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THE NECESSITY OF WHEELS IN UNIVERSAL QUANTIZATION FORMULAS

GIUSEPPE DITO

ABSTRACT. In the context of formal deformation quantization, we provide an elementary argument show-

ing that any universal quantization formula necessarily involves graphs with wheels.

1. INTRODUCTION

Since its inception in the 70’s by Flato and his collaborators [1], deformation quantization has under-

gone several major developments. The most spectacular one being the proof by Kontsevich [7] of the

existence of star-products on any smooth Poisson manifold as a consequence of his Formality theorem.

This theorem establishes the existence of an L∞ quasi-isomorphism between two differential graded Lie

algebras naturally attached to a manifold, namely, the Hochschild complex endowed with Gerstenhaber

bracket on one side, and the space of polyvector fields endowed with the Schouten-Nijenhuis bracket and

trivial differential, on the other side.

The proof relies on the discovery of an explicit formula (in the affine case) in terms of Feynman

graphs and their weights, and corresponds to the perturbation series of a Poisson sigma model [3]. An

important feature of Kontsevich’s quantization formula is that it is a universal quantization formula in

the sense that it only depends on the Poisson structure and its derivatives of all orders. Moreover, among

the family of graphs considered by Kontsevich there are graphs with wheels, i.e. having oriented cycles

as subgraphs. The presence of graphs with wheels discards direct generalizations of Kontsevich formula

to infinite-dimensional spaces (quantum field theory) as their computation involves traces leading to

an ill-defined star-product. Of course for special classes of Poisson brackets it is still possible to find

quantization formulas which do not involve wheels. This is the case for the well-known Moyal product

or the BCH-quantization [2, 5, 6] on the dual of a Lie algebra, but these examples do not reflect the

general situation.

In this paper, we show that a universal quantization formula, i.e. a correspondence that associates

to any Poisson bracket defined on the affine space a star-product, does necessarily involves graphs with

wheels. The proof consists essentially in reducing the general case to the obstruction found by Penkava

and Vanhaecke [9] in their study of the quantization of polynomial Poisson brackets.

The paper is organized as follows. Section 2 is devoted to preliminaries: basic notions on deformation

quantization and Kontsevich formula are briefly recalled there. In Section 3, we study universal 2-

cocycles in the Hoschchild complex and show that the second cohomology space of the subcomplex

consisting of universal cochains without wheels is one-dimensional and is generated by the Poisson

bivector. The main theorem is proved in Section 4.

I am indebted to T. Willwacher for letting me know another derivation of the main result of this paper.

His proof [11] does not rely on the obstruction of Penkava and Vanhaecke.
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2. PRELIMINARIES

Let X be a smooth d-dimensional manifold. Let A =C∞(X) be the algebra of smooth complex-valued

functions on X with product m0 : A×A → A, that is, the usual product of smooth functions on X .

2.1. Deformation quantization. Recall that a Poisson bivector p on X is a section in Γ(∧2T X) such

that the Poisson bracket associated to p

{ f ,g} = 〈p,d f ∧dg〉, f ,g ∈ A,

endows A with a structure of Lie algebra satisfying the Leibniz property. In local coordinates (x1
, . . . ,xd)

the Poisson bracket reads

{ f ,g} = ∑
1≤i, j≤d

pi j∂i f ∂ jg,

where ∂k denotes the partial derivative with respect to xk.

Let AJh̄K be the space of formal series in h̄ with coefficients in A. A star-product [1] is a CJh̄K-bilinear

product on AJh̄K which is an associative deformation of the algebra of smooth functions on X :

(1) ch̄ = m0 + ∑
k≥1

h̄kck,

where the ck are bidifferential operators vanishing on constants and such that the antisymmetric part of

c1 is equal to the Poisson bivector p, i.e., a star-product is a noncommutative associative deformation of

the pointwise product of functions in the direction of the Poisson bivector.

2.2. Hochschild cohomology. The normalized differential Hochschild cochain complex of the associa-

tive algebra A with values in itself C •(A,A) = ⊕m≥0C
m(A,A) consists of polydifferential operators on

X that are vanishing on constants. Locally, an m-cochain C ∈ C m(A,A) has the form

(2) C( f1, . . . , fm) = ∑Cα1···αm
∂ α1 f1 · · ·∂

αm fm, f1, . . . , fm ∈ A,

where the sum is finite and runs over multi-indices αi ∈N
d such that |αi| ≥ 1, and the Cα1···αm

are locally

defined smooth functions on X .

As usual, we shall consider the Hochschild complex as a Z-graded vector space with a shift in the

degree: D•
poly(X) = C •(A,A)[1]. Hence

Dk
poly(X) =

{

C k+1(A,A) for k ≥−1,

{0} otherwise.

The Gerstenhaber bracket [·, ·]G on D•
poly(X) is defined on homogeneous elements Di ∈ D

ki

poly(X) by:

[D1,D2]G = D1 ◦D2 − (−1)k1k2D2 ◦D1,

where ◦ : D
k1

poly(X)×D
k2

poly(X)→ D
k1+k2

poly (X) is a composition law for polydifferential operators:

(D1 ◦D2)( f0, . . . , fk1+k2
)

= ∑
0≤ j≤k1

(−1) jk2 D1( f0, . . . , f j−1,D2( f j, . . . , f j+k2
), f j+k2+1, . . . fk1+k2

).

The Hochschild differential is given by δ = [m0, · ]G. It is the standard Hochschild differential d up

to a sign: for D ∈ Dk
poly(R

d), we have δD = (−1)kdD. Recall that (D•
poly(X), [·, ·]G,δ ) is a differential

graded Lie algebra.
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Remark 1. In terms of the Gertenhaber bracket, the associativity of the product (1) is equivalent to the

Maurer-Cartan equations:

(3) δck +
1

2
∑

a+b=k
a,b≥1

[ca,cb]G = 0, for all k ≥ 1.

A deformation ch̄ is said to define an associative deformation up to order r, if (3) is satisfied for k =
1,2, . . . ,r.

The cohomology H•(A,A) of the complex (C •(A,A),δ ) is the space of polyvectors Γ(∧•T X). This

is a smooth version of the Hochschild-Kostant-Rosenberg (HKR) theorem due to Vey [10], still called

HKR theorem. We denote by T •
poly(X) the graded vector space T •

poly(X) =⊕k∈ZT k
poly(X), where

T k
poly(X) =

{

Γ(∧k+1T X) for k ≥−1,

{0} otherwise.

T •
poly(X) is endowed with the Schouten-Nijenhuis bracket [·, ·]SN , On decomposable tensors it is given

by:

[ξ0 ∧ ·· ·∧ ξk,η0 ∧ ·· ·∧ηl]SN

= ∑
0≤i≤k

∑
0≤ j≤l

(−1)i+ j[ξi,η j]∧ ξ0 ∧ ·· ·∧ ξ̂i ∧ ·· ·∧ ξk ∧η0 ∧ ·· ·∧ η̂ j ∧ ·· ·∧ηl.
(4)

Recall that the Jacobi identity for a bivector π ∈ Γ(∧2T X) is equivalent to the condition [π,π]SN = 0.

(T •
poly(X), [·, ·]SN) is a graded Lie algebra that is considered as a differential graded Lie algebra with

trivial differential 0.

The Formality theorem [7] establishes the existence of an L∞ quasi-isomorphism between the differ-

ential graded Lie algebras (T •
poly(X), [·, ·]SN ,0) and (D•

poly(X), [·, ·]G,δ ). A remarkable consequence of

the Formality theorem is the existence of deformation quantization of any smooth Poisson manifold:

Theorem 1 ([7]). Let p be a Poisson bivector on a smooth manifold X. Then there exists a star-product

ch̄ on X such that 1
2

(

ch̄( f ,g)− ch̄(g, f )
)

= h̄{ f ,g}+O(h̄2).

Actually, Kontsevich gives an explicit description of the L∞ quasi-isomorphism for X = R
d in terms

of graphs and weights. We shall briefly recall a few notions on graphs that we will need in our discussion

and refer to [7] for details.

2.3. Graphs. A simple directed graph is a graph whose edges are oriented and such that it does not

contain loops: or multiple edges: . The indegree (resp. outdegree) of a vertex is the number

of edges ending (resp. starting) at that vertex.

Following [7], we consider a family of graphs (with a slight departure from the convention of [7]).

Definition 1. The set K consists of all the simple directed graphs Γ satisfying:

(1) The set of vertices VΓ is finite and is a disjoint union of nonempty sets: VΓ = V 1
Γ ⊔V 2

Γ . Vertices

belonging to V 1
Γ (resp. V 2

Γ ) are said of type 1 (resp. 2);

(2) Each vertex of type 1 is of outdegree 2;

(3) Each vertex of type 2 is of indegree at least 1 and of outdegree 0;

(4) Vertices and edges are labeled.
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We denote by Kn,m for m,n ≥ 1 the subset of K consisting of graphs having n vertices of type 1 and m

vertices of type 2. Thus a graph in Kn,m has 2n edges.

We shall make a slight abuse of notation by dropping the labels on the vertices of type 1.

We set X = R
d (d ≥ 2) and (x1

, . . . ,xd) designates a coordinate system on X . Let p be a smooth

Poisson bivector on X . The Poisson bracket of two smooth functions f ,g is graphically represented by a

graph in K1,2:

{ f ,g} = ∑
1≤i, j≤d

pi j ∂i f ∂ jg =

f g

.

More generally, one associates a cochain B
p
Γ in C m(A,A) to any graph Γ ∈ Kn,m by letting the edges

of Γ act by partial derivatives (see [7] for details.) It is convenient to denote vertices of type 1 by • and

vertices of type 2 by letters f ,g, . . . that will eventually be representing functions in A. The labels of the

edges will be graphically specified by solid and dotted lines. As an example, to the graph Γ ∈K4,3 below

one associates B
p
Γ ∈ C 3(A,A) by

(5) B
p
Γ( f ,g,h) =

f g h
= ∑ pi1 j1 ∂i1p

i2 j2 ∂ j2 j3p
i3 j3 ∂i3p

i4 j4 ∂i2 f ∂ j1 j4 g ∂i4h,

where the sum runs over 1 ≤ i1, j1, i2, j2, i3, j3, i4, j4 ≤ d. Notice that we have implicitly labeled the

vertices of type 1 in the sum, but any other labeling leads to the same cochain.

Kontsevich formula associates to a Poisson bivector p on R
d an associative deformation of (A,m0)

(6) Kh̄ = m0 + ∑
n≥1

h̄nkpn( f ,g), where kpn( f ,g) = ∑
Γ∈Kn,2

w(Γ) B
p
Γ,

and where w(Γ) ∈ R is the Kontsevich’s weight of the graph Γ, it is independent of the Poisson bivector

and the dimension d.

Convention. Sometimes it is immaterial to distinguish between the first and second argument of the

Poisson bracket. In such situations we shall simply represent the Poisson bracket by using solid lines for

both edges, i.e., . Moreover, when it is not essential to fully draw a graph, but just keep few vertices

and edges relevant to our discussion, we shall use a “grey zone” to indicate that not all the vertices or

edges in that zone are drawn. This is illustrated by

3. UNIVERSAL 2-COCYCLES

Recall that a directed cycle in a simple directed graph consists of a subgraph for which each vertex

is of indegree and outdegree 1. We say that a simple directed graph is with wheels if it has a directed

cycle as subgraph. An elementary result from graph theory says that a simple directed graph such that

each vertex is of outdegree at least 1 must have a wheel. In the rest of this paper, we set X = R
d and

A =C∞(Rd).
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Definition 2. A cochain C ∈ C m(A,A), m ≥ 1, is called p-universal if it is a finite R-linear combination

of polydifferential operators associated to graphs in Kn,m, i.e., C is a finite sum of the form

(7) C = ∑
n≥1

∑
Γ∈Kn,m

aΓ B
p
Γ, aΓ ∈ R.

A cochain C ∈ C m(A,A), m ≥ 1, is called p-universal without wheels if all the graphs Γ appearing in (7)

have no wheels.

Example 1. The 2-cochain C1( f ,g)=
f g

is p-universal without wheels, while C2( f ,g)=
f g

is p-universal with wheels.

Definition 3. A universal quantization formula is a correspondence that associates a star-product to a

Poisson bivector

p 7→ c
p
h̄ = m0 + ∑

k≥1

h̄kc
p
k ,

where the c
p
k are p-universal 2-cochains.

To keep the notation simple, we will omit the reference to p in c
p
k and write ck, etc.

Example 2. Kontsevich formula (6) for a star-product is an example of universal quantization formula

with wheels. Wheels are already appearing at order 2 in h̄, the 2nd term being explicitly given by [4]

k2( f ,g) =
1

2

f g

+
1

3

f g

+
1

3

f g

−
1

6

f g
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Example 3. In [9], Penkava and Vanhaecke have constructed a universal quantization formula without

wheels associative up to order 3, denoted here by mh̄ = m0 + h̄m1 + h̄2m2 + h̄3m3, where

m1( f ,g) =

f g

m2( f ,g) =
1

2

f g

+
1

3

f g

+
1

3

f g

m3( f ,g) =
1

6

f g

+
1

3

f g

+
1

3

f g

+
1

6

f g

+
1

6

f g

+
1

3

f g

+
1

3

f g

+
1

6

f g

+
1

6

f g

For a general Poisson bivector, it was shown in [9] that mh̄ cannot be extended to a 4th order associative

deformation.

Lemma 1. Let Γ be a graph in Kn,1 with n ≥ 2, then Γ has at least a wheel.

Proof. Let us call f the vertex of type 2 in Γ. Since Γ is a simple graph, edges ending at f must originate

from different vertices of type 1. By removing the vertex f and all the edges ending at f we get a simple

directed graph Γ′. This truncation is pictorially represented as:

Γ =

f

Γ′ =

Each vertex in Γ′ is of outdegree at least 1, hence it contains a wheel. �

We have excluded the case n = 1 in this Lemma since K1,1 is empty.

Lemma 2. Let Λ ∈ Γ(∧2T X)⊂ C 2(A,A) be a bivector. If Λ is p-universal without wheels, then Λ = ap

for some a ∈ R.
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Proof. Suppose Λ is p-universal, then it can be represented as a finite sum ∑n≥1 ∑Γ∈Kn,2
aΓ B

p
Γ. Each

graph Γ appearing in this sum has two vertices of type 2 each of them having indegree 1. We distinguish

several cases.

1) If Γ ∈ K1,2, then clearly B
p
Γ =±p.

2) If Γ ∈Kn,2 with n ≥ 2, then there are three possible subcases to which we apply a similar truncation

as the one used in Lemma 1:

a) Γ = Γ′ =

b) Γ = Γ′ =

c) Γ = Γ′ =

For each subcase, when it occurs, the graph Γ′ contains at least a wheel. Indeed for a), each vertex

of Γ′ has outdegree 2; for b), it follows Lemma 1; for c) each vertex of Γ′ has outdegree at least 1.

In conclusion, a bivector which is p-universal without wheels can only be proportional to the Poisson

bivector. �

Lemma 3. Let T ∈C 1(A,A) be such that its coboundary δT is p-universal without wheels. Then δT = 0.

Proof. By getting rid of an irrelevant derivation in T , one can consider that T is a p-universal 1-cochain.

Indeed, one can use a homotopy formula (see e.g. [8] for an explicit formula for 2-cocycles) to define a

p-universal 1-cochain T ′ such that δT ′ = δT . Since δT is without wheels so will be T ′, but Lemma 1

tells us that if T ′ is not vanishing, then it must contain a wheel. Therefore T ′ = 0 and δT = 0. �

By the HKR theorem, any cocycle C ∈ C m(A,A) is a sum C = Λ+ δC′, where Λ ∈ Γ(∧mT X) and

C′ ∈ C m−1(A,A). The m-vector Λ being the antisymmetric part of C then, if C is p-universal without

wheels, so are Λ and δC′. As an immediate consequence of Lemmas 2 and 3 we have:

Lemma 4. Let C ∈C 2(A,A) be a Hochschild 2-cocycle which is p-universal without wheels, then C = ap

for some a ∈ R.

Notice that the Hochschild coboundary of a p-universal cochain is p-universal and similarly for p-

universal cochains without wheels. Hence one can consider the subcomplex of the Hochschild complex

consisting of p-universal cochains without wheels. In essence, Lemma 4 states that the second cohomol-

ogy space for this subcomplex is one-dimensional and is generated by p.

4. THE NECESSITY OF WHEELS

Here we establish the main result of this paper by showing that the terms up to order 3 in h̄ of any

universal quantization formula without wheels are, up to a change of the deformation parameter, given

by the mi’s in Example 3 and hence get a contradiction.
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Theorem 2. Any universal quantization formula involves graphs with wheels.

Proof. We proceed by contradiction assuming that sh̄ = m0 + ∑
k≥1

h̄ksk is a universal quantization formula

without wheels.

Associativity implies δ s1 = 0 and Lemma 4 gives that s1 = a1 p for some a1 ∈ R. The normalization

of the star-product, 1
2

(

s1( f ,g)− s1(g, f )
)

= { f ,g}, forces a1 = 1, hence s1 = m1 = p.

At second order in h̄, the associativity of sh̄ implies

δ s2 +
1

2
[s1,s1]G = 0, i.e., δ s2 +

1

2
[m1,m1]G = 0.

Since 1
2
[m1,m1]G = −δm2, we find that s2 −m2 is a 2-cocycle and it is p-universal without wheels.

By Lemma 4 we have s2 = m2 +a2m1 for some real number a2.

At third order in h̄, we have

δ s3 +[s2,s1]G = 0, i.e., δ s3 +[m2 +a2m1,m1]G = 0.

From [m2,m1]G = −δm3 and [m1,m1]G = −2δm2 we deduce that s3 −m3 − 2a2m2 is a p-universal 2-

cocycle without wheels. Using Lemma 4 again, we find that s3 = m3 + 2a2m2 + a3m1 for some real

number a3.

Therefore the first terms in sh̄ are necessarily of the form:

s1 = m1,

s2 = m2 +a2m1,

s3 = m3 +2a2m2 +a3m1.

The change of parameter h̄ → h̄− a2h̄2 − (a3 − 2a2
2)h̄

3 in sh̄ gives us a new universal quantization

formula s′h̄ such that s′i = mi for i = 1,2,3. But m0 + h̄m1+ h̄2m2+ h̄3m3 is an associative deformation up

to order 3 that cannot be extended to order 4 (cf. Example 3). Hence we have reached a contradiction. �
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