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1. Introduction

Professor MINDLIN has brought to our attention an error in the equation
for the couple-stress given in The Classical Field Theories.! The results presented
here grew from correspondence and discussions with MINDLIN on various aspects
of the theory of perfectly elastic materials with couple-stresses which correspond
to what was called in [CFT, §256A] the fully recoverable case. A thorough
exposition of the linearized theory by MINDLIN & TIERSTEN appears as the
following article in this Archive.

Our principal objective here is a representation for the energy, stress, and
couple-stress, valid in the general non-linear case of finite strain and rotation.
We wish also to review the basic concepts and foundations of the classical
theory [2], to suggest a natural generalization of it, to discuss some qualitative
features of wave propagation in elastic materials with couple-stresses, and to
correct the equation in [CFT] for the couple-stress.

2, The equations of balance

Underlying the mechanics of continubus media are the principles of con-
servation or balance of mass, linear momentum, angular momentum, and energy.

A typical equation of balance has the general form

%fgdv=451?-da+fsziv (2-1)

1 Reference [1], Eq. (256.11),. We shall refer to this article as [CFT] and follow
its general scheme of notation and terminoclogy where possible.



where # is a material region, s is the complete boundary of », Q is the density
of the quantity in balance, F is its ¢nflux relative to the material (the efflux
of a quantity is the negative of its influx), and § is its source.

If a source vanishes, the corresponding quantity is conserved, and its equation
of balance (2.1) reduces to an equation of conservation. Ifitsinflux also vanishes,
the amount of the quantity assigned initially to a given set of material points
is invariant in time. In classical mechanics, mass is such a quantity. Thus
letting ¢ denote the density of mass, we have the law of conservation of mass

d d
Ef@dv:a—tfszo. (2.2)

Next we express the balance of (material) linear momentum, angular momen-
tum, and energy by means of the equations?!

_dd_t onth—__@tiidaid}‘ff‘.dv’
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The influx of linear momentum, ¢, is the stress fensor and its source f is the
body force. These two quantities alone of the nine densities, influxes, and sources
introduced in the three equations of balance (2.3) satisfy the principle of material
indifference explained in [CFT, §293]. The remaining seven fields of (2.3) do
not transform as tensors (s.e., are not smvariant) under time dependent rigid
transformations of the frame of reference. Moreover, as we knaw, the definition
of angular momentum in a given frame of reference depends upon a reference
point O. For this reason we have appended a suffix O to the left of the fields
in (2.3) which depend upon the frame of reference.

The sources of linear momentum, angular momentum, and energy arise from
interactions of the material with a gravitational or electromagnetic field.2

The density, influx and source of angular momentum are related to linear
momentum, stress, and body force as follows:

003i= 20 71 T 0= — 00ji»
oMi s =20% tat tijr=—oMjirs (2.4)
obii=20% f+4ij=—oljis

1 For the purpose of writing (2.3), and (2.3),, we assume that the coordinate
system is rectilinear so that the vector and tensor valued integrals which appear
in these equations have an invariant significance.

2 As pointed out on [CFT, §225], it is possible to introduce gravitational and
electromagnetic momentum and energy and thence to view the equations of balance
(2.3) as equations of conservation of total (material plus field) momentum and energy.
Within this view, body forces, and sources of angular momentum and energy represent
rates as which the material gains (or loses) energy and momentum from (or to) the
gyavitational or electromagnetic field.
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where we shall assume that the spin angular momentum per unit mass o, the
couple-stress* ., and the body couple 1 are 1ndependent of O and satisfy the
principle of material indifference.

In (2.4), o denotes the position vector of a field point @ relative to the
reference point Q. According to (2.4), we may define spin angular momentum
as the excess of angular momentum above the moment of linear momentum,
couple-stress as the excess of influx of angular momentum above the moment
of stress, and body couple as the excess of the source of angular momentum
above the moment of body force. In the simpler theories of continuous media,
each of these residuals vanishes.?

We take up next some relations between energy, momentum, and angular
momentum. When the linear momentum per unit mass of a continuous medium
is assumed equal to its velocity & and the spin angular momentum vanishes
(6=0) as in the classical theories of elasticity and of ordinary fluids, the Zsnetic
energy per unit mass is defined by

t
ow=[& kdt+C, (2.5)

where C is a constant of integration. Here, when the spin angular momentum
is not necessarily zero, we generalize the definition (2.5) of kinetic energy as
follows:

|3
ox=f(& f*+wré)di+C (2.6)

where o, ;= xy; ;) is the vorticity tensor and w A6 = %w;,&"" is the interior product
(cf. §3) of the vorticity and the rate of change of spin. Since & —a& -+u under
a change of frame, it is clear that, in general, kinetic energy is not invariant
under all rigid transformations of the spatial coordinates. Alongside the relations
(2.4) between the position vector of a field point, and linear and angular momen-
tum, we now set the following relations between velocity, vorticity, linear and
angular momentum, and energy:

oE=gx+¢
¥t b i, 27
of==#f+%w,;li+q,

where the internal energy ¢, the extra flux of energy h, and the extra source of
energy q are independent of O; i.e., these residuals are independent of the frame
of reference. The first two terms in the energy flux (2.7), are called the rafe
of working of the stress and the rate of working of the couple-stress, respectively.
Similar terminology applies to the first two terms in og.

1 The couple-stress m of [CFT] differs from the couple-stress w as defined above
by a factor of 2: m=+%u, w=2m. The reason for making this slight change in ter-
minology will become apparent in §3 where we discuss the dual representation of
angular momentum and couple-stress.

? ErIcKSEN, however, in a series of papers [3—6] has considered a theory of an-
isotropic fluids in which one or more of these residuals fails to vanish and the con-
servation laws must, for consistency of the whole scheme, be generalized along the
lines just presented.



Substituting the relations (2.4) and (2.7) into the integral equations of
balance (2.2) and (2.3), we find that, in regions where all the fields are con-
tinuously differentiable, they are equivalent to the following system of field
equations:

% + (0%),: =0,
0%, =t} i+ 1;,
06, =280+ mi iyt i
ee =14, 4 utay; 4+ 1F y+q,
where d;;=i; =% (%;;+%;;) is the rate of deformation tensor. For ease of

reference, (2.8), is called the momentum equation; (2.8),, the continuity equation;
(2.8)3, the spin equation; and (2.8),, the energy equation.

(2.8)

3. The dual representation of couple-stress

In §2, angular momentum is represented by an antisymmetric tensor of
rank two. In 3-dimensional space, every such tensor has an alternative dual
representation by an axial vector. For ease of comparison of our analysis of
couple-stress with other treatments using the dual representation of angular
momentum, we shall describe the relationship between the two schemes in this
section.

Let a; and &; denote the covariant components of two arbitrary vectors
a and b. The exterior product® a vb is an antisymmetric tensor of rank 2 which
may be defined in terms of its components by

(avb),;=2a;b;. (3-1)

More generally, the triple exterior product of three vectors @, b, and ¢ may be
defined by
(@vbve);;,=3!a,bcy. (3.2)

Now let e;;; and @*7* denote the permutation symbols uniquely defined by
the relations e ;p=¢,;,, M =G"* ¢,,,=E123=1. It is possible to view the
permutation symbols as the components of two distinct relative tensors ¢ and .
Relative tensors are not true tensors since their definition always depends in
some way upon the coordinate system or basis vectors. With each choice of
coordinate system about a spatial point @ or a material point X, there corresponds
a certain basis tz, # =1, 2, 3 in the tangent space at &, or in the tangent space at X.

The exterior product of the basis vectors 5 taken in their natural order
e=eveve (3.3)
defines the relative tensor @, and the exterior product of the reciprocal basis
vectors g, $ =1, 2, 3 taken in their natural order defines E:
G=eveve. (3.4)

1 For a concise, complete, and elegant exposition of the Grassman algebra and
analysis of antisymmetric tensor fields (exterior differential forms) see WHITNEY [7].



A coordinate transformation induces a transformation of the basis e according
to the rule »

and one readily verifies that the relation between ¢ and e is

>

e=(x/x)e, (3-6)

P || is the Jacobian of the transformation & —%. In like

where (Z/a) =det “
manner we find that
= (zfx)1 €. (3.7)

Thus ¢ and € depend on the coordinate system and do not represent true tensors
having a geometrical significance independent of the basis. Nevertheless, their
components e, ;, and €'7* enjoy the peculiar property that they have the same
values in every coordinate system; namely, 1, —1, or 0.

The dual of an antisymmetric tensor a??= —a?? is the relative vector a
defined by
a,=}e,,, %" (3.8)
The components of @ determine the components of a uniquely for
af?=q, P, (3.9)

Using the definition and notation @ ab for the smterior product of two anti-
symmetric tensors (cf. WHITNEY [7, §7]), we can write (3.8) and (3.9) in the
form

a=e¢Aa,

a=ar@. 0-10)

The dual of the exterior product of two vectors is the cross product:
dual(a Ab)=¢n(avb)=axb. (3.11)
We shall also use the notations
(” . a)iih...=” apiy‘k...
o (3.12)
(@ n)iit=giih by,

for the dot product of a vector and a tensor from the left and right.
In terms of these absolute notations, we can write (2.4) in the form
= eVR+|o,
ot - r=oTV(t-n)+p-n, (3-13)
ol=oxVvf+l,

where (3.13), holds for an arbitrary vector n. Equivalently, taking the dual
of these relations and using (3.11), we get

dualgo=qx X +8,
dual(op - B)=gE X (t-n) +{ - n, (3.14)
dual gl=ox Xf+1.



In these equations & and I are the duals of the spin angular momentum ¢ and
the body couple I as defined in (3.8) and (3.9), but the dual couple-stress @ is
defined b N
Y y"kE%eipqﬂqu (315)
in terms of the couple-stress g and the relative tensor e. Note that {i is not
the ordinary dual of @ which, if @ were an antisymmetric tensor, would be the

axial scalar M=erp = _;_! €iin luiik‘
The dual couple-stress is a relative tensor, whose definition depends on the

coordinate system. However, its components in any coordinate system uniquely
determine the components of the couple-stress according to the formula

prir =7yt (3.16)

4. The irreducible parts of the couple-stress

It is common and familiar procedure in continuum mechanics to decompose
a covariant or contravariant tensor of rank two into a symmetric and an anti-
symmetric part. It is also common procedure to decompose a mixed tensor
of rank two into a deviatoric part and a scalar part proportional to the unit
tensor. If af? are the components of an arbitrary contravariant tensor @ of
rank two, then
a=ga-+},a, (41)
where the symmetric part s and the antisymmetric part ,a have components
given by

AdPI=1(a?? — a7%) = a9, (4.2)
We can write (4.1) and (4.2) in the form
a=.Jd-a TI. a,
o (43)

sa=¢l-a, aa=,I a,

where oI and ,I are certain linear transformations in the vector space V* of
dimension #2 consisting in the set of all contravariant tensors of rank two." If
one then considers the group of all tensor transformations in V*, i.e., the set
of all transformations having the form

a'?'=1*,L7, a"", (4.4)

induced in V™ by the group of all non-singular transformations {L} of the under-
lying vector space V*, the subspaces V™) and V™) of V™ consisting in all
symmetric and all antisymmetric tensors of rank two, respectively, are invariant
subspaces of V' under this group. Moreover, the linear operators sI and I
satisfy the equations

od-sI=0, asb; J-pgd=, a=b; ab=5SA, J+,I=1 (45)
where I is the identity transformation of V™. This decomposition of V* into

a sum of two invariant subspaces is irreducible in the sense that, under the
group of tensor transformations (4.4) induced in ¥* by the full linear group



of transformations of V", there exists no finer decomposition of ¥ into invariant
subspaces. This means that the only linear invariants of a second-order tensor
under this group are its symmetry, antisymmetry, or asymmetry. There are of
course non-linear invariants such as rank and signature.

The components of the symmetry operators JI and ,I have the same values
for every choice of basis and are given explicitly by

IPT=3(00 67+ 828%) =8¢ 2,
I”—f(é"éq 818f) = o 80 =} 881,

It is natural to ask if tensors of rank three and higher might also be written
as sums of symmetry parts with properties similar to those just described for
tensors of rank two. Indeed, WEYL! has developed a fully general theory of
decomposition of tensors of arbitrary rank into irreducible symmetry parts
which includes as a special case the foregoing familiar one for tensors of rank
two. WEYL has demonstrated the relevance of this purely. algebraic theory to
quantum mechanics. In fact, he apparently was led to pose the general mathe-
matical question from a consideration of the quantum mechanical problem of
decomposing the wave function of a system of identical particles into irreducible
symmetry parts. But there has been little occasion to apply it in continuum
mechanics except, of course, in the special case of tensors of rank two. The
theory of materials considered here with its fundamental tensor of rank three,
the couple-stress tensor, provides a non-trivial, and, as we shall see, useful
application.

It turns out that tensors of rank three, which interest us at the moment,
have four irreducible symmetry parts. There are four symmetry operators, which

we denote by I, a=S, A, P, and P, replacing the two symmetry operators
of and I of (4.3}, (4.5), and (4.6). They satisfy the equations

Iod=o, if a=b,
=0, if a=b,

(4.6)

4.7)

and
o+ AT+l +5I=1. (4.8)
Since we shall have considerable calculations to perform with the symmetry

parts of the couple-stress, we write out the components of the symmetry operators
for this case explicitly. The first two are given by

sItfe=2af &1 e,
A1 = O 818) = 1 &1, “9)
and might appropriately be called the symmetrizer and antisymmetrizer. The
remaining two idempotents pI and gl are given explicitly by the formulas
pl2fl = 1(82 808, + 8,60 0% — 618007 — 8,8069),
slo1l=1(62610,+ 81086, — 8,006 — 6‘16'65).

1 See [8, 9]. ScuouTEN [10] apparently initiated a general theory of such a
decomposition. It is fully discussed by LITTLEWOOD [11], and the paper by WapE [12]
contains a bibliography of the subject.

(4.10)



Let the corresponding parts of a general tensor @ of rank three be denoted
by «@, ,a, pa, and pa. We call ga the symmetric part, ,a the antisymmetric part,
and pa and pa the parts with mixed symmetry.

The generalization of (4.2) to tensors of rank three is thus

ali’ = —é—(a”'-{— AV 4 g’ Pl gPTO gt aqpf)
ats’ — %(awr+ aqrﬁ+ a’it g1 __ gt _ aqﬁf) R (4 )
A1
Pa”' %(aﬁq'+ a’iP _ gibr _ a'Pq) ,
?a?qr %_ (a”' + aitr — gt _ aqﬂ') R

We now apply these general considerations of tensors of rank three to the
couple-stress tensor ux??”. The couple-stress tersor, by definition, is antisym-
metric in its first pair of indices:

wP = — 87, (4.12)
Thus it is not a general tensor of rank three. Its irreducible symmetry parts

can be found by substituting g in the relations (4.11) and simplifying the results
using (4.12). In this way we find that

st =0,
=0,
A'luﬁqu %(‘u?q’_*_#'l’q_’_luqfi’) ,
P,uM'= %(Z,uM'—l—‘u'“’ —,u'”) .
We call pp the principal part of the couple-stress. It follows from (4.13) that
only the principal part and the antisymmetric part of the couple-stress fail
to vanish. There are eight independent components of the principal part and
only one independent component of the antisymmetric part. The principal part
is determined uniquely by the part 4*“" and conversely, for
PMM' —2 ('uP(qr) _qu(pr)) ,
‘up(qf) =3 (pu??" + pu?’) (4.14)
plar)

(4.13)

=pU
We insert a caution with regard to the notation pu?“”. This symbol stands
for the quantity on the right-hand side of (4.14), and not for the principal part
of the tensor u?“". For the latter quantity it is necessary to use some other
notation such as p[u?“"]. The tensor u?¥" is not an irreducible symmetry part
of the couple-stress. We have, rather,
S[M?(qr)] =0, A[Iub(qr)] =0
o[l 9] =3 QY+ " — ), (.15
ﬁ[,u”(‘")] —_ %(2;4”'” +qu>q' _‘u'qp) .
It follows from (4.13) and (4.15) that
,“M' = P,MM' + A,u”'

(4.16)
Iup (g7) — P[,MP (qr)] + ?[/‘p (qr)] ,



and from (4.14) and (4.16), that the tensors u?“" and ,u??" determine the
couple-stress uniquely. Setting ##9"=puf"), we have

prer=4gylpalr . par, (4.17)

We now consider the corresponding invariant decomposition of the dual
couple-stress 4, which is given in terms of the couple-stress by (3.14). Mixed
tensors, or relative tensors, of rank two may be decomposed into a iraceless
or devialoric part and a scalar part proportional to the unit tensor, and this
decomposition corresponds to an irreducible, invariant decomposition of the
space of mixed tensors of rank two under the group of mixed tensor transforma-
tions @=L -a - L7, where L runs over the full linear group. For the dual
couple-stress, this decomposition is as follows:

f=pi+itrinl

~ (4.18)
trp=0.
In terms of components, these equations read
(¢ = pfi, I+ 1.7 8.9,
Up' =DMp T 5l Oy (4.19)

Dﬁhk =0.

We observe next that the antisymmetric part ,p of the couple-stress has
only one independent component and that we may always write it in the form

A,up‘"zfm @qu, (4.20)

where the relative scalar IR is given by
Em:%!,epqr'uf’q" (4.21)

Calculation now reveals that the dual, Aﬁj:%ewq'm"", of the antisymmetric
part of the couple-stress is equal to the scalar part of the dual couple-stress; t.e.,

ar=3trpl, (4.22)
and the dual of the principal part of the couple-stress, pui=e,,, pu??’, is equal
to the deviatoric part of the dual couple-stress:

plb=pfk. (4.23)

Thus the dual of equation (4.16); which decomposes the couple-stress into
irreducible symmetry parts is precisely equation (4.18), which decomposes the
dual conple-stress into its deviatoric and scalar parts.

Equations (4.15), and (4.15), have important consequences in §5. There we
shall make use of the trivial

Lemma 4.1. Necessary and sufficient conditions for a tensor equation
qu...=qu...
to be satisfied are that each of the tensor equations

aqu...zaBPQ-“’ a=1,2,...,N



be satisfied, where A and B are the irreducible symmetry parts of A and B.
Sufficiency follows on noting that ), A=A and ) ,B=B; necessity follows
a a

from the linearity of the symmetry operators.

5. The constitutive relations for a class of elastic materials
with couple-stresses

This section defines a class of elastic materials by a sequence of constitutive
assumptions (CA 1), (CA 2),.... We introduce these special assumptions one
at a time with explanations for the less transparent ones.

CA 1. These elastic materials shall have a natural state C,. The natural
state is a relaxed configuration of the material points in which the stress, couple-
stress, and extra flux of energy all vanish. The temperature § of the natural
state is uniform, and the material is at rest in an inertial frame of reference.
We shall identify the material coordinates X*(X) of a material point X as the
coordinates of its position in the relaxed configuration C,. By the motion of
the material we shall mean the smooth mappings »'=3#"(X, f) giving the pos-
ition & of each material point X for each instant of time ¢.

CA 2. As in classical elasticity theory, we shall assume that the momentum

per unit mass is equal to the velocity ' = i:;‘: .
&P
CA 3. The internal energy is a function of: a) the nire components 2, = a%%

of the deformation gradient of the present configuration C(#) relative to the
relaxed configuration C,; b) the eighteen independent components #%,,; of the
material gradient of the deformation gradient; and c) the entropy demsity 5. Thus
we have

e=&(#a, Aup, 7). (5.1)

Rather than choosing 18 of the 27 variables 4%, arbitrarily as independent
variables in the energy function, we regard ¢ as a function of all 27 but subject
to the nine constraints
é(xl’;m’ xp;aﬁ’ 77)22(961,;a’ xtsﬂa’n) . (52)
so that, in particular, we have
08 %
oxtap 04

(5.3)

for all values of p, «, and §.

CA 4. The materials are fully recoverable in the sense explained in [CFT,
§256A], and the extra flux of energy h is heat flux. This means, in particular,
that we assume

e bg=M,ty, (5.4)
as in classical elasticity theory.! We call Eq. (5.4), the heat equation.

1In §§7 and 8 we give arguments which indicate that the hypotheses of CA 4
concerning the extra flux of energy h are too restrictive. A more general and natural
assumption splits the extra flux of energy into a sum ##=H?*77d, - ¢* of heat flux q
and a rate of working of the boundary by deformation. We sglall see that, within
this view, setting H??"=0 imposes an unnatural restriction upon the stored elastic
energy function &.



It follows from CA 3 and CA 4 that the energy equation (2.3), can be put
in the form!

EH 1 .
(Q ax: - gP't('q) X‘l;q - —Z_Iqu'Xa;q’)xp;G +
H-3

+ogn, +am X X+ (5-5)

o€ .
+e(g, —0)i=0.

Since X*.,=X%,,, and af,;=2";,, we see that the couple-stress u,?" may
be replaced throughout the energy equation (5.5) by its part #,9"=pu,9". Ac-
cording to (4.4) the part p,9" of the couple-stress is independent of the anti-
symmetric part of the couple-stress (scalar part of the dual couple-stress); hence,
the internal energy equation (5.5) can yield no relation between the energy
of the material and the antisymmetric part of the couple-stress. Equation (5.5)
is also independent of the antisymmetric part of the stress and depends only
on the symmetric part ##9. These facts, the structure of the energy equation
(5.5) and the heat equation (5.4), and experience with simpler theories of elasti-
city lead us to

CA 5. The stress, couple-stress, and temperature in the materials considered
here are functions of the same variables which suffice to determine the value
of the internal energy; moreover, these constitutive relations are such as to
satisfy the internal energy equation (5.5) identically. In other words, equation
(5.5) is not to restrict the motion or entropy fields in any way.

The conditions of CA § are met if and only if the constitutive relations for
the symmetric part of the stress, the part @) of the couple-stress, and the
temperature are related to the energy function by the following formulas:?

b0 — o[ 2 _0¢
t e axp;a qua+ axp;ap xq;up , (5'6)
r 8¢
'uﬁ(q )=—29 axp.eaﬂ—xq;ax',;ﬂ, (57)
H ’
0=5- 8
an (5.8)

We now apply Lemma (4.1) to the tensor equation (5.6) to obtain the two
tensor equations equivalent to it:

08 o2&
1P — ) pY
¢ 0%(p;a ita ox(piap P (5.9)
o€ 1 qugaﬁ=0'

Mxpia % 0X[p;ap

1 Cf. [CFT, §256] for a guide to the manipulations necessary to achieve (5.5).

2 The point raised by MinpLIN and mentioned in the Introduction is that, in
Eq. (256.11), of [CFT], which in the fully recoverable case should reduce to (5.7),
mi’ stands on the left rather than mg?'). Setting the dissipative part of the couple-
stress equal to zero in (256.11),, we should then conclude that m? le71= 0 since the right-
hand side is symmetric in ¢ and ». But m?l9"1=0 implies that m??7=0. This can be
seen most easily by adding the three equations mf9"—mP79=0, mi’P—mifr=0,
m'9? —m'?9=0, and using the fact that m??7"=—m9?". It was not our intention
that the couple-stress need vanish in the fully recoverable case. To correct (256.11), asit
appears in [CFT], place round brackets about the indices gr on the left-hand side of it.



Equation (5.9), is a necessary and sufficient condition that the energy be in-
variant under all rigid motions (see e.g., [13, §10]). Thus we have

Theorem 5.1. The internal energy of an elastic material is tnvariant under
all rigid motions.

This is a familiar result in the classical theory of elasticity, where invariance
of the energy under rigid motions is necessary and sufficient for the symmetry
of the stress tensor.

Next apply Lemma (4.1) to the tensor equation (5.7) to replace it by the
following system of equivalent tensor equations:

o€
[ =—20 | O, ],

0%p;ap
S =—20 [ 5 x} 10
P[lu ] 0§ ax{);aﬁ K1 ;81> (5 )
08 q 7) 08 q 7]
——— 2 Xig=0, =&l 2 g=0.
3%(p,a8 # oxipiap * P

The single independent equation of (5.10), is satisfied by every function &
that depends symmetrically upon 2%, and 2,,, so that (5.3) holds. How-
ever, not every energy function satisfies the 10 independent equations (5.10);
even if it be rotationally invariant, so that (5.9), holds.

Collecting results, we see that the energy function cannot depend arbitrarily
upon the deformation gradient a?,, and its material gradient %, but must
satisfy the system of equations

0€ . 3 —o0, 0€ ;]a *36 xq;]aﬁ —0,
0%p;ap 0%p;pa 0Xp;a 0X(p;ap (5.11)
8¢ xq.a x,)ﬂ =0.
OXpap T

There are nine independent equations (5.11),, three independent equations
(5.11),, and ten independent equations (5.11),. Thus the system of equations
{5.11) comprises a total of 943 4 10=22 first order homogeneous partial dif-
ferential equations for the energy function g, and there is a totalof 9 + 27 +1=37
independent variables %, xf,5, and 7. The general solution for & is an
arbitrary function of any 37 —22=15 functionally independent solutions of
this system. Thirty-seven solutions of the system (5.11) are

N Cap=%p05,  Daup1=25Cop1=% Cipap- (5.12)
But they are not all functionally independent, since
Capp=0,  Drpn=0, Dapn=0,  3Dups=0. (5.13)

Counting independent relations in (5.13), we find a total of 3 +1-+10-+8=22.
Except for these relations amongst the set (5.12), they are functionally inde-
pendent. Hence, amongst the quantities (5.12) one can always find 15 func-
tionally independent solutions of the system (5.11) and we have the representation



Theorem 5.2. The energy function of an elastic material as defined by the
constitutive assumptions CA 1 to CA 5 is expressible as a function of the variables
(5.12).

This theorem generalizes the known result of ordinary elasticity theory
wherein the energy is always expressible as a function of the components C,,
of Green’s deformation tensor €. There it is always possible to express the
energy as a function of any 6 independent components of C, say C,,, C,,, C,,
Cis, Cy3, and C,,. Itis customary and more convenient for theoretical purposes,
however, to regard the energy as a function of all nine components of the
symmetric tensor € and to restrict the functional dependence of the energy

in such a way that
E(Cop) =E(Cya) - (5-14)

With this agreement we then have

L (5.15)

or
o€ € o8

A(Fc‘;) =0, andgp—= s(s‘cj,,) : (5.16)

In the more general case now at hand we can follow a similar procedure. Rather

than expressing the energy as a function of 6 independent components of C

and 8 independent components of D, we express it as a function £ of all 36 variables
Cyp and D, 4 (plus the entropy) and require that

o0& o€ o€
———] =0, ——] =0, -1 =0,
A( 3Cgﬁ) A( 8Dlaﬂ) 0 S( aDMB) (5 17)
[aiey) o |
P EDMq ’
We then have as a consequence of (5.17)

_0F _ (,?5_)
acaﬂ S 3Caﬂ ’ (518)

_%F (JE__)
aD;_,,g _P 6D;_1'3 ’
Making use of this agreement as to the functional form of the energy, we find

that the expressions (5.6) and (5.7) for the stress and couple-stress reduce to
the form

o8 4 08
D= g la 95 _xp 4.4 T 9F 4 40 },
O 0Cas T TS aDyy T (5.19)
4 oF '
H“q')z_?g D3 xp;ax(g; xr);l'
o€

CA 6. Under CA 5 we have shown how the constitutive relations for the
symmetric part of the stress and the principal part of the couple-stress are
determined by the energy function and the hypotheses made thus far. Accord-
ing to (4.17), this leaves the antisymmetric part of the couple-stress (equi-
valently, the scalar part of the dual couple-stress) undetermined by the energy



function. In fact, we have seen that this part of the couple-stress has no energetic
significance whatsoever. Constitutive relations for the antisymmetric part of
the stress may also be assigned independently of the energy under the assumptions
made thus far. Now the body-couples, like the body force and the energy source,
are regarded here as assigned functions of & and ¢, so that, if constitutive relations
for the antisymmetric parts of the stress and couple-stress were given, one could
merely calculate the time rate of change ¢;; of spin angular momentum from
(2.8); once the motion and entropy field were known. But here we shall
consider the special theory of elastic media for which it is postulated that the
spin angular momentum is at most a constant along each material point. Thus
we assume that .

6;;=0. (5.20)

But the equations of balance of linear momentum (2.8), and the heat equation
(5.4) when supplemented by constitutive relations for the stress, heat flux, and
temperature comprise a set of 4 equations for determining the 4 unknowns
#*(X,t) and 9(X, #). In view of this and the hypothesis (5.20), which requires

28 =i wtbijp (5.21)

we shall regard (5.21) as an identity. We may take it as a definition of the anti-
symmetric part of the stress in this special theory of elastic media with couple-
stresses.! Under this agreement, the only constitutive relations left to specify
or determine are those for the heat flux and the antisymmetric part of the
couple-stress (scalar part of the dual couple-stress). In other words, a material
of the class considered here is completely characterized by giving its energy
function, heat flux, and antisymmetric part of couple-stress as functions of the
deformation & (X, ¢), entropy field (X, ), and derivatives of these quantities.
With the antisymmetric part of the stress given by (5.21) we can eliminate
it from the equation of balance of linear momentum (2.8), to get the equations
of motion o
o' =100 4y i R (5.22)

But the double divergence u'/* ;. of the couple-stress which appears in the
equations of motion is independent of the antisymmetric part of the couple-
stress, and (5.22) can be written in the form

Qazizt(ii)’i+‘ui(ik)'fk+ fitvi (5.23)

1 More general treatments of spin angular momentum are conceivable but will
not be discussed here. By introducing a more elaborate kinematical apparatus such
as that considered by the CosseraTs [2], it is possible to consider gyroscopic elastic
media for which 6,;+0. The present work, however, restricts attention to a simple
type of medium for which the motion &(X, ) and the entropy field 5 (X, t). suffice
to determine all the relevant mechanical and thermal properties of the material.
In this respect, the class of media considered here is the same as that considered
in classical elasticity theory. The only generalization attempted here is to allow
the energy, stress, and couple-stress to depend upon the gradient of the deformation
gradient. Our analysis shows that if the energy depends on these higher derivatives
of the displacement, then, in general, the principal part of the couple-stress cannot
vanish in such a material. N



from which it is obvious that the energy function alone suffices to determine
the form of the equations of motion provided that the body force and couple
are regarded as prescribed functions of position and time. The constitutive
relations for the heat flux are needed only for the heat equation (5.4), and the
constitutive relation for the scalar part of the dual couple-stress is needed at
most for the expression of certain types of boundary conditions.

6. An alternative representation for the stress and couple-stress
The eight independent components of the material tensor

Da = Ca =3%C o
BA " P“-ap,i 3 - alg,a] (6’1)

= Dﬂal

may be represented in dual form by a relative material tensor of rank two
defined by
QCAE%@CWDWA:

(6.2)
Daﬂl =¢€ape iy). »

where
D =0. (6.3)

The nine components of ® are functionally independent except for the single
relation (6.3). They are given explicitly in terms of x,,, and x,,,4 by the formulas

D= Ees Cipe
=} @c“p("p; a%apt %p 20 2%5) (6.4)
=3 2045

Also, for some purposes, it is convenient to replace Green’s deformation tensor
in the energy function by the strain tensor (cf. [CFT, §31]):

Eapz%(caﬂ'—gaﬂ)» (6.5)
where the g, are the components of the metric tensor in the material coordinate
system. When the material is undeformed and in its natural state, E=0. This
property of the strain tensor makes it convenient for expansions of the energy
function about the undeformed state. Since the set of variables ¢, and E.p
determine the set D,;; and C,; uniquely, it is always possible to express the
energy in the form

e=5(E.p, Dy, 7). (6.6)

But not all the components of ® and E are independent, so we restrict the
functional dependence of the energy upon these variables in such a way that

r OF ]
=0, -2 _}=o0. 6.
& 294 0 A( 3E¢a) (6.7)
‘The stress and couple-stress are then given by the formulas:
b)) — o[98 2 9% _(rrapylp. .4
tod _g[aEu R Rt N (6.8)
plan— _ 2, 98 (ctap,p M0 . 6.
H 3@ 3@‘1@ XX a¥ e . (6.9)



Multiplying (6.9) by ¢,,, and summing on p and g, we get

~ 2 0€ 4
D‘u's=?g(-’l'/X) as;;;- (Xc;sx’;l - 6563.) (6'10)
Since we assume (6.7), this simplifies to
~y 2 08 ¢ i
D,us*“?g(w/x) aSD;lx;}.X;s (6'11)
where
(®/X) =det|s?,]. (6.12)

7. A principle of virtual work for the equations of static equilibrium

The equations governing static equilibrium of elastic materials as these have
been defined in the previous sections can be obtained as a special case of the
foregoing dynamical analysis simply by setting all time rates equal to zero.
This section derives and discusses these same equations by an independent
analysis based upon a principle of virtual work. This treatment emphasizes
energetics and the calculus of variations. The method begins with the concept
of the stored elastic energy of a deformed elastic body #. For definiteness,
the body is here assumed to fill a regular region ¥~ of space in its undeformed,
relaxed state. The boundary of ¥~ consists in the union of a finite number of
smooth surfaces, smooth curves (edges), and points {corners). We consider only
3-times differentiable deformations & (X) giving the deformed configuration of
the material points. The stored elastic energy is given by an integral

&= [Udv, (7.1)
v

where U is the energy of the deformed state per unit undeformed volume. By
introducing the energy per unit mass ¢=Ulp, the stored energy may also be
expressed as an integral

&= [oedv (7.2)

over the region # occupied by the deformed equilibrium configuration of the
material points. Since the mapping X-—>a is smooth, # is also regular, and its
boundary is the union s of a finite number of smooth surfaces, plus the union
< of a finite number of smooth curves (deformed edges), plus a finite number
of isolated points {(deformed positions of corners). The energy per unit unde-
formed volume, hence also the energy per unit mass in the deformed state, is
assumed to be a function

U=U(, #,45, X) (7:3)

of the deformation gradient, its material gradient, and, in inhomogeneous
materials, the energy density may also depend on the material points X. For
simplicity, we neglect all thermal phenomena and do not consider the more
general case where U depends on the entropy density or temperature.

We focus attention upon a particular deformed equilibrium state of the
material under the influence of a certain set of generalized forces. These generalized



forces comprise volume, surface, and line distributions of force. We arrived at
a suitable definition of these forces by the following line of reasoning. First,
one introduces the concept of virtual displacements dx, of the equilibrium
configuration of the material points. These are defined in the usual way by
introducing a set or sets x=& (X, 1) of comparison states, where & (X, 0) is
the equilibrium configurationand § 4 = %’j l o Thefirst variation 86 =d&/d Z‘ o
of the stored energy (7.1) or (7.2) is then expressible in the form

66=[A*dx,dv+ ¢ B éx;da+$C'Déx;da+ [D éx,dl (7.4)

where dv, da, and dl are scalar elements of volume, area, and length, respec-
tively, and D § x; denotes the normal derivative! of the variation §x, at a boundary
point of the body which is not an edge or corner.

Now it can be shown that an integral expression of the form (7.4) vanishes
for arbitrary functions d#; if and only if A'=B'=C*=D'=0. In other words,
the variations in (7.4) are, in this sense, tndependent. For each of these inde-
pendent variations we introduce a generalized force F, and postulate as a
necessary condition of equilibrium that

8E=0W = [ F'dndv+$,Fox,dat $F'Doxda+ [ Foxdl, (7.5)
” [ 4 <

for arbitrary virtual displacements da.

! In reducing 6¢ to the form (7.5) we have also used the notion of the surface
gradient Dy of a function defined on the boundary of the body. For functions
defined in the interior and on the boundary, the gradient, normal derivative, and
surface gradient are related by

e r=Den+Dyop

where #, is the unit normal to the surface. The second fundamental form b of a
smooth part of the boundary is defined by '

b,',- E—D,"nf = —D,-n,,

and we shall make repeated use of the integral identity
. 3
(A) SOt myda= [ (b rn;n;—b;j) fdat $mn;f 4l
7 & ¢

which holds for any smooth tensor field f  defined at points of a smooth surface &
with boundary curve ¥. The vector m=+t Xn, where ¢ is the unit tangent to €.
If the integral transformation (A) be applied to each member of the finite collection
of smooth surfaces on the boundary of a regular region, and the result summed,
one gets the identity

(B) IDif  mida= 6@ sn,m;—b;j)f da+[[mnf Ydl

where the bold-face brackets [ ] in the integral over the edges ¢ of the boundary
denote the difference in values of the enclosed quantity as a given point on an edge
is approached from either side. If the boundary of the region has no edges and f
is smooth throughout 4, the line integral in (B) vanishes.



If we set

o€ o0&
al“l:g(a 2.+ x”;aﬂ), :
H O%p;ap (76)
08
=g __"" == rq
B =0 Gy Wi =P

it is a matter of straightforward application of the divergence theorem, inte-
gration by parts, and the integral transformation (B) to reduce é& to the form

M’='f (—a?? 479 ,,) 8x,dv+
+ ¢ {a??n, — DF**" n,n, — 20,49 n, +
4

+ (B4 n,m, —8,,) P} Sx,da+
+$p " n,n,Ddx,da+ [[mn pP9")8x,d1.

(7.7)

From (7.5) and (7.7) we deduce that necessary and sufficient conditions for
the variation in energy to equal the virtual work in every virtual displacement
from equilibrium are

'_apq,q‘{"ﬂﬁq'»qr:le’ mEv, ‘ (7'8)
apqnq_Dﬂpq'nq”r—ZDqﬂP(q')”r+(bkk"q”r—bqr)ﬁpq'=2p: xcs; (7.9)
| PP nym, =,F?, x€s; (7.10)
[, )= F?, €. (7.41)

These are the equations of equilibrium and boundary conditions corresponding
to the principle of virtual work (7.5).

Now a rigid virtual displacement has the general form
5xp=ap+€?,,qu', (712)

in rectangular Cartesian coordinates, where a, and %’ are arbitrary constants.
If the total energy is invariant under rigid motions, by writing the variation
of the energy in the form,

0= [ («P96x, ,+ p?7 b1, ,,) dv, (713)
we see that a necessary and sufficient condition for this invariance is

[ aPdv=0. (7.14)
»
If the energy of every part of the body is separately invariant under all rigid
variations, we must have
a?i=0. (7.15)

Now invariance of the energy under rigid motions imposes certain com-
patibility conditions upon the generalized forces ,F, ,F, JF, and F. From (7.5)



we see that if 86 =0 for all rigid variations, then equilibrium is impossible unless
ledv+?,Fda+f,Fdl=0, (7.16a)

which follows from invariance of the energy under virtual translations, and
fwxlev+?a:x,Fda+‘§nxsta+fa:fo‘dl:O, (7.16b)

which follows from the invariance of the energy under virtual rotations. From
these conditions of compatibility on the generalized forces, we can read off,
at least in part, their mechanical significance: ,F is a volume distribution of
force, ,F is a surface distribution of force, ,F is a line distribution of force over
the edges of the body, and, the tangential component n X ,F of (F is a surface
distribution of couples. The conditions of compatibility are independent of the
" normal component n - F of the third generalized force; hence, this part of ,F
has only energetic significance. We shall see in a moment that, in the theory
of elastic equilibrium characterized by the constitutive assumptions CA1 to
CA 5 of §5, the normal component of the third generalized force is assumed
to be zero. To prove this, we first note that the energy equation (2.3); with
o given by (2.7) and with &' set equal to zero as the condition for neglect of
thermal effects implies that the virtual work done on any portion of an elastic
body in equilibrium is expressible in the special form

6W=ff.ax‘dv—%fl"6x"’dv+

T g 3 747

+$870x,m;da—3 [1ii*8x; impda. (747)
¢ ¢

Integration by parts and application of the integral transformation (B) reduces
this expression to the form

oW =[(F+31 ) dxdv+

+ ¢ {t‘j”i —guit Bt — ililij”i — 5 (O — bik)!‘i(ik) +
¢

H

g N (7.18)
+ Dy Mo m,+ Dy} §x,da +

— 3645 M. m,Ddx;da+ $[mm, 1i*]6x,d)
¢ <

in which the variations are now all independent. From this expression for the
virtual work in terms of the stress, couple-stress, body force and couples, we
see that the generalized forces have the special form

lFi =f"+%-l"‘"~,

o = Bin;— % p® yn; — 3 Vi +

—3O5n;m —b) @R D P mmy - Dy, (7:49)
oF =— T nif,
AF’:[mj”k/"‘“]'



But the couple-stress is antisymmetric in its first two indices; hence, it follows
immediately from (7.19); that the generalized force ,F* corresponding to the
expression (7.17) for the virtual work has a vanishing normal component:

Fin,=—%u®n nim,=0. (7.20)

Thus, in this special case,
F=—nx(nx,F) (7.21)

and ,F is determined wholly by the part n x ;F, which, we have shown, corresponds
to a surface distribution of couples.

From the expressions (7.19) for the generalized forces in terms of the stress
and couple-stress and the boundary conditions (7.9) and (7.10), we may recover
the basic relations (5.6) and (5.7) between energy, stress, and couple-stress, if
it is assumed that the former must hold for every regular part of a body in
equilibrium. From (7.10) and (7.19); we first obtain the relation

iR = 2 gk, (7.22)

which is (5.7) in the present notation. Substituting this in the relation obtained
by equating the right-hand side of (7.19), and the left-hand side of (7.9), we
get the equality

B h = b= (7.23)

But, in equilibrium, the left-hand side of (7.23) is the symmetric part of the
stress (cf. (2.8)), and (7.23) reduces to (5.6).

From the general energetic approach outlined in this section, the restriction
sF'n,=0 (7.24)

seems unnatural. From the considerations just given we may trace its origin
to the constitutive assumption CA 4. The total flux of energy has the general
form .

Oht:;‘-;ttjt_f_%w;k‘uikt_{_hz, (7-25)

and, in CA 4, the extra flux of eriergy 4* was identified as the heat flux. This
assumption excludes the possibility of work terms having the form H'*d,
with H**=H"* arising from a local deformation of the boundary of the body.
Relaxing the tacit assumption H=0 of the classical theory brings it into precise
correspondernice with the more general theory of equilibrium of this section in
which the generalized force ,F may have a non-vanishing normal component.
In this more general theory, the energy function need not satisfy the 10 inde-
pendent conditions

BYP=o. (7.26)

The energy function will be invariant under rigid motions if and only if al*1=0.
It can then be shown that every such energy function is expressible as a function
of the 6+ 18 independent variables C,z and C,z ;, which replace the 6+8
independent variables C,z and C,(5, of the restricted theory in which the



energy must satisfy (7.26) as well as the condition of invariance under rigid
motions. For convenience, we shall call (7.26), the Cosserat relations. In §9
 we shall obtain an interesting consequence of these relations which provides
a possible test of their validity. '

8. Equipollent distributions of stress and couple-stress

In the theory of elasticity characterized by the assumptions CA 1 to CA 5
of §5, the energy function determines the symmetric part of the stress-strain
and the principal part of the couple-stress-strain relations. The assumption 6=0
converts the equation of balance of angular momentum into a definition of the
antisymmetric part of the stress in terms of the divergence of the couple-stress
field. Thus to determine the state of stress and couple-stress completely in these
materials it suffices to know the distribution of internal energy and the anti-
symmetric part of the couple-stress. At the end of §5 we pointed out that the
equations of motions as well as the energy equation are independent of the
antisymmetric part of the couple-stress. It is remarkable also that this part
of the couple-stress does not appear in the boundary conditions of the variational
principle of §7. The following discussion of equipollent distributions of stress
and couple-stress is inserted in an attempt to understand the elusive nature
of the antisymmetric part of the couple-stress.

Call any pair of distributions (¢, ) and (t*, p*) of stress and couple-stress
equipollent if they yield the same values for the resultant force and moment
on every part of a material body #. Call any pair of such distributions of stress
and couple-stress emergetically eguivalent if the symmetric part of the stress
and the principal part of the couple-stress coincide at each point of the medium.
Let square brackets about [¢] and [w] or any parts of these tensors denote the
difference between a pair of distributions of stress and couple-stress. Thus a
pair is equipollent if and only if

$[t]da;=0,
$ (2ot 14+ [1f Ddar =0,

for every closed surface with is the complete boundary of some part of the body.
A pair of distributions will be equipollent and energetically equivalent if the
symmetric part [#*)]=0, the principal part [pu**]=0, and

$[st"1da; =0,
$ (202  [pt*) + [M] €% da, =0

(8.1)

(8.2)

where we have set [ul/¥]=[9]E"/*. Now it is known! that if F is any vector
field in a star-shaped region such that

$ FPda,=0 (8.3)

for every closed surface in the region, then there exists an antisymmetric field
H'i such that )
F=HY HYi=—Hf, (8.4)



Equations (8.2) are three equations of the form (8.3); hence, there exists at
least one tensor field of rank three, say P*/*, such that

[t[ii]]zptjk,k’ Pk Pk, (8.5)
and we must have
P(ii)k’kz(). (8-6)

It follows from (8.6) that, in (8.5);, we may take P'/* to be completely anti-
symmetric. But, in-three dimensions, this means that Pii* is expressible in
the form P'*=PE* where P is a relative scalar. Thus

(7] =C*p . . (8.7)

Substituting this result in (8.2), and applying (8.4) again, we find that we must
have

2P, —[M],=0, (8.8)
which proves the following theorem on equipollence:

Theorem 8.1. An energetically equivalent pair of distributions of stress and
couple-stress are equipollent if and only if there exists a scalar B such that the
antisymmetric parts of the stress distributions are related by

-

il = * il | GRS, (8.9)
and the scalar parts of the couple-stress distributions are related by
M -4 2(P4KR), (8.10)

where & is an arbitrary constant.

Suppose one lays down the additional restriction upon a pair of equipollent
and energetically equivalent distributions of stress and couple-stress that, at
each point of the boundary of a given elastic body, the stress vector and couple-
stress vector coincide. That is, let us require that

[t[ii]] n; =0,
[, =0

! There is a striking resemblance between this group of transformations relating
energetically equivalent and equipollent distributions of stress and couple stress and
the gauge transformations of electromagnetic theory. The similarity is made more

pronounced by introducing the vector invariant yt,~}e,;;#/* of stress and writing
(8.9) in the form

(8.11)

xt= xt*-4gradP
alongside,

M=M*+2(P+8).

The gauge transformations on the electromagnetic scalar potential ¥ and vector
potential A have the form
A=A*}grad P,

V=V*—0aP[at,

where P is again an arbitrary scalar field. Hence the indeterminacy in the stress
and couple-stress of equipollent, energetically equivalent distributions is analogous
to the indeterminacy in the electromagnetic potential corresponding to a given
electromagnetic field.



at every point of a closed surface. This requires, in addition to (8.9) and (8.10),
that

@ﬁk”iSB'k—_—O, (8.12)
and

[MIC 7 *n,=2(B +&) C*n,=0. (8.13)

The condition (8.13) is satisfied if and only if the scalar parts of the couple-
stress distributions coincide at each point of the boundary. It also requires
that the arbitrary function P of (8.9) and (8.10) be constant on the closed sur-
face. But if P is constant on this surface, then grad P is parallel to the normal n,
and the first condition (8.12) will be satisfied automatically. This proves

Theorem 8.2, A mecessary and sufficient condition that an energetically equi-
valent pair of stress and couple-stress distributions be equipollent and have the
same stress vector and couple-stress vector at each point of the boundary of a region
is that the antisymmetyic parts be related by

#157] = pelif) | @ik SR
M = M* + 2B,

where B 1is an arbitrary scalar field which vanishes on the boundary of the region.

The results summarized in Theorem 8.1 and 8.2 shed some light, we believe,
on the indeterminate character of the antisymmetric parts of stress and couple-
stress in the theory of elasticity presented in the foregoing sections. We are

still uncertain as to the physical implications of this indeterminacy, if indeed
there be any.

(8.14)

9. Sound waves in elastic materials with couple-stresses

The equations of motion of a homogeneous elastic material can be expanded
to read as follows:
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As is obvious from formulas like (9.1}, the theory is complicated, but two inter-
esting features emerge in a general way quite easily. These concern the pro-
pagation of plane sound waves. Suppose we have given any solution of the
equations {9.1) corresponding to a homogeneous deformation of the material.
One such solution is always the undeformed state. Let us represent sound by
a ‘“‘small deformation’’ superimposed upon the undeformed or initially deformed
equilibrium state of the material. In rectangular Cartesian coordinates we put

F (X, )= (X, t) +4* (X, 8) (9.2)

where (2% (X, #) satisfies (9.1). When U is independent of second derivatives
%',4p, the equations considered here reduce to those of the usual theory of finite



elastic deformations. In that theory, the linear equations for small deformations
are obtained by substituting (9.2) into (9.1) and casting away all non-linear
terms in the gradient of the small displacement . Thus the classical linear
theory of elasticity is based upon the assumption that

|grad u|2=(8u'/0X") (2uij0XT)< 1. (9.3)

If we follow a similar procedure here, we must also make some assumption
about the smallness of the second derivatives, 82#*/2X70X*, if we wish to describe
sound by linear equations. To treat this more general case we shall assume
that the energy is expressible as accurately as may be desired by a polynomial
in the variables E,; and D,;,. Moreover, we shall assume the existence of a
material parameter g having the physical dimensions of stress, [M Lt T?], and
a second material parameter 2, having the physical dimension of length, [L],
such that, when the energy is expressed in the form

U=p|sCPE, Ept % CediE, Dy +

lc vaf A A vaflerol (94)
+’*C'u QDyvaDﬂ).Q'*’_‘C'u e ’DyVOLDﬁZQDraC_i_"'
each of the dzmenszonless material tensors C k=1, 2 3, ... has a magnitude
of the order of 1;
1C| ~1, (9.5)
where
2. (Caf...
!gl (k: gaﬁ...' (96)

Now if for all values of X and ¢, |E|<1 and |AD|<1, the energy is given
approximately by the integral of the first three terms; in (9.4). If it be further
assumed that the rotations as well as the strain corresponding to the displace-
ment field u are small throughout the material, then (9.3) holds. The smallness
of |2.D| will imply that |.grad grad w| is small. Granted all these restrictions
on the displacement field u for all X and ¢, it is permissible to linearize the
equations (9.1) in grad # and grad grad w. The resulting equations may be
written in the following form:

/"[C u7kl+ﬂcklmu1klm_l2ck2m”u lmn] (97)

where the coefficients g, g} , and (s,‘ are constants determined by the form of

the energy function and the values of the deformation gradient of the homo-
geneous solution o (X). The coefficients in (9.7) are given in terms of the energy
function by the formulas,

, %u
Ck.l = = T xk l‘ Fy '8
T 7 ax.;aax,;ﬁ a¥p (9-8)

. 2y

lckl”‘:z —7—_—~'xk. xl. x"f, 9'9
(red) 1 ax[:a axl‘]ﬂl H- 2 A ( )

2
AE Cf;m” =7 __ﬁ__?‘]’%.__ xk;axl;ﬂx”;‘l x";g, {9.10)



where all the quantities on the right are evaluated at the solution (% (X). The
quantity g which appears in (9.7) is the density of mass in the homogeneously
deformed state, and the derivatives which appear are with respect to the de-
formed coordinates o#’, and j=g/g,-

In the way described above, the problem of small deformations is reduced
to a study of the system of linear equations with constant coefficients (9.7).

In any material which has a center of symmetry so that the energy is
invariant under the transformation

X—>—-X (9.11)

each of the coefficients C?#"= — g}’iq’ vanishes. But in those anisotropic materials
1

which lack a center of symmetry, the terms in the equations of motion involving
the coefficients gfiq’ give rise to an interesting phenomenon which is not em-

braced by the classical linear theory of elasticity. We shall discuss this pheno-
menon in a moment, but first we digress to insert some’ purely kinematical
apparatus on plane vector waves which will allow an easy expression of the
ideas involved.

A plane vector wave is a vector field of the form

ux, t)=%a " (9.12)
where
p=kn.-x—owt (9.13)

is its complex phase; w is a positive real number called the angular frequency;
n is a real unit vector normal to the plane of the wave; and k is the complex wave
number. The frequency is given by f=w/2n. Let! k=~k*4-4&~, where £* and %~
are the real and imaginary parts of the wave number. When £*3=0, the wave
is progressive and its speed is defined by s = |w/k|. The wave length of a pro-
gressive wave is defined by A = |1/7|, the direction of propagation by m= (sgn*)n.
The dimensionless number #==k"/A=tan™'¥, where § is the argument of %, is
called the coefficient of decay if positive and of growth if negative. The complex
vector a=a*+ia" is the complex amplitude of the wave. We then have

u:ez—"";;lc [a*cos (%i —w t) — @~ sin (1'1—"" —w t)] ,
where all quantities are real and easy to interpret. The two real vectors a*
and @~ when not collinear determine the plane of oscillation; when collinear, the
line of oscillation. When the plane of the wave and the plane of oscillation
coincide or when the line of oscillation lies in the plane of the wave, the wave
is called framsverse. When a* and @~ are collinear, the wave is linearly polarized.
A linearly polarized waye whose line of oscillation coincides with the direction
of propagation is called a longitudinal wave. When a* and @~ are perpendicular
to each other and of equal length, the locus of u at a fixed spatial point @ is
a circle in the plane of oscillation, and the wave is circularly polarized. A necessary

1 Henceforth in this section we distinguish the real and imaginary parts of a
scalar or vector quantity by superscripts + and —.



and sufficient condition that a wave be circularly polarized is that the complex
amplitude satisfy the equation @ -@=0; a necessary and sufficient condition
that a wave be linearly polarized is that @ Xxa* =0, or a={a*, where a* denotes
the complex conjugate of @. If a wave is neither linearly nor circularly polarized,
then it is elliptically polarized, and the locus of u at each @ is an ellipse in the
plane of oscillation. A wave is right-handed if [@*a~72] <0, and left-handed
if [@*a~R]<0.

We wish now to determine the conditions under which the equations (9.7)
‘admit plane wave solutions and to determine their geometry. If we substitute
a plane wave of general character into these equations, we find that it will be
a solution if and only if the complex amplitude, the complex wave number,
the frequency, and the direction of propagation are related by the equation

Qix(k, W) " =g wa, (9-14)

where the acoustical tensorl Q,,(k, m) is given by

Q.. (%, ﬁ):kz?ik-}’ikagﬁe‘l‘k‘l 3@1’1:; (9'15)
with
Q,,( )= Ckl”k"u
Q;,-(”) = Cf,’"'ﬁkﬁlﬁm (sgnk*), (9-16)
Q‘l]( ) Cklm”nknln nn

_ According to (9.14) the complex amplitude @ must be an eigenvector of the
acoustical tensor, and the corresponding eigenvalue must be real and positive
since § >0 and w?>0. A sufficient condition that (9.14) have three linearly
independent eigenvectors with real and positive eigenvalues is that the acoustical
tensor be Hermitian positive definite. From the definition of the acoustical
tensor (9.15) to (9.16) and the material parameters 1C’, 9 and g? given in (9.8)

0 (9.10) we see that the acoustical tensor of a material is Hermitian for all
real values of the wave number £. That it also be positive definite for real
values of the wave number places a restriction on the energy function U.
The following theorem illuminates the physical significance of the coefficients
g,’"’ and the associated tensor 2Q”. which determines the imaginary part of the

acoustical tensor when the wave number is real.

Theorem 9.1. If the acoustical temsor is positive definite for a dirvection of
propagation W and a real wave number k, then there exist three linearly independent
plane progressive waves for that divection and wave length. The frequencies, and
hence the speeds, will be different, in general. If the coefficients Q (W) are not all

2

zevo, then at least ome of these three waves will not be linearly polarized; i.g., at
least one wave will be circularly or elliptically polarized.

1 Q,;(m) is what TRUESDELL calls the acoustical tensor of an elastic material
1

without couple-stresses. Cf. [14].



The first part of the theorem is immediate from known properties of Hermitian
matrices. The second and interesting part can be proved as follows. Suppose
that all three waves are linearly polarized. Then the three linearly independent
complex amplitudes g,]" =1, 2,3, each of which is an eigenvector of the acoustical

tensor, are proportional to their complex conjugates @*. We then have the two
sets of equations .

0,4 =gauta;,

r rr (9-17)

* 7 ~
Q’f?]:Q%’zair

N

where the second follows from the first upon taking the complex conjugate
and using the supposition that @ is proportional to a* for each value of I". But,
subtracting corresponding members of the second cet from the first, we get

2Q,-,g”:o, r=1,23%, (9.18)

which implies that Q (®)=0. This proves the theorem.
g

In view of the foregoing result, we call the coefficients gf} ™, the rotary tensor

of an elastic material with couple-stresses. The tensor 2Q,- ; (1) will be the acoustical

activity tensor for the direction of propagation 7 since its presence gives rise
to a phenomenon analogous to optical activity.! ’
According to the classical theory of elasticity, where 2C=§3’=O, to every

frequency and every direction of propagation there correspond three linearly

independent amplitudes @ such that @={ a* (linearly polarized plane waves)

with real wave numbers % provided only that the acoustical tensor Q, () is
1

positive definite. The speed of each of these waves is independent of the fre-
quency, so that all materials, in the classical theory, are non-dispersive and
non-absorptive. The case of materials with couple-stresses considered here is
more complicated. The simplest example of waves in an undeformed, isotropic
material suffices to illustraté the new phenomena of the more general theory.
For these materials we have

gf,-’"‘ =0 (isotropic material symmetry), (9-19)

and, choosing # >0 as the shear modulus for the material, the dimensionless
coefficients gil have the familiar form

CH = (286 + (i 8+ B8],

(9.20)
=g 8"+ 80+ %;5{25,1-.

where A and u are the Lamé constants for the material and ¢ is its Poisson’s
ratio. Thus the part 9” (m) of the acoustical tensor for an undeformed isotropic

1 Acoustical activity is mentioned by V. P. SiLIn [15] who estimates that it might
reach an observable level at frequencies of 10° to 10" (Sec.)). Acoustical activity
can be induced in an elastic dielectric by a strong magnetic field. This will be dis-
cussed in a forthcoming paper generalizing the results of [13)].



material has the form

Qii(®) o
=g, +
l"' g1]+ 1_20,;

which is positive definite if and only if the shear modulus and Poisson’s ratio
satisfy the inequalities

(9.21)

u >0, —w=Zo<t or 1<o=Z 0. (9-22)

We shall assume these restrictions on u and ¢ to be satisfied. This insures that
the wave speeds of the classical theory are real.
Consider next the coefficients g)f,-’"‘” and the corresponding part Q,;(m) of
3

the acoustical tensor of an undeformed, isotropic material. Here we notice a
remarkable difference between the restricted theory of elastic materials with
couple-stresses, where the energy function must satisfy the Cosserat relations
(7.26), and the more general theory suggested in §7 and remarked upon in the
footnote of CA 4in §5. In the more general theory without the Cosserat relations,
the energy may depend on the second derivatives of the displacement through
all of the variables C,4 ;. The part g"f(ﬁ) of the acoustical tensor under this

more general assumption is an arbitrary isotropic symmetric tensor-valued
function of the direction of propagation @ when the material is isotropic and
undeformed. Thus we should have
Qij
b
analogous to the general isotropic form (9.21) of the part Q,,(m) of the acoustical
1

=0t 8+ X B Bj, (9.23)

tensor. The two dimensionless coefficients «, and «, would be independent.
But MINDLIN & TIERSTEN have shown that the terms in the energy function
(9-4) which are quadratic in the variables Dj of the Cosserat theory are expressible
as a general linear combination of the two scalar invariants
]1:®aﬂ®ﬂa: . ]2=GaﬂGeuEDae®ﬂa (924)
if the material is isotropic. The dimensionless tensor C given by (9.10) then
has the following special form: ?
CHmn = 2B G, G4 oy ™ (g — o), (9.25)
where the tensor ¢'/ is defined by
T=G" 1 ., (9.26)
and the dimensionless material constants «, and § are independent. But the
part Q,;(®) of the acoustical tensor corresponding to a 9 of the form (9.25) is
3.
i
i
when the material is undeformed and ¢*/=g". From the point of view of the
more general theory which yields (9.23), the Cosserat relations place the restriction

=0y (g, —7:7;) (9-27)

Hg= — 0y (9.28)



upon the dimensionless parameters «; and «,. Henceforth, let us assume that
Q has the general form (9.23). The relation (9.28) may be inserted at any stage
3

to obtain the corresponding results based upon (9.27).
When (9.21) and (9.23) are inserted into the acoustical equation (9.24) it
assumes the form

Qa,=[{g;;+ (1—20) %5} K2+ (8, + a7 78,) K] & (9.29)
where we have introduced the dimensionless quantities
K=k, m_—-—”f“”’. (9.30)

If either «; or « is not zero, we can always choose the characteristic length 4,
in such a way that |a;| =1, or |a,| =1. If both «, and «, are zero, (9.29) reverts
to the classical form. Let us assume that «, is not zero and adjust the definition
of 2, so that |o;] =1. Now the eigenvectors of the acoustical tensor of an
undeformed isotropic material are easy to determine by inspection. The direction
of propagation is one eigenvector yielding a longitudinal wave, and any vector
perpendicular to the direction of propagation is an eigenvector yielding a trans-
verse wave. For the longitudinal waves we get the dispersion relation

@ =20 gy ap) K, 931)

and for the transverse waves we get the dispersion relation

Q=K24 o, K* (9.32)
where o, = +1.
By inspection of (9.31) we perceive the following

Theorem 9.2. The longitudinal wave in an undeformed isotropic clastic material
with couple-stresses has a speed independent of its frequency if and only if the
relation (9.28), which follows from the Cosserat relations (7.26), holds.

This theorem provides a simple criterion for the validity of the Cosserat
relations.

The graph of 2 vs. K is called the dispersion curve. To each assigned value
of the non-dimensional frequency £ in (9.31) or (9.32), there correspond four
non-dimensional wave numbers K. Since each equation for K has real coeffi-
cients, the roots of these equations for assigned values of the frequency are
either two pairs of complex conjugate values of K, one pair of complex conjugates -
and one pair of reals, or four real roots. The nature of the roots and the shape
of the dispersion curves are strongly affected by the sign of the parameter «,
in (9.32) or the sign of («;+a,) in (9.31). MINDLIN & TIERSTEN have shown
how uniqueness of certain boundary-value problems rests upon the sign of «;.
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