
entity is the standard software engineering concephofiuleas for instance in [2]. The software
structure is then represented by tiadl graphof the seC of the modules. These modules interact by
execution control transfer and, a each instant, contrsliieone and only one of the modules which
is called the active one. ¢From such a view of the system, Viet lqoia stochastic process = (X;)
which indicates the active module at each titneThis process is assumed to be a homogeneous
Markov chain on the set.

In a second step, Littlewood describes the failure prosesssgociated with execution actions that
gives a view of the software in operation. Failure may haph&mg a control transfer between two
modules or during an execution period of any module. Durisgjaurn of the execution process in
the modulei, failures are part of Poisson process having parametewWhen control is transferred
between the modulese C andj € C, a failure may happen with probabilify(i, 7).

The architecture of the software can be combined with tHarabehavior of the modules and
that of interfaces into awperational modelhich can then be analyzed to predict dependability
of the software. This method is referred as the “composi¢hiod” according to the classification
of Markov models in the white-box approach proposed in [1Bésically, we are interested in the
procesy F}).>o WhereF, is the cumulative number of failures observed at tim# the inter-failure
period are much smaller than the switching rates moduléewbod states thdtr;),>, is a Poisson

process with parameter

A=Y (i) + Y pli,)]

1eC jec

wherer is the stationary distribution corresponding to the MargoscessX . Analogous results are
reported in [3] whenX is assumed to be a semi-Markov chain. Such results give aafici@cal-
method” [11] for reliability prediction: we solve the artéctural model and superimpose the failure

4

behavior of the modules and that of the interfaces on to theiso to predict reliability. Note that:

¢ failures have no influence on the execution process. Theaidtis instantaneously operational

(with probability 1) even if delays are invoked in using some handling errorglogipy.

e User has a priori no information on the quality of an evenR@bksonian approximation.

The Subsection 2.3 proposes an algorithmic and analytesasgent of a richer operational model
evolving in continuous time. That includes the transieralgsis of the counting process associated
with Littlewood’s model. We quote that a recent work [12] poses an extension of the Littlewood’s
model to take into account the effect of the workload on théopmance of the software in a multiuser

environment. However only steady-state measures aredqaovor2-users,l-module systems.

2.1 A nominal model

The first step in the structural approach to evaluate therdigislity of a complex software system is
to define amominal modetaking into account the knowledge of the structure, the @y avail-
able data and the measures that will be calculated. Comgethe first point, the main assumption
is that the system can be seen as a set of interactingponents This interaction is only made by
execution control transfer and, at each instant, contesl iln one and only one of the components,
which will be called theactiveone. For a discussion on the concept of software componehein
context of this paper the reader can see [10]. Componenttiw&iirs a user-level task, depending on
the system being analyzed, on the possibility of getting#ugiired data, etc. As previously quoted,
the first idea is to identify the components with the modulége main problem with this approach is
that the Markovian (or semi-Markovian) assumption for ta# graph may be too much unrealistic.
For instance, suppose that modulg receives the execution control sometimes from module
sometimes from modul&/,.. In many situations, the conditions under which the congrtlansferred

5

and the characteristics of the tasks that must be performéd;bnay be completely different in the
two cases. IfV/; is a state of a Markov process, then the rath*sojourn time inM/;” is independent
of the other sojourn times (if/; and in the other states), does not depena @md does not depend
on the identity of the module from which the control is got.uShsuch a Markovian assumption may
be too strong to be acceptable. Similar considerations eaiohe on the exponential distribution of
the sojourn time in a module, on the switching transitiorbatalities between states, etc.

To avoid (at least, theoretically) the preceding drawbaeksfollow a different approach. Con-
sider a partition of the whole code and call componentsésiehts. Assume, for instance, that control
starts in componerd;. After executing some subset of internal code, the sera€esmponent’;
are requested. Oncg; finishes this job(; ends in turn and control is transferred to comporEnt
which, in turn, request immediately the serviceCgf Instead of constructing three statés C; and

C}, we propose the scheme of Figure 1.

Figure 1: A component requested from two different places

The state labeled”; /C;’ represents the execution controldf) when it has been transferred from
C; and the same foiC},/C;’. The main idea is to store in a state information on plag¢h (of compo-
nents) having transferred the control, if it is necessampéde the Markovian assumptions realistic.
As in previous structural models, when a compor@ntransfers the control to eithé€r; or Cy,, we
will model the situation by means of probabilistic jumpsioé associated stochastic process. We will
not discuss on thBow process modelingspect further. The reader can find similar constructions to
handle control structures (loops, tests,) for in Beizer's book [13]. Needless to say, it is clear that

we have to identify only a few components leading to a moéanatnber of states (“labeled paths”)

because a model is not extremely useful without data and dre oomplex it is, the more difficult is
the measurement task. This situation is also met in othéwvacé engineering activities as in testing,
where the models used are very close to the previous onel8peTo end this discussion, it remains
to underline that the goal here is to give a general desonf the approach, not a complete specifi-
cation of a new formalism. This must depend at least on the ofypmplementation language(s), the
required detail level, the mechanisms that need to be iedudthe model, etc.

We will assume in the sequel, the nominal model is repredesdehe state graph of a homoge-
neous time-continuous Markovian procegs Its state space is denoted @y= {1,2,...,M}. The
process is characterized by its infinitesimal generatarptial byQ = (Q(7, 7)) 4,7 € C, and by its
initial distributiona = (v, ... , ayr). The entrieg) (i, j) are to be interpreted as the output rate from
state: to statej, i.e. the parameter of the exponential distribution of apjpgrn time in the state
weighted by the proportion of routing to statein absence of any failure phenomenon. The distri-
bution o can be seen as the vector composed by the respective porpoftinput nodes selection
in the graph by the user, and thus it is called tiseng profile We will assumeX irreducible. This
is because either the user does not distinguish any patiowh end in its model and considers the
continuity of the execution, or because there are stat@gresenting final tasks and, in that case, we

add transitions frona to every statg with transition probability;.
2.2 The operational model

In this section we develop a model which represents thesyisteperation. Formally, this consists in
constructing a more complex stochastic process startomg i, by considering the fact that failures
may happen and their possible effects on the system. Weedikigl failures in two types. The first

one is composed by th@imary failuresand the occurrence of such a failure ipramary event A

primary failure leads to an execution break; the executorestarted after some delay for instance
from a checkpoint or perhaps from the beginning. The sectas$ ©f failures is composed by the
secondary failuregtheir occurrences are tlscondary evenis Such failures have no influence on
the evolution of the model in that the execution process ssimgd to be restarted instantaneously
where the failure appears. They are those which are takemaaount in [6].

Next, retrieving a safe state involves, in general, a randetay. Our model will allows us to
assess the quality of the service with respect to the aliemeontinuity-suspension of the execution
process, i.e. the availability of the system (see [8]). Wepsise that the delay following an execution
break is a random variable with a phase type (PH) distribufsee [14] for information on such a
distribution). In that case, we denote the set of transigtes associated with this PH distribution
by R and these states will be referred as theovery states The sub-generator composed by the
transition rates between elements7fis denoted byR. The phase type assumption allows us to
represent times to recover an operational state which diepeithe identity of the failed component.
Indeed, the sequence of successive visited statRsdan be related to the first state entered, which
is the first recovery state selected by the failed component.

So, the nominal process is replaced by a process modelingltdr@ation operational-recovery

periods. The main mathematical assumptions are the fallpwi

e When the active componentisa primary failure occurs with constant rate The secondary
events (secondary failures) are part of a Poisson procesgjratey;. Always during a sojourn

in states, the two types of events are independent of each other.

e When control is transferred between two components, &slunay also happen. dfand; are

two states of the model such that transitions frotm ; model control transfers, then a primary

(resp. secondary) interface failure occurs with probgbii(z, j) (resp. x(i,7).) In order to
simplify the technical evaluation of the model, we acceptdhcurrence simultaneously of the
two types of failures (with probability(z, j)u(i, 7)), with the result that the primary one will
be taken into account only. In the model, we 5ét j) = u(4,j) = 0 if the transitions from

statei to statej do not correspond to control transfers.

The introduction of distinct failure parameters for a tf@nof control and for an “internal”
execution is needed if the failure data are not gathered @peesentative environment of the

interactions between the components.

Given a sequence of executed components, the failure mes@ssociated with each state are
independent. Also, the interface failure events are inddget on each other and on the failures

processes occurring when a component is active.

If a primary event occurs during the execution of compon@mntwhen a control transfer takes
place from component thena(i, j) is the probability thaj € R is the first visited recovery

state.

Let us defineX* = (X;):>o as the process which gives either the active component or the
recovery state reached at timdts state space is the st= C UR. Given a sequence of states

of &£, the failure and recovery processes are assumed to be mikgetoo. We assume that
matrix S = (S(i, j))u,5)erxc Of the transition rates between a recovery state to an opeaht

state is given. We havd? + S)1T = 0. The alternation operational-recovery periods is infinite

by assuming the generat@r of the Markov chainX * is irreducible:

i€R:Q(i,j) =R(i,j) FjeR and Q(ij)=5(,j) if j €C;

(,5) ECXxR:Q (L. 7) =[N+ Y QU kA E) Ja(i,).

k+#i,keC

The proposed set of failure processes can be seen as th@asiien of the failure processes
considered in [6] (or [3]) and [4]. In papers like [6] the catexed failures are those called secondary
here. We see this fact as a limitation and our model attenopasdid it by introducing the primary
failures which affect the execution process.

It is worth noting that distribution§S(7, j));ec (¢ € R) may represent a re-direction of the control
flow which results from use of recovery actions. For instaggemary) failures in a critical compo-
nent that provoke a complete reset of the system is handledtting, for anyj € C, S(i, j) = «; if
i is the last state corresponding to the recovery phase; ihstbat the jump is performed according
to the using profile distribution, independently of the stet which the failure occurs. Finally, let
us drop the recovery data. If a failure happens “in” compondahen the probability distribution

(a(i, 7)) jec models the effect on the execution control.

2.3 Model analysis

The r.v. F; is the cumulative number of primary or secondary failuresrdlve interval0, ¢]. At¢ = 0,
we assume thaky is 0, i.e. Pr(F, = 0) = 1. We propose to deal with the following dependability
indicators: the distribution function and the expectatbthe r.v. F}; the time to the first failure; the
point availability and the failure intensity function.

The first active component isc C with probability«; (i.e. Pr(X; = i) = «;) and for alli € R,

10

Pr(X§ = i) = 0. To analyze the process = (F});>o, let us consider the bi-dimensional time-
continuous procesd’, X*) = (£}, X;)i>o. It follows from the independence assumptions that this is

a homogeneous Markovian process over the state $pacé. Let us denote

a(i,j) = transition rate from statec C to statej € C without any failure
d®) (i,j) = transition rate from statec C to statej € C with a secondary failure occurrence
dP(i,j) = transition rate from statec C to recovery statg with a primary failure occurrence.

We denote b)Ft(”) (resp.Ft(s)) the cumulative number of primary (resp. secondary) faswbserved
over|0, t]. Therefore, for alk > 0, we have by definitiorF;, = Ft(m + Ft(s).

The following expressions for these rates can be derivetsbgd the different failure or recovery

events:
a(t,j) = Q7)1 — A(4,7))(1 = p(i, 7)) ifi#jetijec,
a(i,i) = 0 ifiecC,
d9(,i) = if i €C,
d9 (i, 7) = Q(i,§)[1 = (i, 1)]p(i, j) if i #j eti,jeC,
d®) (i, j) [Ni + X ogsinee QU K)AGL K) Ja(i, 7) i (1,7) €C X R.

After checking that, for any, we haved_ .. [a(i, j) +d*) (i,)]+ cr AP (i, §) = —Q(i, 1)+ Ni+ i

and denoting by, this value, let us define the three matricesD® and D) by
A= (a(i,j))ijec — diagdi)icc DP = (dP(i,5)ijeexr DY = (d9(i, j))ijec

(diag(9;) denoting the diagonal matrix with valuein its (4, 7)-entry). The generator of the homoge-

neous Markov chaitX * over state spac&€ may be rewritten as
. A+ D6 D)
@ = S R ’

Example 1 Let us briefly discuss now some particular cases of the pregemational modeDp. To
replace these well-known models in their usual framewokgvop the recovery delays assumptions.

11

The first one is the Littlewood’s model. There is no primaryufiee, that is\; = 0 and (i, j) = 0
for all 7,57 € C. Hence, we consider the point process of the only secondemnte® Note that the
generato)* = A+ D©) + D® of the chainX* given the active component in the operational model
is also the generatd@p of the execution process. We retrieve the fact that the failures do not affect
the evolution of the execution process.

Another interesting point process is the one obtained fratttelvood’s model by assuming that
the probability of a secondary failure during a control sf&n is0. Adding conditions.(i, j) = 0 for
all 4, j € C in the previous context, we gett = @ — diag(;,;) and D) = diag(y;). This is a Markov
Modulated Poisson Process (or MMPP) extensively used &taimte to analyze the performance of

data statistical multiplexers.

Example 2 Let us assume that our software system is constituted of weponents denoted by
C;, (i = 1,...,5). The parameters of their exponential execution times haem estimated to
-Q(1,1) = 1, —Q(2,2) = 0.5, —Q(3,3) = 0.5, —Q(4,4) = 1, —Q(5,5) = 1 where time is in
hours. Figure 2, confined to the nodes associated with thedivgonents, gives the transition graph
of the nominal procesX of the system.

Concerning the transition rates between components, we @&y, 2) = 1, Q(2,3) = 0.025,
Q(2,4) = 0.475 and@(3,5) = 0.5. For the sake of simplicity, we consider only primary fadsr
and the failure rate for each component is assumed to tak@atbunt the occurrence of internal and
interface failures. Component§ andC; are the only ones for which a non-zero failure rate is avail-
able:\, = 0.03 and\; = 0.01. After a failure has occurred i1, (resp.C5), retrieving a operational
state involves a s-time distributed as an exponentialidigton with parameter R(1,1) = 5 (resp.

—R(2,2) = 10). The two recovery states are denotediyyand R;.

12

We define two different operational mod€{3p); and(Op), from the distinct conditions to re-
cover a safe state after a failure. We assume(dyyr), that execution restarts from the component
which has failed as in [3]. The transition graph(6fp); is given by in the |.h.s of Figure 2. For the

second modelOp),, execution restarts always in componéht The transition graph is in the r.h.s

of Figure 2.

Cr— Ry

Model (Op), Model (Op)

Figure 2: The operational model with five components and &eovery states

2.3.1 The distribution function of F}

We state the main result. This result is obtained in a simiay as in [15, Th3.1] with help of the

well-known uniformization technique [8]. Therefore thepf is omitted.
Result 2.1 Letusseu =sup{ i€ C, j€R : |A(i,1)|, |R(j,5)| }. Forall ¢ > 0, we have
: = —ut (Ut)h T
Pr(F; <k) = poif(k,ut)+ Z e '——axs(k,h) (1)

h!
h=k+1

where the column vectar (k, h) is deduced from the system of relations:

al(k,h) = Aal(k,h—1)+D® zL(k,h—1)+ D@ al(k—1,h—1) hk>1;)

25 (0,h) = Aal(0,h—1) > 1;

z(k,0) = 17 > 0; (2)
oL (k,h) = RaL(k,h—1)+8al(k—1,h—1) k> 1

x5 (K, 0) 17 E>1.)

whered = I + A/u, R = I + R/u, D® = D©) /y and D® = D®) /y.

Result 2.1 leads to evaluate the probabilty F; < k), for k andt fixed, by the series (1). We recall
the inherent error due to the use of the uniformization teghe if we truncate the series (1) at level

H > k then

00 h
> (u,f,) axf(k, h) < poisfq(H, ut) ~(sinceax{(k,h) < 1).
h=H4+1)

Hence, the algorithm can be resumed as (a) choose the todeearors; (b) computeH such that

poisfq H, ut) < &; (c) compute the vectors. (k, k) for h = 0, ... , H with system (2).

Example 3 (Example 2 continued) The two models are analyzed by meath® ehatrices

-1 1 0 0 0 0 0

0 —0.5 0.025 0.475 0 0 0 5 0
A= 0 0 —0.5 0 0.5 D = 0 0 Rz(0 _10>,

0 1 0 —-1.03 0 0.03 0

1 0 0 0 —1.01 0.01 0

0005 0 0000 5
Sl—<0 00 0 10) fOf(Op)l and SQ—(O 00 0 10) for(Op)g.

Figure 3 gives the graph of the function— Pr(F, < k) for (Op); (with £ = 0, ... ,3). Numerous
dependability indicators follow from the knowledge of thetdbution of F;. Fork = 0, we have the
zero-failure feature of the system, that is its reliabifiipction. It also allows us to answer a question
as “up to what timet the probability to observe at mogtfailures is greater thaf.95 ?” We get

t < 88h using the algorithm.

Time to the first failure. It follows from the second and third renewal equations intat the time

to the first failurel” for the operational modébp has a phase-type distribution:
Pr(T > t) = Pr(F, = 0) = ae™1".

Then, the previous algorithm is merely the computation ef skate probability for an absorbing
Markov process by means of the uniformization technique.

14

[y

e Pr(F, < 0) o—
' + x Pr(F, <2) 8-
+_}_ XX Pr(Ft S 3) XK.
0.6 - i Xx .
++ ><><
0.4 - 'Jr_+ Xy i
'+, "X
0.2 + *x .]
41h+q1F X ~ y
0 1 41h%+4ik a %; >
0 200 400 600 800 1000
time

Figure 3: Function{Pr(F; < k));>o for (Op); with & < 3

Point availability. The point availability function is defined atby the probabilityA(t) that the
system is operational &t This means that the identity process indicate one of the components at
timet:

Aty =Y Pr(X; =i) =) [(,0)e%"] (i).

1eC 1eC

Since X* is an irreducible chain, the row vectas, 0)e?* tends componentwise to the stationary
distribution ast tends to infinity. We retrieve the usual expressjo.. 7(i) of the asymptotic
point availability A(co).

2.3.2 Expected number of failures ovelf0, ¢|

Let us define the column vect&" over& by

T (D®) 4+ DE)H1T
pr— (@0 PT),

The scalarD™ (i) (i € C) gives the occurrence rate of a failure “from” the compon‘er’ﬂv’ectorl7T

will denote D" /u. The expectation of the r.\E} is obtained in computing the serigs, ., Pr(F; > k)

15

with help of formula (1):

—

00 " h h—1 .
Vt>0: E[F] =) eut% (a, 0) (Z Q*'“) DT (3)
h=1 ’ k=0
where@* = [+ Q*/u. This series may be evaluated in the same way as for theldistn function.

We deduceE[F*'] andE[F"] from the relation[F,”)] = E[F, (see Remark below) and

] ‘D(s)zo
E[F{"] = E[F] - E[F}")].
Failure intensity function. In conditioning with respect to the visited state by the Markhain X*

at timet, the failure intensity function(¢) is easily derived:

]_ *
h(t) = llm %Pr(Ftert — Ft — 1) — (a, O)GQ tDT_

dt—0
We note that this function tends 26 = >, .. 7())[>cc D' (i, j) + X ;e PP (i, j)] ast grows.

The previous expression of the failure intensity allowsaiepresenE| F;] as

mm=fwm=2mmeM%m+ZN%m] @

1€C jec JER
whereE[S;(t)] is the mean execution time of the compongaver|0, t|. Finally, we obtain from (4)

that
Vt >0, B[F]=(xD"t+ (a,0)(I —e?")(1Tr —Q*) 'D". (5)

The rate\’; = 7DT is the so-calledundamental rateof the (failure) point process in the Neuts'’s
terminology (see [14]). Note that; = >, . 7(i) [>_,; Q(i, j)u(i, j) +) for the Littlewood's
model (withR = S = 0), wherer is actually the stationary distribution of the executionggss.
This the parameter of the Poisson process used in [6] asdpyte failure point process. In the
model MMPP, we havg ", . 7(i) ;.

Remark If we are not interested in counting the secondary failutiest is, if we want to evaluate
the distribution ofF*’ only, it is sufficient to set parametes(i, j),)i jec to 0 in the definitions of

16

matricesA and D). This remark holds also for evaluate the number of failu@sesponding to a
subset of components in the Littlewood’s model. Indeed;esall failures have no influence on the
execution process, i.eX* = X, it is sufficient to assume that all the parameters assatisith the
events having no incidence on the interesting part of theesysire0. For instance, if we are only
interested in the failures invoked by the compongtiien we set td all the parametersy, u(k,j)

k # 1,7 € C, and we use Result 2.1 and (3).

2.4 Estimation and use

A major limitation to the validation of software reliabyitmodels was during a long time the lack
of published data. It seems to be overcome in the contextamkkbox modeling [16]. Typical data
associated with this approach is the sequence of failutants or simply the number of failures
observed over a fixed period. In general, some parametriehuidhe system is chosen and the
observations of the failure times (or of the number of fak)rare used to adjust the parameter values.
However, the problem of data is not covered with structuradleling. To the best of our knowledge,
there exists no published data which can give support toghergl validation of the structural model
approach. Concerning its application to a specific systenud briefly outline the principal problems
related to the estimation of the parameters (see also [1 3 domplete discussion).

Prior to the complete system integration it can be envis#iggdhe failure rates of the components
will be estimated, for example, by means of simulations angishe numerous black-box software
reliability models [1]. A careful examination of the conseqces of these failures must be done to
classify them into primary or secondary. Of course, we wilt necessarily havg; # 0 for each
component, and the same concerning the secondary failures.

Let us say now a few words about the behavior of the repair.tifie problem of fitting a PH-

17

distribution from the observation of its two first moments; instance, is standard. Recall that, in
particular, this allows to represent regular delays, whkesexponential assumption would be too
far from reality. Again, it is likely that the user will be abto establish a priori what component
will be executed after a given recovery period following &dfic primary failure. It can then be
expected that parametefgi, j) can be evaluated prior to the integration phase. The samarkem
holds with respect to the parameter§, j). Indeed, the constant probability:, j) can be viewed
as the proportion of primary failures (attached to comporgmvhich involve a delay distributed
according to a phase-type distribution with first state

Let us look now at the remaining matrices that need to be astdn The simpler way to have in-
formation on the interface failures consists in measutgaroportion of — j component transfers
which fail. The estimation of thé) (i, j) transition rates implies in turn to count the number of times
each of the possible transitions occur. Many transitioes@X(i, j), probabilities\(z, j), ... will be
zero since most of the transitions will probably be impoesiBome of the remaining non-null values
can perhaps be “exactly” known, for instance from the anglysthe programs structure. In the same
way, we can suppose that in many applications there will bgawondary event in the model. In any
case, a general observation about model design is that giefimber of components should be kept
as small of possible, the main reason for this being theaviditly of data concerning failure rates and
failure probabilities. This leads to look for a tradeofflween the description power of the model and
the problem of estimating the parameters. Note that amaltiee to analytical models as discussed

in this paper may be based on discrete-event simulatior{8¢e

18

3 Various comments

3.1 Further analysis of Example 2

The proposed structural model allows to analyze the seitgitf the dependability of the whole
system with respect to the dependability of its componeRts. instance, suppose that we want to
achieve a probability greater thard5 to observe at most two failures over a time period of at least
ten days (i.e. ovej0,;,s] with ¢;,; = 240h). A failure may happen only in componegy, or Cj
according to the respective paramet&rsand \5. It is desirable to decide a priori what component
must be mainly examined to achieve the fixed objective and vghlne required amount of work.
We can observe for our simple example that compoKignis the relevant one. The computations
confirm this choice since if the residual failure ratedecreases by a factor of then we only obtain

a gain of two hours for the initial lower bound (i.&,; ~ 90%). On the other hand, dividing the rate
A4 by 3 allows to attair;,; ~ 257h that ensures the fixed requirement. Thiailure and2-failures

characteristics are both given by Figure 4 for a residualrairate)\, of 0.01 and0.03.

1

Bz | | |
><><><><><><><>< Pr(F; <2): Ay =0.01 x-
0s ><><><><>< Pr(Ft < 2): Ay =0.03 4+ |
: X
] XXXXX
0.6 F ' ot -
. XXX
XXX
0.4 + o]
_ Pr(F, < 0): Ay = 0.01 O -
4 Pr(F, < 0): Ay = 0.03 &—
0.2 T |
0 : :
0 200 400 600 800 1000

time

Figure 4: Functior{Pr(F; < k));>o with 0.01 and0.03 as value of\, in the model(Op);.

The perturbation on the distribution éf generated by the change of first executed component

19

after occurrence of a failure, betwen the modélg); and(Op),, may be easily evaluated. Itis clear
that functiont — Pr(F; < k) will be all the less perturbated as the numbef considered failures
is smaller. In particular, fok = 0, the reliability function is identical for the two modelsise no
recovery mechanisms have been invoked dvet]. For our example, the difference between the
values ofPr(F; < k) for (Op), and(Op), attains10~2 over the interva[50h, 250h] with k& = 1, is
more thanl0~2 over[110h, 450h] with & = 2 and is close t@.10~2 over [200h, 450h] with k = 3.
Note that we obtain < 95h as answer to the question raised in Example 3 for m¢@e),. That

represents a difference of ab@% on the upper bound time with respect to the first model.

1
0.9 B
0.8
0.7
0.6
0.5
0.4
0.3+

!
100 150 200 250 300 350 400 450 500
time

Figure 5: Functior{Pr(F; < k));>o With k& = 2, 3 for the modelgOp), and(Op)-

3.2 Reliability growth

The main purpose of the software reliability models using Ithack-box view of the system is to
take into account the stochastic phenomenon of relialglioyth. It takes place when efficient fault
removal procedures are used. In a structural approachsithetion has been addressed by Laprie
et al. [5]. The basic idea is to choose a black-box model toessmt the reliability growth of a
component and to use the so-called transformation apprfmacintroduce this single-component

model in the Markovian structural one. The failure in a comgrat are assumed to occur according

20

to a hyperexponential non-homogeneous Poisson processtraitsformation approach is based on
the Markovian interpretation of this black-box model (sBf.[We can also simulate the reliability
growth of some components in our model using this technigbe.transition graphs associated with
models(Op), and(Op), become those given in the Figure 6, when the reliability shponentC,

grows.

Model (Op), Model (Op)s

Figure 6: Operational models taking into account the rdltglgrowth of component’.

0.01
0.009 - e -
0.008
0.007
0.006
0.005
0.004
0.003 F
0.002 - .
0.001 - .

0

Intensity (Op); — §

Intensity with i
reliability growth -----

time

Figure 7: Intensity functions fofOp); and(Op); with the reliability growth of componen,.

As a result of the algorithm associated with Result 2.1, \@teghat the r.vF; is s-non-increasing,
that is, if (F})gr denotes the number of failures observed doet] taking into account the reliability
growth of Cy, Pr(F; < k) < Pr((Fi)gr < k) for eachk € N.

Let us return to the question “up to what timehe probability to observe at mo8tfailures
is greater thar).95?” for the model(Op),; and for the model derived from the reliability growth

21

of componentCy with parameters\,,, = 0.0585 and \;,y = 0.0015. That gives a growth ratio
Ai/Ains = 20 and an initial valueh(0) = 4. We determined < 88h for (Op); and now we get

t < 97h. We see that the gain on the upper bound is abot

3.3 Poissonian approximation

The generatof) of the nominal (Markov) modek was assumed to be irreducible in Subsection 2.1,
hence matrixA is also an irreducible sub-generator. It is well-known [#¥t a phase-type distribu-
tion with an irreducible matrix4 is asymptotically exponential with the eigenvalue of maxiimeal

part—\ of matrix A as parameter. So, we obtain
Pr(T > t) = e +o(e™),

with o(e) /e * — 0 whent — +o0c. The scalah may be interpreted as the asymptotic failure rate

of the system whehtends to+oo. Indeed, we have

M= ZZA';(IQ D) — Aoo) =Y w(i)D7(i)

t—+o00
1eC ieC

wherew is the unique probability distribution satisfying tol = Av. Consequently, we have =
A(o0). We can note that for al € C, v(i) andn(i)/)_,.. 7(i) are distinct quantitiesn(is the
stationary distribution ofX*). Finally, if the distribution of the r.vI is asymptotically exponential
then it does not mean that the counting process of the eventcessarily distributed as a Poisson
process with parameter

We have already noted that, when» +o0, the failure intensity function becomes the following
constant valué(oo) = 7 DT and that, for the Littlewood’s model (witR = S = 0), the fundamental
rate \; is equal to the parameter of the Poisson distribution ging6]ias approximated distribution
for the counting r.v.F;. In this case, recall that is also the stationary distribution of the nominal

22

model X. Let us try to compare the exact distribution i6ffor model (Op); with the Poisson one
with the asymptotic failure rate(4) D) (4, 6) + 7 (5) D) (5, 7) = 7(4)0.03 + 7 (5)0.01 as parameter.
We state that the Poissonian approximation gives a vetg littider-estimation of the dependability
of the system associated with the modélp),. Consequently, the computation of the measures
with this Poisson distribution ensures that the reliapgipecifications are met. However, the same
conclusion does not hold for the modélp),. Indeed, the same type of comparison shows that the
Poissonian approximation, first over-estimates the degt@hty of the software, next under-estimates
it. Therefore, we have a priori any order relation betweenr#iiability indicators obtained from the
Poisson process and those resulting from the exact initalain

For a Markov model, we know that the asymptotic probabitity) to be in state is equal to
lim (E[S;(¢)]/t). When the observation period becomes large, formulas @)%nprovide the fol-

t—00

lowing asymptotic expressions of the expected charatitis

lim L
t—o00

=aDT =)} E[F] =\t +[(a,0) — 7177 — Q*) "' D" + o(1).

We can see that if we consider the stationary version of tl poocess of the failures instants (i.e.
the initial distribution(«, 0) of X* is replaced by its stationary distributiar), then we have, for all

t >0, E[F] = \jtandh(t) = \j.
References

[1] M. Xie, Software Reliability Modelling1991; World Scientific Publishing.

[2] R.C. Cheung, “A user-oriented software reliability netit) IEEE Trans. Software Engineering

vol 6, 1980, pp 118-125.

23

[3] B. Littlewood, “Software reliability model for modulgsrogram structure”|EEE Trans. Relia-

bility, vol 28, 1979, pp 241-246.

[4] J.C. Laprie, “Dependability evaluation of software ®ras in operation”|EEE Trans. Software

Engineeringvol 16, 1984, pp 701-714.

[5] J.C. Laprie et al., “The KAT (knowledge-action-transftation) approach to the modeling and
evaluation of reliability and availability growth”]JEEE Trans. Software Engineeringol. 17,

1991, pp 370-382.

[6] B. Littlewood, “A reliability model for systems with M&wov structure”, Appl. Statist.vol. 24,

1975, pp 172-177.

[7] K. Siegrist, “Reliability of systems with Markov traref of control”, IEEE Trans. Software

Engineeringvol 14, 1988, pp 1049-1053.

[8] E. de Souza e Silva and H.R. Gail, “Calculating availipidnd performability measures of
repairable computer systems using randomizatidotjrnal of the ACMvol 36, 1989, pp 171

193.

[9] M. Kaaniche and K. Kanoun, “The discrete time hyperaxgatial model for software reliability

growth evaluation”Proc. Int. Symp. on Software Reliabilit992 Oct, pp 64-75.

[10] J.C. Laprie and K. Kanoun, “X-ware reliability and aladdility modeling”, IEEE Trans. Soft-

ware Engineeringvol 18, 1992, pp 130-147.

[11] S. Gokhale and K.S. Trivedi, “Structure-base softwagleability prediction”, Proc. 5th Int.

Conference on Advanced Computiag97, pp 447-452.

24

[12] B. Littlewood J.F. Meyer and D.R. Wright, “Dependatylof modular software in a multiuser

operational environment’RProc. Int. Symp. on Software Reliability995, pp 170-179.

[13] B. Beizer, Software testing technique$990; Van Nostrand, Reinhold.

[14] M.F. Neuts,Structured Stochastic Matrices of M/G/1 Type and Their fspibns 1989; Marcel

Dekker Inc.

[15] J. Ledoux and G. Rubino, “Simple formulae for countinggesses in reliability models”,

Advances in Applied Probabilityol 29, 1997, pp 1018-1038.

[16] P. Comer, “Software data collection and the softwarta tlbrary”, Proc. 6th EUREDATA Conf.

1989, pp 824-839.

[17] K.S. Trivedi S. Gokhale, E.W. Wong and J.R. Horgan, “Aralytical approach to architecture-
based software reliability prediction’Rroc. Int. Performance and Dependability Synif998,

pp 13-22.

[18] M.R. Lyu S. Gokhale and K.S. Trivedi, “Reliability sifation of component-based systems”,

Proc. Int. Symp. on Software Reliabilit}998, pp 192-201.

Author

Dr. James Ledoux; Institut National des Sciences Appkgu&0 avenue des Buttes de Coésmes;
35043 Rennes Cedex; FRANCE

Internet (e-mail): jledoux@insa-rennes.fr

James Ledoux received a PhD in Computer Science from theetsity of Rennes in 1993. He
is associate professor at the INSA engineering school im&en His research activity focus on
reliability models and related stochastic processes.

25

